This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): July 12, 2016
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Sacramento District, Wasatch Resource Recovery, SPK-2016-00493
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: Utah County/parish/borough: Davis City: Salt Lake City
 Center coordinates of site (lat/long in degree decimal format): Lat. 40.8443052967349°, Long. -111.947137275973°
 Universal Transverse Mercator: 12 420156.63 4521905.33
 Name of nearest waterbody: Unnamed ditch tributary to the Jordan River
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Great Salt Lake
 Name of watershed or Hydrologic Unit Code (HUC): Jordan, 16020204
 ☑ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form:

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☑ Office (Desk) Determination. Date: July 18, 2016
 ☐ Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ☑ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☑ TNWs, including territorial seas
 ☑ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☑ Non-RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☑ Impoundments of jurisdictional waters
 ☑ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet, wide, and/or acres.
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Pick List
 Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable): 3
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: A small palustrine emergent wetland (0.02 acre) on the northeastern edge of the survey area has been found to lack a significant nexus. It is small in size, and isolated from other wetlands and water bodies, being over 100 feet away from the nearest RPW.

SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody\(^4\) is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**
 - **(i) General Area Conditions:**
 - Watershed size: **35,000 square miles**
 - Drainage area: **805 square miles**
 - Average annual rainfall: **23.36 inches**
 - Average annual snowfall: **58.7 inches**

 - **(ii) Physical Characteristics:**
 - **(a) Relationship with TNW:**
 - ☐ Tributary flows directly into TNW.
 - ☑ Tributary flows through 2 tributaries before entering TNW.

 Project waters are **20-25** river miles from TNW.
 Project waters are **1** (or less) river miles from RPW.
 Project waters are **10-15** aerial (straight) miles from TNW.
 Project waters are **1** (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: N/A

 Identify flow route to TNW\(^5\): *An unnamed ditch near the survey area flows to the Jordan River, then on to the Great Salt Lake*.
 Tributary stream order, if known: N/A

 - **(b) General Tributary Characteristics (check all that apply):**

\(^4\) Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary is: □ Natural □ Artificial (man-made). Explain: Tributary is an unnamed stormwater drainage ditch constructed in uplands for the purpose of carrying water away from a population center
□ Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
Average width: 11 feet
Average depth: 3 feet
Average side slopes: 2:1.

Primary tributary substrate composition (check all that apply):
☒ Silts ☒ Sands ☐ Concrete
☒ Cobble ☒ Gravel ☐ Muck
☐ Bedrock ☒ Vegetation. Type/% cover:
☐ Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: minor erosion
Presence of run/riffle/pool complexes. Explain: N/A
Tributary geometry: Relatively straight
Tributary gradient (approximate average slope): 4-6%

(c) Flow:
Tributary provides for: Perennial
Estimate average number of flow events in review area/year: 2-5
Describe flow regime: The ditch carries water from surrounding residential developments and industrial buildings.
Other information on duration and volume:
Surface flow is: Discrete and confined. Characteristics: Ditch was excavated in uplands and is distinct on aerial photographs
Subsurface flow: Unknown. Explain findings:
☐ Dye (or other) test performed:

Tributary has (check all that apply):
☒ Bed and banks ☒ OHWM\(^6\) (check all indicators that apply):
☒ clear, natural line impressed on the bank ☐ the presence of litter and debris
☐ changes in the character of soil ☐ destruction of terrestrial vegetation
☒ shelving ☐ the presence of wrack line
☒ vegetation matted down, bent, or absent ☐ sediment sorting
☒ leaf litter disturbed or washed away ☐ scour
☐ sediment deposition ☒ multiple observed or predicted flow events
☐ water staining ☒ abrupt change in plant community
☐ other (list):
☐ Discontinuous OHWM.\(^7\) Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
☐ High Tide Line indicated by:
☐ oil or scum line along shore objects ☐ survey to available datum;
☐ fine shell or debris deposits (foreshore) ☐ physical markings;
☐ physical markings/characteristics ☐ vegetation lines/changes in vegetation types.
☐ tidal gauges ☐ other (list):

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: Generally clear with occasional turbidity during storm events
Identify specific pollutants, if known:

\(^6\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)Ibid.
(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 - Wetland size: 0.02 acres
 - Wetland type. Explain: Palustrine Emergent Wetland
 - Wetland quality. Explain: Low quality. Vegetation is limited, the wetlands area is disturbed from past grading activity and area is entirely surrounded by uplands.
 Project wetlands cross or serve as state boundaries. Explain: No. Wetlands located entirely within the state of Utah.

 (b) General Flow Relationship with Non-TNW:
 Flow is: Ephemeral flow. Explain: Flow to TNW may occur during large storm event when enough water fills the depressional wetland creating a sheetflow to the nearby ditch.
 Surface flow is: Overland sheetflow
 Characteristics: Aerial photos indicate possible sheetflow.
 Subsurface flow: Unknown. Explain findings:
 - Dye (or other) test performed:

 (c) Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - Not directly abutting
 - Discrete wetland hydrologic connection. Explain: There is no distinct surface connection that is visible on aerial photographs; however, most of the surrounding area is upland, and the wetland is 100 feet from a perennial tributary.
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:

 (d) Proximity (Relationship) to TNW
 Project wetlands are 1 (or less) river miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from TNW.
 Flow is from: Wetland to/from navigable waters.
 Estimate approximate location of wetland as within the 100 - 500-year floodplain.

 (ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: It appears that pooling precipitation in a low topographical area is the main contributor to the standing water on site, which is relatively clear with minimal sediments.
 Identify specific pollutants, if known: None known

 (iii) Biological Characteristics. Wetland supports (check all that apply):
 - Riparian buffer. Characteristics (type, average width):
 - Vegetation type/percent cover. Explain: 90% cover of facultative (FAC) or FAC wet species
 - Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: 1
 Approximately 0.02 acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.02</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: This area is likely to be acting to filter precipitation prior to entering the ditch if enough rain/snow falls. Due to the relative size of the wetland, it is unlikely it provides much function/service.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The wetland shown on the attached map is adjacent to an unnamed ditch that runs toward the Jordan River, a perennial RPW. With approximately 100 feet separating the PEM wetland and the unnamed ditch, and limited ephemeral surface flow between the two features, it can be assumed that the wetland has little capacity to filter pollution from nearby industrial and residential areas in order to reduce the turbidity of the Jordan River, which leads to the Great Salt Lake, a traditionally navigable water (TNW) - indicating a lack of Significant Nexus. This wetland does not support recreation, fisheries, commercial or industrial uses. No interstate commerce connections were found that would be adversely affected as a result of the destruction of this wetland.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet, wide, Or acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:

Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: ___ linear feet, ___ wide.
- Other non-wetland waters: ___ acres.

Identify type(s) of waters:

3. **Non-RPWs** that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: ___ linear feet, ___ wide.
- Other non-wetland waters: ___ acres.

Identify type(s) of waters:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: ___ acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: 0.02 acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: ___ acres.

7. **Impoundments of jurisdictional waters.**

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from “waters of the U.S.,” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

E. **ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):**

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:

8See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet, wide.
- Other non-wetland waters: acres.
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: The wetland in question is very small, and appears to be isolated from other wetlands and bodies of water, as it is approximately 100 feet from the nearest RPW.
- Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet, wide.
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet, wide.
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: 0.02 acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: **SWCA Environmental Consultants**
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps.
- Corps navigable waters’ study:
- U.S. Geological Survey Hydrologic Atlas:
 - USGS NHD data.
 - USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: 1/24K; UT-SALT LAKE CITY NORTH
- USDA Natural Resources Conservation Service Soil Survey. Citation:
- National wetlands inventory map(s). Cite name:
- State/Local wetland inventory map(s):
- FEMA/FIRM maps:
- 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): **Google Earth Pro, July 2016** or Other (Name & Date): **SWCA Environmental Consultants**
- Previous determination(s). File no. and date of response letter:
- Applicable/supporting case law:
- Applicable/supporting scientific literature:
- Other information (please specify): see additional comments for SPK-2007-00447

B. ADDITIONAL COMMENTS TO SUPPORT JD:
The study area is comprised of 8.98 acres in which the only existing wetland is dominated by Saltgrass and the uplands are dominated by Cheatgrass, Burning bush, Tall wheatgrass, and Field bindweed. The unnamed ditch adjacent to the study area connects downstream to the Jordan River, and, eventually, the nearest TNW, which is the Great Salt Lake. The area is highly disturbed as it is a previously reclaimed sewage lagoon.

NWI maps show a large wetland mosaic to the north of the parcel, however, only one jurisdictional determination has been performed in the area. A neighboring parcel, under US Army Corps of Engineers file number SPK-2007-00447, was assessed for jurisdiction under the Clean Water Act Section 404. In 2007, a jurisdictional determination was made concerning some land directly to the south of the wetland in question. It was determined that 0.38 acre of the 60-acre project site were jurisdictional waters due to their proximity to the Jordan River, a tributary to the Great Salt Lake - however, this wetland was permitted to be filled.

The only wetland within the survey area was evaluated for potential physical, chemical and biological connections to jurisdictional waters, and none were found. The 0.02 acre wetland was determined to have insufficient frequency, duration, and volume of flow events to have an effect on the nearby waters of the U.S., as it is situated approximately 100 feet away from the nearest RPW and has limited ephemerical flows. In addition, due to lack of any nearby wetlands or a wetland complex, it has been determined that the wetland has no significant nexus to a TNW.