This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): December 11, 2009

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Sacramento District, Headington Road, SPK-2009-00115

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

- **State:** California
- **County/parish/borough:** El Dorado
- **City:** Placerville

 Center coordinates of site (lat/long in degree decimal format): Lat. 38.7141366970686° N, Long. -120.842654539627° W

 Universal Transverse Mercator: 10 687567.43 4287263.94

 Name of nearest waterbody: Mound Springs Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Mound Springs Creek
 Name of watershed or Hydrologic Unit Code (HUC): South Fork American, California, 18020129

 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.

 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form: Placerville Market Square, ID 200400380

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

- [] Office (Desk) Determination. Date:
- [] Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There [Pick List] “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There [Pick List] “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. **Waters of the U.S.**

 - [] Indicate presence of waters of U.S. in review area (check all that apply):
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 - [] Identify (estimate) size of waters of the U.S. in the review area:
 - Non-wetland waters: 101 linear feet, 11 wide, and/or .02 acres.
 - Wetlands: 0.01 acres.

 - [] Limits (boundaries) of jurisdiction based on: [1987 Delineation Manual]
 - Elevation of established OHWM (if known):

2. **Non-regulated waters/wetlands (check if applicable):**

 - [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1 only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 200 acres
 Drainage area: 200 acres
 Average annual rainfall: 38.55 inches
 Average annual snowfall: 0.3 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☐ Tributary flows directly into TNW.
 ☒ Tributary flows through 3 tributaries before entering TNW.
 Project waters are 10-15 river miles from TNW.
 Project waters are 2-5 river miles from RPW.
 Project waters are 5-10 aerial (straight) miles from TNW.
 Project waters are 5-10 aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: None

 Identify flow route to TNW:
 Tributary stream order, if known:

 (b) General Tributary Characteristics (check all that apply):
 Tributary is: ☒ Natural
 ☐ Artificial (man-made). Explain:

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

Tributary properties with respect to top of bank (estimate):
Average width: 10 feet
Average depth: 2 feet
Average side slopes: Vertical (1:1 or less).

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Cobble
- Gravel
- Bedrock
- Concrete
- Muck
- Other. Explain: Culvert and some historic channelization

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: relatively stable
Presence of run/riffle/pool complexes. Explain: NA

Tributary geometry: Meandering
Tributary gradient (approximate average slope): 15%

(c) Flow:
Tributary provides for: Intermittent but not seasonal flow
Estimate average number of flow events in review area/year: 11-20
Describe flow regime: flow during raining season and accumulation of rain
Other information on duration and volume: Higher flow during the raining and winter season to lower flow or no flow during summer and dry season

Surface flow is: Discrete and confined. Characteristics: Unvegetated and bed and Bank Morphology
Subsurface flow: Unknown. Explain findings:
- Dye (or other) test performed:

Tributary has (check all that apply):
- Bed and banks
- OHWM\(^6\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):
- Discontinuous OHWM.\(^7\) Explain:

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
- Mean High Water Mark indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - other (list):

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: Water color is relatively clear and discolored, oily film, water quality
Identify specific pollutants, if known: natural chemicals, automobile, residential, commercial, road, some agricultural and light industries pollutants

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width): forested, over 50-100 ft wide
- Wetland fringe. Characteristics:
- Habitat for:

\(^6\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)Ibid.
Federally Listed species. Explain findings: Salmonid fisheries down river, migratory songbirds.
Fish/spawn areas. Explain findings: Lake Natoma Fish Hatchery, Folsom Lake, and American River
Other environmentally-sensitive species. Explain findings: salmon habitat in the American River.
Aquatic/wildlife diversity. Explain findings: Western fence lizard, Pacific treefrog, Acorn woodpecker,
American crow, American kestrel, American robin, Ash-throated flycatcher
Bewick’s wren, Black phoebe, Bullock’s oriole
Bushtit, California quail, California towhee
Cliff swallow, Cooper’s hawk, Dark-eyed junco
European starling, House finch, House sparrow,
Lesser goldfinch, Mourning dove, Nuttall’s woodpecker, Oak titmouse
Red-shouldered hawk, Spotted towhee, Turkey vulture, Western kingbird
Western scrub-jay, Western tanager, Western wood-pewee
Wild turkey, Wrentit, Botta’s pocket gopher, Raccoon, Mule deer

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 Wetland size: 0.01 acres
 Wetland type. Explain: Seasonal
 Wetland quality. Explain: Below average
 Project wetlands cross or serve as state boundaries. Explain: None

 (b) General Flow Relationship with Non-TNW:
 Flow is: Intermittent flow. Explain: Seasonal rain runoff pooling and
 Surface flow is: Discrete and confined
 Characteristics:
 Subsurface flow: Unknown. Explain findings:
 Dye (or other) test performed:

 (c) Wetland Adjacency Determination with Non-TNW:
 Directly abutting
 Not directly abutting
 Discrete wetland hydrologic connection. Explain:
 Ecological connection. Explain:
 Separated by berm/barrier. Explain:

 (d) Proximity (Relationship) to TNW
 Project wetlands are 10-15 river miles from TNW.
 Project waters are 10-15 aerial (straight) miles from TNW.
 Flow is from: No Flow.
 Estimate approximate location of wetland as within the 20 - 50-year floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed
 characteristics; etc.). Explain: Water color is relatively clear and discolored, oily film, water quality
 Identify specific pollutants, if known: natural chemicals, automobile, residential, commerical, road, some agricultural
 and light industries pollutants

(iii) Biological Characteristics. Wetland supports (check all that apply):
 Riparian buffer. Characteristics (type, average width):
 Vegetation type/percent cover. Explain:
 Habitat for:
 Federally Listed species. Explain findings: migratory songbird, and salmonid fisheries.
 Fish/spawn areas. Explain findings: Potential fish spawning areas do stream off this tributaries.
 Other environmentally-sensitive species. Explain findings: salmon habitat in the American River, and migratory
 songbirds
 Aquatic/wildlife diversity. Explain findings: migratory songbirds

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: 15-20
 Approximately 3.93 acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittent Stream</td>
<td>Yes</td>
<td>0.12</td>
<td>Yes</td>
</tr>
<tr>
<td>Seasonal Pond</td>
<td>Yes</td>
<td>0.15</td>
<td>Seasonal Pond</td>
</tr>
<tr>
<td>Season Wetlands</td>
<td>Yes</td>
<td>3.25</td>
<td>Wetland Swale</td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The study areas B and C are intermittent streams located in the South Fork American watershed. Hydrology from areas B and C drains from westerly into Mound Springs Creek, and then into Weber Creek, which eventually empties into South Fork American River. Areas B and C and the South Fork American watershed have the significant effect from chemical, physical and biological integrity flow into the American River (TNW), Sacramento River (TNW) and Folsom Lake (Navigable in-fact or NIF). Potential pollutants and runoff i.e. household pollutants, urban runoff, roadside automobile pollutants and runoff and debris pollutant are present in these intermittent streams. These intermittent streams, thus, have the capacity to carry pollutant or flood waters to the TNWs and/or reduce the amount of pollutant or flood waters reaching TNWs or NIF. Area B and C and its adjacent wetlands above and below the tributary provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNWs and NIF. It provide also dissolved oxygens and cold temperature to Folsom Lake and American River. These tributaries have the capacity to transfer nutrients and organic carbon that support downstream foodwebs.

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: _____ linear feet, _____ wide, Or _____ acres.
 - Wetlands adjacent to TNWs: _____ acres.

2. RPWs that flow directly or indirectly into TNWs.
Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:

Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet wide.
- Other non-wetland waters: acres.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: linear feet, wide.
- Other non-wetland waters: acres.

Identify type(s) of waters: Intermittent Stream

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: 100 linear feet, 6-10 wide.
- Other non-wetland waters: acres.

Identify type(s) of waters: Intermittent Stream

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: 0.01 acres.

7. Impoundments of jurisdictional waters.

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

☐ Demonstrate that impoundment was created from “waters of the U.S.,” or
☐ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
☐ Demonstrate that water is isolated with a nexus to commerce (see E below).

E. Isolated [Interstate or Intra-State] Waters, Including Isolated Wetlands, The Use, Degradation or Destruction of Which Could Affect Interstate Commerce, Including Any Such Waters (Check All That Apply):

☐ Which are or could be used by interstate or foreign travelers for recreational or other purposes.
☐ From which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
☐ Which are or could be used for industrial purposes by industries in interstate commerce.
☐ Interstate isolated waters. Explain:
Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: linear feet, wide.
- Other non-wetland waters: acres.
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
 - Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet, wide.
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet, wide.
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below:

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: North Fork Associates, October 22, 2008, Appendix C Wetland Delineation Map, Headington Road, El Dorado County, California.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps:
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: 1:24K; CA-PLACERVILLE
- USDA Natural Resources Conservation Service Soil Survey. Citation:
- National wetlands inventory map(s). Cite name:
- State/Local wetland inventory map(s):
- FEMA/FIRM maps:
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): 2005, NAIP
 - or Other (Name & Date): North Fork Associates, 2008
- Previous determination(s). File no. and date of response letter:
- Applicable/supporting case law:
- Applicable/supporting scientific literature:
- Other information (please specify): Placerville Market Square, ID# 200400380

B. ADDITIONAL COMMENTS TO SUPPORT JD:

The study areas B and C are intermittent streams located in the South Fork American watershed. Hydrology drains from westerly into Mound Springs Creek, and then into Weber Creek, which eventually empties into South Fork American River. Areas B and C
and the South Fork American watershed have the significant effect from chemical, physical and biological integrity flow into the American River (TNW), Sacramento River (TNW) and Folsom Lake (Navigable in-fact or NIF). Potential pollutants and runoff i.e. household pollutants, urban runoff, roadside automobile pollutants and runoff and debris pollutant are present in these intermittent streams. These intermittent streams, thus, have the capacity to carry pollutant or flood waters to the TNWs and/or reduce the amount of pollutant or flood waters reaching TNWs or NIF. Area B and C and its adjacent wetlands above and below the tributary provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNWs and NIF. It provide also dissolved oxygens and cold temperature to Folsom Lake and American River. These tributaries have the capacity to transfer nutrients and organic carbon that support downstream foodwebs.
APPENDIX C

WETLAND DELINEATION MAP
Headington Road
El Dorado County, California
October 30, 2008

- Study Area (±5.2 acres)
- Wetland Data Point
- Waters Data Point
- Upland Data Point
- Culvert
- Roadside Ditch

WATERS OF THE UNITED STATES

<table>
<thead>
<tr>
<th>WETLANDS</th>
<th>ACREAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Swale</td>
<td>0.01</td>
</tr>
<tr>
<td>WS-1</td>
<td>0.01</td>
</tr>
<tr>
<td>WS-2</td>
<td>0.01</td>
</tr>
<tr>
<td>OTHER WATERS</td>
<td></td>
</tr>
<tr>
<td>Intermittent Stream</td>
<td>0.02</td>
</tr>
<tr>
<td>IS-1</td>
<td>0.04</td>
</tr>
<tr>
<td>IS-2</td>
<td>0.04</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Notes:
1. Study Area ±5.2 acres.
2. Wetland Data Point.
3. Waters Data Point.
4. Upland Data Point.
5. Culvert.