SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): November
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: SPK Redding field office, Salt Creek Heights, SPK-2007-2130
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: California County/parish/borough: Shasta City: Redding
 Center coordinates of site (lat/long in degree decimal format): Lat. 40.588° N, Long. -122.438° W
 Universal Transverse Mercator:
 Name of nearest waterbody: Salt Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Sacramento River
 Name of watershed or Hydrologic Unit Code (HUC): 18020101
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☒ Office (Desk) Determination. Date: October 16, 2008
 ☒ Field Determination. Date(s): May 7, 2008

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There Are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: .
B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There Are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]
 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☒ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or 0.24 acres.
 Wetlands: acres.
 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 Elevation of established OHWM (if known): .
 2. Non-regulated waters/wetlands (check if applicable): 3
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain: .

SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**
 - Watershed size: 423 square miles
 - Drainage area: 51 acres
 - Average annual rainfall: 35 inches
 - Average annual snowfall: 2 inches

 (ii) **Physical Characteristics:**
 - Relationship with TNW:
 - tributary flows directly into TNW.
 - ☑️ tributary flows through 2 tributaries before entering TNW.
 - Project waters are 1 (or less) river miles from TNW.
 - Project waters are 1 (or less) river miles from RPW.
 - Project waters are 1 (or less) aerial (straight) miles from TNW.
 - Project waters are 1 (or less) aerial (straight) miles from RPW.
 - Project waters cross or serve as state boundaries. Explain:

 Identify flow route to TNW: The ephemeral drainages flow into a seasonal RPW which flows into a perennial RPW tributary to the Sacramento River (TNW) just onsite.

 Tributary stream order, if known: 1-2.

(b) **General Tributary Characteristics (check all that apply):**
 - Tributary is: ☑️ Natural
 - ☐ Artificial (man-made). Explain:

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

Tributary properties with respect to top of bank (estimate):
 Average width: 3 feet
 Average depth: 2 feet
 Average side slopes: 2:1.

Primary tributary substrate composition (check all that apply):
 - Silts
 - Cobbles
 - Bedrock
 - Vegetation. Type/percentage cover:

 - Concrete
 - Sands
 - Gravel
 - Muck
 - Bedrock
 - Vegetation. Type/percentage cover:

 - Other. Explain: .

Tributary geometry: Relatively straight
Tributary gradient (approximate average slope): 30-40 %

(c) Flow:
 Tributary provides for: Ephemeral flow
 Estimate average number of flow events in review area/year: 20 (or greater)
 Describe flow regime: .

 Other information on duration and volume: these tributaries would carry water during and for a short time after every rain event regardless of the volume of rain. At a minimum, 20 rain events occur every rain season. Water from these slopes is funneled into these streams.

 Surface flow is: Discrete and confined. Characteristics: .

 Subsurface flow: Unknown. Explain findings: .

 Dye (or other) test performed: .

 Tributary has (check all that apply):
 - Bed and banks
 - OHWM⁶ (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list):

 - Discontinuous OHWM.⁷ Explain: .

 If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
 - High Tide Line indicated by:
 - Mean High Water Mark indicated by:

 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - other (list):

(iii) Chemical Characteristics:
 Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
 Explain: Water color and clarity is highly variable depending on the volume of rainfall that would introduce higher amounts of sediments into the streams. Generally, the streams are clear with high water quality and little encroaching development. The watershed they drain into has been altered and is not functioning at peak levels. The streams flow into an unnamed intermittent stream tributary to a perennial stream. Since seasonal RPW was clear and of good quality, it can be assumed the the tributaries which are nearly it's sole source of water feeding into it, are made up of clear, higher quality water. No water was present at the time of the site visit.

 Identify specific pollutants, if known: .

⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

⁷Ibid.
(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width): some portions of the streams have riparian vegetation but not large corridors.
- Wetland fringe. Characteristics: Portions of the stream had some wetland fringe habitat.
- Habitat for: Federally Listed species. Explain findings: These streams provide the water that makes up the habitat in the perennial stream which has the potential to contain federally listed Salmonids.
- Fish/spawn areas. Explain findings: Smolt were observed in other locations on the project site and could potentially use the intermittent stream these ephemeral streams feed into. The potential for their presence is not high but the water in these streams does affect streams which fish spawn and rear in.
- Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: Upland birds, mammals, amphibians, reptiles all can be found here and may use it for food, water, and habitat.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: acres
- Wetland type. Explain:
- Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain:
Surface flow is: Pick List
Characteristics:
Subsurface flow: Pick List. Explain findings:
- Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
- Discrete wetland hydrologic connection. Explain: Close proximity and topography easily allow for surface and subsurface connection between ephemeral stream and wetland during and after rain events.
- Ecological connection. Explain: Wetland provides higher quality filtered water, nutrients, and food to the ephemeral stream.
- Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: color is clear, water quality high, aids in improving general watershed conditions.
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D.

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The non-RPW's reviewed for this determination are

3. ED-18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38. All these Ephemeral Drainages are being reviewed individually and cumulatively here and all possess similar topographic & geographic distribution, have nearly identical flow regimes and duration, have similar biological, physical, and chemical make-ups and are therefore similarly situated. These ephemeral streams were grouped together since they all flow into ID-2 which is a seasonal RPW. All these tributaries have the capacity to carry pollutants/floodwaters to the Sacramento River and also potentially reduce the amount of pollutants/floodwaters. Segments of the ephemeral drainages have a wetland vegetation component w/i the OHWM which would also function more in reduction of floodwaters and pollutants which the streams transport. These tributaries provide an extremely pivotal function in providing habitat and lifecycle functions to fish and other species. Juvenile Salmonids were found in other streams on-site similar to the one these tributaries feed into. The nutrients and water provided from these ephemeral streams are what make up the RPW's This supports aquatic life by creating viable spawning and rearing habitat for fish. Food, oxygen rich water and organic carbons are transferred to the RPW via these streams. The Relatively Permanent Water has already been established to have a significant nexus with the Sacramento River. Without these streams and other similarly situated streams, the RPW would lose it's chemical, physical, and biological integrity as well as it's significant nexus with the TNW. Therefore, these streams individually and cumulatively have a significant nexus with the Sacramento River. Since the RPW is tributary to the TNW and the potential for listed anadromous fish species to occur in the RPW exists, these species would have to use the Sacramento River to get to this creek and spawn. Nutrients and organic carbons found and distributed by these ephemeral drainages enter the RPW and pass through the entire Sacramento River providing these functions throughout it's entire reach. All species within the Sacramento are therefore benefitted by these ephemeral streams. These tributaries affect the chemical, physical and biological integrity of the
TNW and have a significant nexus. The close proximity to the TNW and these waters makes a clear link to their connection and direct affects upon each other.

4. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. **DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):**

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: .
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: 8964 linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .
 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. **Impoundments of jurisdictional waters.**

8See Footnote # 3.
9To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from “waters of the U.S.” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 10

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain: .
- Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters: .
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Salt Creek Heights Wetland Delineation Report prepared by Jamie Galos, ESA.
- Data sheets prepared/issued by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: .
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.

10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: The complete delineation report covers two main direct tributaries to the Sacramento River and multiple other intermittent and ephemeral drainages tributary to these. This delineation report covers all ephemeral streams tributary to ID-2. ID-2 is tributary to the perennial RPW PD-1. This stream flows into the TNW about 500 feet off-site. There are two other JD forms which require a significant nexus for non-RPW's and their adjacent or abutting wetlands and 5 RPW JD Forms.