SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): September 19, 2017
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Sacramento District, Mt. Hope Project. SPK-2007-00851
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: Nevada County/parish/borough: Eureka County City:
 Center coordinates of site (lat/long in degree decimal format): Lat. 39.8694°, Long. -116.2363°
 Universal Transverse Mercator: 11 565317.79 4413535.46
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: None
 Name of watershed or Hydrologic Unit Code (HUC): Pine, 16040104 and Diamond-Monitor Valleys, 16060005
 ☑ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form:

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☑ Office (Desk) Determination. Date: April 18, 2014
 ☐ Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ☑ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters 2 (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet, wide, and/or acres.
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Pick List
 Elevation of established OHWM (if known):

 2. Non-regulated waters/wetlands (check if applicable): 3
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: USGS topographic maps for the project area show 68 blue-line drainages with three named drainages; Garden Pass Creek, Tyrone Creek, and U’ans-in-dame Creek. Six additional drainages were identified in the field for a total of 74 drainages within the project boundary. There are six mapped springs located within the project boundary. Drainages identified as 1, 2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 20, 21, 22, 26, 36, 37, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 57, 62, 63, 64, and 65 do not exhibit OHWM indicators and are therefore not waters of the U.S. All other identified drainages are ephemeral (non-RPWs). There are no RPWs onsite. The non-RPWs and wetlands on site drain to Diamond Valley a hydrologically closed basin to the Southeast or the Pine Valley to the North which drains towards the

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
Humboldt River. All non-wetland waters of the U.S. lose evidence of an OHWM before reaching relatively permanent waters or traditional navigable waters. All wetlands on site are not adjacent to waters. All waters on the project site have no connection to any relatively permanent waters or traditional navigable waters; are not navigable; and they do not have any interstate commerce connection. Therefore, all the waters and wetlands on site are isolated.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: Pick List
 Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 [] Tributary flows directly into TNW.
 [] Tributary flows through Pick List tributaries before entering TNW.
 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW\(^5\):

Tributary stream order, if known:

(b) General Tributary Characteristics (check all that apply):

Tributary is:
- [] Natural
- [] Artificial (man-made). Explain:
- [] Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes: **Pick List**.

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Gravel
- [] Concrete
- [] Bedrock
- [] Vegetation. Type/% cover:
- [] Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:

Presence of run/riffle/pool complexes. Explain:

Tributary geometry: **Pick List**

Tributary gradient (approximate average slope): %

(c) Flow:

Tributary provides for: **Pick List**

Estimate average number of flow events in review area/year: **Pick List**

Describe flow regime:

Other information on duration and volume:

Surface flow is: **Pick List**. Characteristics:

Subsurface flow: **Pick List**. Explain findings:
- [] Dye (or other) test performed:

Tributary has (check all that apply):
- [] Bed and banks
- [] OHWM\(^6\) (check all indicators that apply):
- [] clear, natural line impressed on the bank
- [] changes in the character of soil
- [] shelving
- [] vegetation matted down, bent, or absent
- [] leaf litter disturbed or washed away
- [] sediment deposition
- [] water staining
- [] other (list):
- [] Discontinuous OHWM.\(^7\) Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- [] High Tide Line indicated by:
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other (list):
- [] Mean High Water Mark indicated by:
- [] survey to available datum;
- [] physical markings;
- [] vegetation lines/changes in vegetation types.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

\(^6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\) Ibid.
(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 - Wetland size: acres
 - Wetland type. Explain:
 - Wetland quality. Explain:
 Project wetlands cross or serve as state boundaries. Explain:
 (b) General Flow Relationship with Non-TNW:
 Flow is: Pick List. Explain:
 Surface flow is: Pick List
 Characteristics:
 Subsurface flow: Pick List. Explain findings:
 - Dye (or other) test performed:
 (c) Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:
 (d) Proximity (Relationship) to TNW
 Project wetlands are Pick List river miles from TNW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Flow is from: Pick List.
 Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to, the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: **linear feet** wide, Or **acres**.
 - Wetlands adjacent to TNWs: **acres**.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: **linear feet** wide.
 - Other non-wetland waters: **acres**.
 - Identify type(s) of waters:
3. **Non-RPWs** that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet, wide.
 - Other non-wetland waters: acres.

 Identify type(s) of waters:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional.

 Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional.

 Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. **Impoundments of jurisdictional waters.**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

8. **ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):**

 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain:

 Other factors. Explain:

 Identify water body and summarize rationale supporting determination:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet, wide.
 - Other non-wetland waters: acres.

 Identify type(s) of waters:
 - Wetlands: acres.

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☐ Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
☐ Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☒ Non-wetland waters (i.e., rivers, streams): 202569 linear feet, average 1.69 feet wide.
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☒ Wetlands: 0.284 acre.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): linear feet, wide.
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Eureka Molly LLC Waters of the U.S. Figure 1 Project Location 11-30-2012, Eureka Molly LLC Waters of the U.S. Figure 3 Project Boundary (topographic) 12-4-2012, General Molly Mount Hope Waters of the U.S. Figure 14 Jurisdictional Determination 01-10-2013

☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☐ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps:
☐ Corps navigable waters’ study:
☐ U.S. Geological Survey Hydrologic Atlas:
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☒ U.S. Geological Survey map(s). Cite scale & quad name: 1:24K; West of Whistler Mountain
☐ USDA Natural Resources Conservation Service Soil Survey. Citation:
☐ National wetlands inventory map(s). Cite name:
☐ State/Local wetland inventory map(s):
☐ FEMA/FIRM maps:
☐ 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
☐ Photographs: ☐ Aerial (Name & Date):
☐ or Other (Name & Date):
☐ Applicable/supporting case law:
☐ Applicable/supporting scientific literature:
☐ Other information (please specify):

B. ADDITIONAL COMMENTS TO SUPPORT JD: USGS topographic maps for project area show 68 blue-line drainages with three named drainages; Garden Pass Creek, Tyrone Creek, and U’ans-in-dame Creek. Six drainages were identified in the field for a total of 74 drainages within the project boundary. There are also six mapped springs are located within the project boundary. Drainages on site flow north to south. No drainages had flow at the time of the survey in October 2012.

Drainages identified in the report as 1, 2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 20, 21, 22, 26, 36, 37, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 57, 62, 63, 64, and 65 do not exhibit OHWM indicators and are therefore not waters of the U.S.

Drainages 3, 4, 9, 10, and Tyrone Creek drain to Garden Pass Creek. Drainages 12, 13, 23, 24, 25, 25-1, TC-1, West TC-2, East TC-2, and TC-3 drain to Tyrone Creek.
Drainage 19 flows into Diamond Valley where the OHWM is eventually lost before reaching another water. Drainages 27, 29, 30, 31, 32, 34, 35, 38, 40, 41, 51, 53, 56, 58, 59 and U'ans-in-dame Creek eventually lose indicators of an OHWM before reaching another water. Drainage 28 and 28-1 converge with Drainage 27; drainage 33 converges with 32; drainage 52 converges with 51; drainage 54 converges with 53; drainage 55 converges with 56; and drainages 60 and 61 converge with 59. Drainage 39-1 drains to 39 but loses evidence of an OHWM before reaching 39.

Garden Spring is located in a drainage bottom adjacent to Garden Spring pond, it was producing water at the time of the survey and supports wetland vegetation. Garden Spring pond was ponded at the time of the survey and supports wetland vegetation. McBride Spring has been developed with a spring box that is piped to a trough approximately 0.5 miles down gradient. Water was flowing out of the pipe into the trough at the time of the survey and was leaking out of the bottom of the trough and overflowing onto the surrounding ground. McBride Spring supports wetland vegetation at the base and inside the trough. Mt Hope Spring has been developed and is piped to a trough. Water was flowing out of the pipe into the trough at the time of the survey. Mt Hope Spring supports wetland vegetation at the base and inside the trough. Trail Spring is located in a drainage bottom that has been modified into a dirt tank and was dry at the time of the survey. Zinc Adit spring emerges from a historic zinc adit and flow has been diverted through a culvert into a retention pond. Overflow from the pond is diverted through a second culvert where surface flow is eventually lost to the substrate before converging with another water.

Springs identified as 1, 2, 3, and 4 do not have hydric soils or hydrology. Spring 2 does not have wetland vegetation but springs 1, 3, and 4 support wetland vegetation. Spring 1 is not located in an identified drainage and does not have signs of OHWM. Spring 2 and 4 are located within drainages that did not have an OHWM. Spring 3 is located at the headwaters of U'ans-in-dame Creek. None of the springs connect to waters of the U.S. Spring 1, 2, 3, and 4 are not wetlands and have no connection to a Traditional Navigable Water of the U.S., nor do they have a commerce connection. Springs 1, 2, 3, and 4 are isolated waters of the U.S.

Aquatic resources and wetlands on site drain to either Diamond Valley a hydrologically closed basin to the Southeast or the Pine Valley to the North which drains towards the Humboldt River. All non-wetland waters lose evidence of an OHWM before reaching a relatively permanent water or traditional navigable water. All wetlands on site are not adjacent to waters. All waters on the project site have no connection to a relatively permanent water or traditional navigable water; are not navigable; nor do they have a commerce connection. Therefore the waters and wetlands on site are isolated.