This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): March 15, 2012

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Sacramento District, Yokohl Ranch, SPK-2007-01984

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 - State: California
 - County/parish/borough: Tulare
 - City: N/A
 - Center coordinates of site (lat/long in degree decimal format): Lat. 36.26520°, Long. -119.02294°
 - Universal Transverse Mercator: 11 318278 4015262
 - Name of nearest waterbody: Kaweah River
 - Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Kaweah River
 - Name of watershed or Hydrologic Unit Code (HUC): Upper Tule, California., 18030006

 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.

 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form: JD forms were prepared for jurisdictional waters and isolated waters on the project site under the ID number (SPK-2007-01984)

 D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

 - Waters subject to the ebb and flow of the tide.
 - Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 - Non-wetland waters: linear feet, wide, and/or acres.
 - Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Not Applicable
 - Elevation of established OHWM (if known):

 2. Non-regulated waters/wetlands (check if applicable):³
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Approximately 3.40 acres of tributaries and 0.37 acres of other waters drain south into Round Valley and do not have a significant nexus to a traditionally navigable water. The tributaries are relatively small and represent the upper reaches, or headwaters of the drainage. The tributaries exit the study area and drain south into Round Valley. The other waters of the United States consists of three cattle ponds and one seep along these tributaries.

SECTION III: CWA ANALYSIS

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
³ Supporting documentation is presented in Section III.F.
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: N/A
 Summarize rationale supporting determination: N/A

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: N/A

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody4 is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 20,179 acres
 Drainage area: 43,819 acres
 Average annual rainfall: 13.63 inches
 Average annual snowfall: < 1 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☑ Tributary flows directly into TNW.
 ☑ Tributary flows through 10 (or more) tributaries before entering TNW.

 Project waters are 30 (or more) river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 10-15 aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: N/A

 Identify flow route to TNW5: Tributaries within the review area flow south into Round Valley and appear to terminate near orchards within the small valley. Although aerials show a potential flow path to the orchards, it has not been delineated nor determined if the tributaries actually reach or contribute to the orchards or any related drainage system. Although Lewis Creek flows at the foot of the hills along the end of Round Valley,...

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
there are no natural waterways within the valley connecting these tributaries to the creek. It is unknown if drainage exists from the orchards or if any water reaches the creek.

Tributary stream order, if known: 2

(b) General Tributary Characteristics (check all that apply):

Tributary is:

- [x] Natural
- [] Artificial (man-made). Explain:
- [] Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: 2 feet
- Average depth: 1 foot
- Average side slopes: Vertical (1:1 or less).

Primary tributary substrate composition (check all that apply):

- [] Silts
- [x] Sands
- [x] Cobbles
- [x] Gravel
- [] Bedrock
- [] Vegetation. Type/% cover:
- [] Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Most of the stream channels are relatively stable, consisting of bedrock and large cobbles.

Presence of run/riffle/pool complexes. Explain: run/riffle/pool complexes do not exist within the review area. The tributaries are how gradient drainages along a hillside.

Tributary geometry: Relatively straight

Tributary gradient (approximate average slope): 4-20 %

(c) Flow:

Tributary provides for: Ephemeral flow

Estimate average number of flow events in review area/year: 20 (or greater)

Describe flow regime: Flows vary with seasonal rainfall. The tributaries have a relatively small drainage area and do not flow more than a couple of days following a rainfall event.

Other information on duration and volume:

Surface flow is: Confined. Characteristics: The tributaries are defined by the hillsides and are confined to the lowest point between the two hill sides.

Subsurface flow: No. Explain findings: Tributaries are underlayed with bedrock formations occurring just below or on the substrate surface.

- [] Dye (or other) test performed:

Tributary has (check all that apply):

- [x] Bed and banks
- [x] OHWM6 (check all indicators that apply):
 - [x] clear, natural line impressed on the bank
 - [x] changes in the character of soil
 - [x] shelving
 - [x] vegetation matted down, bent, or absent
 - [] leaf litter disturbed or washed away
 - [] sediment deposition
 - [] water staining
 - [] other (list):
 - [] Discontinuous OHWM.7 Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

- [] High Tide Line indicated by:
 - [] oil or scum line along shore objects
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other (list):

- [] Mean High Water Mark indicated by:
 - [] survey to available datum;
 - [] physical markings;
 - [] vegetation lines/changes in vegetation types.

6A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Ibid.
(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: Water is typically clear with little silt or sedimentation and water quality is generally good. There is a potential for cattle waste within the drainages, although little was observed during site visits. The cattle tended to frequent more seasonal water or the man-made cattle ponds.
Identify specific pollutants, if known: Cattle waste.

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
- Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: acres
- Wetland type. Explain:
- Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain:
Surface flow is: Pick List
Characteristics:
Subsurface flow: Unknown. Explain findings:
- Dye (or other) test performed:

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
- Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Feature ID</th>
<th>Directly Abuts? (Y/N)</th>
<th>Size (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

 Tributaries within the review area flow south into Round Valley and appear to mostly disappear as they reach the valley and completely terminate near orchards within the small valley. Although aerials show a potential flow path to the orchards, due to on-site access, it has not been delineated or determined if the tributaries actually reach or contribute to the orchards or any related drainage system. There are multiple impoundments within the tributaries shortly after entering the study area immediately prior to entering the valley. The gradient changes dramatically and the tributaries appear to lose definite signs of an ordinary high water mark as they enter the valley. The remaining signature from this point to the orchards appears to be a remnant drainage or the result of scour during very high water years. Available aerials on Google Earth, dated between 2004 and 2011, do not show any signs of water or green vegetation within the area of these signatures. The aerials were all taken during the dry season except for one on December 30, 2005, a wet year.

 There are no natural waterways flowing through or out of Round Valley. The valley has a small drainage area and is surrounded by steep hills with a single exit to the southwest that measures approximately 2,000 feet wide. The Lindsay USGS 7.5-minute quadrangle shows multiple unnamed tributaries entering the valley from the north, east, south, and west that all disappear once they enter the lower gradient of the valley. Although Lewis Creek flows at the foot of the hills near the end of Round Valley, there are no natural waterways within the valley connecting these tributaries to the creek. It is unknown if drainage exists from the orchards or if any water reaches the creek. The lower gradient portion of Round Valley, mapped from the USGS quad map, measures roughly 1,700 acres. The orchards within the valley occupy approximately 480 acres.

 Due to a lack of connectivity data within Round Valley, it is assumed that these features may not be completely isolated. Based on available data, the tributaries do not have a noticeable effect on the flow or water quality characteristics of Lewis Creek or the Tule River, a TNW. Lewis Creek flows northwest then turns west to southwest before terminating into Locust Grove Ditch at Latitude 36.22284°, Longitude -119.18114°. Flows from Locust Grove Ditch flow to Outside Creek, Elk Bayou, then the Tule River, a TNW.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

 N/A
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

N/A

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet, wide, Or acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: acres.
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: acres.
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands:
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or

8See Footnote # 3.
9To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE,
DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY
SUCH WATERS (CHECK ALL THAT APPLY):10
☐ which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain:
☐ Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
☐ Tributary waters: linear feet, wide.
☐ Other non-wetland waters: acres.
Identify type(s) of waters:
☐ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers
Wetland Delineation Manual and/or appropriate Regional Supplements.
☒ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
☐ Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the
“Migratory Bird Rule” (MBR).
☐ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
☐ Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR
factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional
judgment (check all that apply):
☒ Non-wetland waters (i.e., rivers, streams): 3.40 acres.
☐ Lakes/ponds: acres.
☒ Other non-wetland waters: 0.37 acres. List type of aquatic resource: Three stock ponds and a freshwater seep
☐ Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such
a finding is required for jurisdiction (check all that apply):
☐ Non-wetland waters (i.e., rivers, streams): acres.
☐ Lakes/ponds: acres.
☐ Other non-wetland waters: acres. List type of aquatic resource:
☐ Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked
and requested, appropriately reference sources below:
☒ Data sheets prepared/submitted by or on behalf of the applicant/consultant: Yokohl Ranch, County of Tulare, Ca, prepared
by Quad Knopf, dated February 2012
☒ Office concurs with data sheets/delineation report.
☒ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps:
☐ Corps navigable waters’ study:
☐ U.S. Geological Survey Hydrologic Atlas:
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☒ U.S. Geological Survey map(s). Cite scale & quad name: 1:24K; CA-Rocky Hill, Chickencoop Canyon, Lindsay, and
Springville

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for
review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Site visits were conducted on February 16-18, 2010 and April 13 & 15, 2010, including a site visit with Rob Leidy of EPA on May 19, 2010.

B. ADDITIONAL COMMENTS TO SUPPORT JD:
Summary Table (acres)

JURISDICTIONAL 85.30

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td>45.02</td>
</tr>
<tr>
<td>Alkaline Meadow</td>
<td>0.13</td>
</tr>
<tr>
<td>Creek Backwater</td>
<td>0.56</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>1.36</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.15</td>
</tr>
<tr>
<td>Freshwater Seep</td>
<td>0.31</td>
</tr>
<tr>
<td>Spring</td>
<td>0.06</td>
</tr>
<tr>
<td>Seasonal Wetland</td>
<td>0.44</td>
</tr>
<tr>
<td>Other Waters of the U.S.</td>
<td>40.28</td>
</tr>
<tr>
<td>Cattle Pond</td>
<td>4.64</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>0.04</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.01</td>
</tr>
<tr>
<td>Tributary</td>
<td>35.59</td>
</tr>
</tbody>
</table>

NON-JURISDICTIONAL 10.03

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td>1.79</td>
</tr>
<tr>
<td>Alkaline Meadow</td>
<td>0.76</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>0.47</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.01</td>
</tr>
<tr>
<td>Freshwater Seep</td>
<td>0.06</td>
</tr>
<tr>
<td>Other Waters of the U.S.</td>
<td>8.24</td>
</tr>
<tr>
<td>Cattle Pond</td>
<td>1.03</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>0.33</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.03</td>
</tr>
<tr>
<td>Spring</td>
<td>0.04</td>
</tr>
<tr>
<td>Tributary</td>
<td>6.84</td>
</tr>
</tbody>
</table>
Cowardin Classifications

- **PEMC**: Palustrine Emergent Seasonally Flooded
- **PEMS**: Palustrine Emergent Seasonally Flooded/Saturated
- **PEMF**: Palustrine Emergent Semi-Permanently Flooded
- **PUBX**: Palustrine Unconsolidated Bottom Excavated
- **R4SB**: Riverine, Intermittent, Streambed

ID Type Abbreviation
- ac: alkali meadow
- bkwtr: creek backwater
- cp: cattle pond
- ep: ephemeral pool
- seep: freshwater seep
- sp: spring
- sw: ephemeral swale
- swet: seasonal wetland
- trb: tributary

A-1 Summary Table (acres)

<table>
<thead>
<tr>
<th>Type</th>
<th>Jurisdictional</th>
<th>Non-Jurisdictional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td>4.20</td>
<td>0.00</td>
</tr>
<tr>
<td>Alkali Meadow</td>
<td>3.62</td>
<td>N/A</td>
</tr>
<tr>
<td>Creek Backwater</td>
<td>0.56</td>
<td>N/A</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>0.02</td>
<td>N/A</td>
</tr>
<tr>
<td>Other Waters of the U.S.</td>
<td>15.52</td>
<td>5.49</td>
</tr>
<tr>
<td>Cattle Pond</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Tributary</td>
<td>15.42</td>
<td>0.49</td>
</tr>
</tbody>
</table>

JURISDICTIONAL

- **Wetlands**: 4.20 acres
- **Alkali Meadow**: 3.62 acres
- **Creek Backwater**: 0.56 acres
- **Ephemeral Pool**: 0.02 acres
- **Other Waters of the U.S.**: 15.52 acres

NON-JURISDICTIONAL

- **Wetlands**: 0.00 acres
- **Other Waters of the U.S.**: 5.49 acres
Cowardin Classifications
PEMC - Palustrine Emergent Seasonally Flooded
PEMF - Palustrine Emergent Semi-Permanently Flooded
PUBX - Palustrine Unconsolidated Bottom Excavated
R4SB - Riverine, Intermittent, Streambed

ID Type Abbreviation
am - alkali meadow
bk - backwater
cp - cattle pond
ep - ephemeral pool
seep - freshwater seep
sp - spring
sw - ephemeral swale
swet - seasonal wetland
trb - tributary

Jurisdictional Summary Table (acres)

<table>
<thead>
<tr>
<th>Wetlands</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkali Meadow</td>
<td>6.76</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>0.29</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.09</td>
</tr>
<tr>
<td>Freshwater Seep</td>
<td>0.31</td>
</tr>
<tr>
<td>Seasonal Wetland</td>
<td>0.16</td>
</tr>
<tr>
<td>Other Waters of the U.S.</td>
<td>11.61</td>
</tr>
<tr>
<td>Cattle Pond</td>
<td>3.21</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>0.04</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.01</td>
</tr>
<tr>
<td>Tributary</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Non-Jurisdictional Summary Table (acres)

<table>
<thead>
<tr>
<th>Wetlands</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Summary Table (acres)

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Wetlands</th>
<th>Alkali Meadow</th>
<th>Ephemeral Pool</th>
<th>Ephemeral Swale</th>
<th>Freshwater Seep</th>
<th>Seasonal Wetland</th>
<th>Other Waters of the U.S.</th>
<th>Cattle Pond</th>
<th>Ephemeral Pool</th>
<th>Ephemeral Swale</th>
<th>Tributary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jurisdictional</td>
<td>19.23</td>
<td>6.76</td>
<td>0.29</td>
<td>0.09</td>
<td>0.31</td>
<td>0.16</td>
<td>11.61</td>
<td>3.21</td>
<td>0.04</td>
<td>0.01</td>
<td>0.36</td>
</tr>
<tr>
<td>Non-Jurisdictional</td>
<td>0.75</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.65</td>
</tr>
<tr>
<td>Total</td>
<td>20.98</td>
<td>6.76</td>
<td>0.29</td>
<td>0.09</td>
<td>0.31</td>
<td>0.16</td>
<td>11.61</td>
<td>3.31</td>
<td>0.04</td>
<td>0.01</td>
<td>0.46</td>
</tr>
</tbody>
</table>
B-2 Summary Table (acres)

JURISDICTIONAL 47.37

<table>
<thead>
<tr>
<th>Wetlands</th>
<th>32.94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahohl Meadow</td>
<td>31.75</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>1.05</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.06</td>
</tr>
<tr>
<td>Spring</td>
<td>0.03</td>
</tr>
<tr>
<td>Seasonal Wetland</td>
<td>0.05</td>
</tr>
<tr>
<td>Other Waters of the U.S.</td>
<td>14.43</td>
</tr>
<tr>
<td>Cattle Pond</td>
<td>0.73</td>
</tr>
</tbody>
</table>

NON-JURISDICTIONAL 2.18

<table>
<thead>
<tr>
<th>Wetlands</th>
<th>1.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahohl Meadow</td>
<td>0.51</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>0.44</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.51</td>
</tr>
<tr>
<td>Other Waters of the U.S.</td>
<td>1.73</td>
</tr>
<tr>
<td>Cattle Pond</td>
<td>0.28</td>
</tr>
<tr>
<td>Ephemeral Pool</td>
<td>0.29</td>
</tr>
<tr>
<td>Ephemeral Swale</td>
<td>0.03</td>
</tr>
<tr>
<td>Spring</td>
<td>0.00</td>
</tr>
<tr>
<td>Tributary</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Cowardin Classifications

- PEMC - Palustrine Emergent Seasonally Flooded
- PEMF - Palustrine Emergent Seasonally Flooded/Permanently Flooded
- PUBX - Palustrine Unclassified Bottom Excavated
- R4SB - Riverine, Intermittent, Streambed

ID Type Abbreviation

- am - alkali meadow
- cp - cattle pond
- ep - ephemeral pool
- sp - spring
- sw - ephemeral swale
- swet - seasonal wetland
- trb - tributary

Legend:

- **B-1**: 0.02 ac
- **B-2**: 0.04 ac
- **C-1**: 0.09 ac
- **C-2**: 0.01 ac
- **Map B-2**: February 2012

ID Type Abbreviation Table

- **A-1**: 0.02 ac
- **A-2**: 0.02 ac
- **B-1**: 0.02 ac
- **B-2**: 0.02 ac
- **C-1**: 0.01 ac
- **C-2**: 0.01 ac

Map Legend

- **B-2**: 0.01 ac
- **B-2**: 0.02 ac
- **B-2**: 0.09 ac
- **B-2**: 0.01 ac
- **Map B-2**: February 2012
C-1 Summary Table (acres)

JURISDICTIONAL 0.00
- Wetlands 0.00
- NA
- Other Waters of the U.S. 0.00
- NA

NON-JURISDICTIONAL 0.40
- Wetlands 0.00
- NA
- Other Waters of the U.S. 0.40
 - Cattle Pond: 0.17
 - Spring: 0.03
 - Tributary: 0.20

Cowardin Classifications
- PEMC - Palustrine Emergent Seasonally Flooded
- PEME - Palustrine Emergent Seasonally Flooded/Saturated
- PEMF - Palustrine Emergent Semi-Permanently Flooded
- PUBX - Palustrine, Unconsolidated Bottom Excavated
- R4SB - Riverine, Intermittent, Streambed

ID Type Abbreviation
- am - alkali meadow
- bkwtr - creek backwater
- cp - cattle pond
- ep - ephemeral pool
- seep - freshwater seep
- sp - spring
- sw - ephemeral swale
- swet - seasonal wetland
- trb - tributary

Map C-1
February 2012

YO Kohl Ranch
COUNTY OF TULARE, CA
Map C-2
February 2012

C-2 Summary Table (acres)

<table>
<thead>
<tr>
<th>JURISDICTIONAL</th>
<th>3.97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td>0.26</td>
</tr>
<tr>
<td>Spring</td>
<td>0.03</td>
</tr>
<tr>
<td>Seasonal Water</td>
<td>0.23</td>
</tr>
<tr>
<td>Other Waters of the U.S.</td>
<td>3.71</td>
</tr>
<tr>
<td>Cattle Pond</td>
<td>0.62</td>
</tr>
<tr>
<td>Tributary</td>
<td>3.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NON-JURISDICTIONAL</th>
<th>3.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td>0.09</td>
</tr>
<tr>
<td>Other Waters of the U.S.</td>
<td>3.36</td>
</tr>
<tr>
<td>Cattle Pond</td>
<td>0.16</td>
</tr>
<tr>
<td>Tributary</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Cowardin Classifications
PEMC - Palustrine Emergent Seasonally Flooded
PEME - Palustrine Emergent Seasonally Flooded/Saturated
PEMF - Palustrine Emergent Semi-Permanently Flooded
PUBX - Palustrine Unconsolidated Bottom Excavated
R4SB - Riverine, Intermittent, Streambed

ID Type Abbreviation
am - alkali meadow
bkwtr - creek backwater
cp - cattle pond
ep - ephemeral pool
seep - freshwater seep
sp - spring
sw - ephemeral swale
swet - seasonal wetland
trb - tributary

JURISDICTIONAL 3.97
Wetlands 0.26
Spring 0.03
Seasonal Water 0.23
Other Waters of the U.S. 3.71
Cattle Pond 0.62
Tributary 3.08

NON-JURISDICTIONAL 3.36
Wetlands 0.09
Other Waters of the U.S. 3.36
Cattle Pond 0.16
Tributary 3.20

COWARDIN C-2
COUNTY OF TULARE, CA
February 2012