SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): August 13, 2008
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Sacramento, Barton Road Bridge Replacement, SPK-2001-00135
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: California County/parish/borough: Placer County City: Granite Bay Center coordinates of site (lat/long in degree decimal format): Lat. 38.7589° N, Long. 121.1919° W. Universal Transverse Mercator:
 Name of nearest waterbody: Miner's Ravine Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Sacramento Name of watershed or Hydrologic Unit Code (HUC): 18020111
 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☑ Office (Desk) Determination. Date: March 14, 2008
 ☐ Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There Pick List "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ☑ Waters subject to the ebb and flow of the tide.
 ☑ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There Pick List "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☑ TNWs, including territorial seas
 ☑ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 ☑ Non-RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☑ Impoundments of jurisdictional waters
 ☑ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: 150 linear feet: average 30 width (ft) and/or 0.095 acres.
 Wetlands: 0.005 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable): 3
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: .

SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is “adjacent”:

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**
 - Watershed size: [Pick List]
 - Drainage area: [Pick List]
 - Average annual rainfall:
 - Average annual snowfall:

 (ii) **Physical Characteristics:**
 a. **Relationship with TNW:**
 - [] Tributary flows directly into TNW.
 - [] Tributary flows through [Pick List] tributaries before entering TNW.
 - Project waters are [Pick List] river miles from TNW.
 - Project waters are [Pick List] river miles from RPW.
 - Project waters are [Pick List] aerial (straight) miles from TNW.
 - Project waters are [Pick List] aerial (straight) miles from RPW.
 - Project waters cross or serve as state boundaries. Explain:
 - Identify flow route to TNW:
 - Tributary stream order, if known:

 b. **General Tributary Characteristics (check all that apply):**
 - [] Natural
 - [] Artificial (man-made). Explain:
 - [] Manipulated (man-altered). Explain:

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary properties with respect to top of bank (estimate):
- Average width: feet
- Average depth: feet
- Average side slopes: **Pick List**.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Cobble
- Bedrock
- Gravel
- Vegetation. Type/cover:
- Concrete
- Muck
- Other. Explain: .

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: .

Tributary geometry: **Pick List**

Tributary gradient (approximate average slope):

(c) **Flow:**

- Tributary provides for: **Pick List**
- Estimate average number of flow events in review area/year: **Pick List**
- Describe flow regime: .
- Other information on duration and volume: .

Surface flow is: **Pick List**. Characteristics: .

Subsurface flow: **Pick List**. Explain findings: .
- Dye (or other) test performed: .

Tributary has (check all that apply):
- Bed and banks
- OHWM\(^6\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - scour
 - sediment sorting
 - the presence of litter and debris
 - destruction of terrestrial vegetation
 - the presence of wrap line
 - abrupt change in plant community
 - multiple observed or predicted flow events
 - vegetation lines/changes in vegetation types.
 - Discontinuous OHWM.\(^7\) Explain: .

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
- Mean High Water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- other (list):

(ii) **Chemical Characteristics:**
- Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
- Explain: .
- Identify specific pollutants, if known: .

(iii) **Biological Characteristics.** Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width): .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: .

\(^6\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)Ibid.
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 - Wetland size: ______ acres
 - Wetland type. Explain:
 - Wetland quality. Explain:
 Project wetlands cross or serve as state boundaries. Explain:

 (b) General Flow Relationship with Non-TNW:
 Flow is: [Pick List]. Explain:
 Surface flow is: [Pick List]. Characteristics:
 Subsurface flow: [Pick List]. Explain findings:
 Dye (or other) test performed:

 (c) Wetland Adjacency Determination with Non-TNW:
 [] Directly abutting
 [] Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:

 (d) Proximity (Relationship) to TNW
 Project wetlands are [Pick List] river miles from TNW.
 Project waters are [Pick List] aerial (straight) miles from TNW.
 Flow is from: [Pick List].
 Estimate approximate location of wetland as within the [Pick List] floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
 Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
 [] Riparian buffer. Characteristics (type, average width):
 [] Vegetation type/percent cover. Explain:
 [] Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: [Pick List]
 Approximately (_____) acres in total are being considered in the cumulative analysis.
 For each wetland, specify the following:
 - Directly abuts? (Y/N)
 - Size (in acres)

 Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. **RPWs that flow directly or indirectly into TNWs.**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Miner's Ravine is a major drainage in the Granite Bay-Rocklin area known to flow year-round. USGS and CA Department of Water Resources streamgage data is not available for this drainage as there are no gages located on the drainage.
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: .

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: 150 linear feet average 30 width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters: .

3. **Non-RPWs** that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.

8See Footnote # 3.
Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 ☑ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 ☑ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Consultant observed and mapped seasonal wetlands as directly abutting.

 ☑ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Consultant observed and mapped seasonal wetlands as directly abutting.

 Provide acreage estimates for jurisdictional wetlands in the review area: 0.005 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 ☑ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 ☑ Wetlands adjacent to such waters, and when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.³
 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 ☑ Demonstrate that impoundment was created from “waters of the U.S.,” or
 ☑ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 ☑ Demonstrate that water is isolated with a nexus to commerce (see E below).

 Identify water body and summarize rationale supporting determination: .

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 ☑ Tributary waters: linear feet width (ft).
 ☑ Other non-wetland waters: acres.
 ☑ Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
 ☑ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
 ☑ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 ☑ Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
 ☑ Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .

³ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
⁴ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “ Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Figure 6. Barton Road Bridge Replacement Jurisdictional Waters, LSA Associates, Incorporated, January 11, 2008.
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: .
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: 7.5’, Rocklin Quadrangle.
- USDA Natural Resources Conservation Service Soil Survey. Citation: NRCS Soil Survey of Placer County, California, Western Part, July 1980.
- National wetlands inventory map(s). Cite name: Rocklin Quadrangle.
- State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): GlobeXplorer, May 1, 2006.
- Applicable/supporting case law: .
- Applicable/supporting scientific literature: .
- Other information (please specify): .

B. ADDITIONAL COMMENTS TO SUPPORT JD: The 0.005 acre of adjacent abutting wetlands were added to the 0.095 acre of nonwetland waters (Miner’s Ravine) resulting in the total acreage shown for nonwetland waters as 0.10 acre in the Barton Road Bridge Replacement Jurisdictional Waters map, January 11, 2008. Mr. Jeff Bray, LSA Associates, stated that this was the same circumstance that occurred when the first jurisdictional delineation was verified through Jones and Stokes, so because the site has not changed, only the area of impact (overall reduced), and therefore the area included in the delineation, LSA Associates was resubmitting the map features originally produced by Jones and Stokes. The mapped features are correct.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): August 13, 2008

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Sacramento, Barton Road Bridge Replacement, SPK-2001-00135

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: California
County/parish/borough: Placer County
City: Granite Bay

Center coordinates of site (lat/long in degree decimal format): Lat. 38.7589° N, Long. 121.1919° W.

Universal Transverse Mercator:

Name of nearest waterbody: Miner's Ravine
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Sacramento
Name of watershed or Hydrologic Unit Code (HUC): 18020111

Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
★ Office (Desk) Determination. Date: March 14, 2008
☐ Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Pick List “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

Explain: .

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Pick List “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 □ TNWs, including territorial seas
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: 0.01 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable): 3
 □ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain: .

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 Identify TNW:
 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 Summarize rationale supporting conclusion that wetland is “adjacent”:

B. **CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):**

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody\(^4\) is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**
 - Watershed size: 1,400 acres
 - Drainage area: 1,400 acres
 - Average annual rainfall: 17.62 inches
 - Average annual snowfall: 0 inches

 (ii) **Physical Characteristics:**
 - Relationship with TNW:
 - Tributary flows directly into TNW.
 - Tributary flows through 2 tributaries before entering TNW.
 - Project waters are 25-30 river miles from TNW.
 - Project waters are 1 (or less) river miles from RPW.
 - Project waters are 20-25 aerial (straight) miles from TNW.
 - Project waters are 1 (or less) aerial (straight) miles from RPW.
 - Project waters cross or serve as state boundaries. Explain:
 - Identify flow route to TNW\(^5\): Miner's Ravine is tributary to Dry Creek, which is tributary to the Natomas East Main Drainage Canal, which is tributary to the Sacramento River, a TNW.
 - Tributary stream order, if known:

\(^4\) Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Manipulated (man-altered). Explain:.

Tributary properties with respect to top of bank (estimate):
- Average width: 30 feet
- Average depth: 3 feet
- Average side slopes: 3:1.

Primary tributary substrate composition (check all that apply):
- ☒ Silts
- ☒ Sands
- ☒ Cobbles
- ☒ Gravel
- ☒ Concrete
- ☒ Muck
- ☒ Bedrock
- ☒ Vegetation. Type/cover:
- ☒ Other. Explain:.

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Banks appear to be stable.

Tributary geometry: Meandering
- Tributary gradient (approximate average slope): <1%

(c) Flow:
- Tributary provides for: Pick List
- Estimate average number of flow events in review area/year: Pick List
- Describe flow regime: Perennial flow.
- Other information on duration and volume:.

Surface flow is: Discrete. Characteristics: Surface flow occurs in a channel with a clear OHWM, however, flood waters leave the channel, so the waters are not confined.

Subsurface flow: Unknown. Explain findings:.
- ☐ Dye (or other) test performed:.

Tributary has (check all that apply):
- ☒ Bed and banks
- ☒ OHWM (check all indicators that apply):
 - ☒ clear, natural line impressed on the bank
 - ☒ changes in the character of soil
 - ☒ shelving
 - ☒ vegetation matted down, bent, or absent
 - ☒ leaf litter disturbed or washed away
 - ☒ sediment deposition
 - ☒ water staining
 - ☒ other (list):
- ☐ Discontinuous OHWM. Explain:.

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- ☐ High Tide Line indicated by:
- ☐ Mean High Water Mark indicated by:
- ☐ oil or scum line along shore objects
- ☐ fine shell or debris deposits (foreshore)
- ☐ physical markings/characteristics
- ☐ tidal gauges
- ☐ other (list):

(ii) **Chemical Characteristics:**
- Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
 - Explain: Consultant observed water is mostly clear, no oil film.
- Identify specific pollutants, if known: Roadside runoff from Barton Road.

(iv) **Biological Characteristics.** Channel supports (check all that apply):
- ☒ Riparian corridor. Characteristics (type, average width): willow and mixed oak riparian, approximately 50-foot width.
- ☒ Habitat for:
- ☒ Federally Listed species. Explain findings: Central Valley fall-run Chinook salmon (Oncorhynchus tshawytscha), and Central Valley steelhead (Oncorhynchus mykiss).

A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

Ibid.
Fish/spawn areas. Explain findings: Miner’s Ravine is considered a primary salmonid spawning ground within the Dry Creek Watershed.
Other environmentally-sensitive species. Explain findings: Miner's Ravine may provide habitat for the Federally threatened California red-legged frog.
Aquatic/wildlife diversity. Explain findings: Miner's Ravine supports aquatic and riparian wildlife diversity.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: 0.01 acres
- Wetland type. Explain: seasonal wetland within floodplain.
- Wetland quality. Explain: Moderate-poor quality, adjacent to Barton Road, vegetation is regularly cut down.
- Project wetlands cross or serve as state boundaries. Explain: N/A.

(b) General Flow Relationship with Non-TNW:
Flow is: Ephemeral flow. Explain: Swale connects depressional seasonal wetland to Miner's Ravine, flow occurs when seasonal wetland overtops. According to the consultant, this most likely occurs during high flow (flood) stages in Miner's Ravine.

Surface flow is: Not present
Characteristics: .

Subsurface flow: Unknown. Explain findings: .
- Dye (or other) test performed: .

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
- Discrete wetland hydrologic connection. Explain: Depressional seasonal wetland is within Miner's Ravine's floodplain and connected to Miner's Ravine via a swale.
- Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW
Project wetlands are 25-30 river miles from TNW.
Project waters are 20-25 aerial (straight) miles from TNW.
Flow is from: Wetland to navigable waters.
Estimate approximate location of wetland as within the 10 - 20-year floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Minimal ponding, not observed at time of site visit.
Identify specific pollutants, if known: Runoff from Barton Road.

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width): .
- Vegetation type/percent cover. Explain: Rosa californica (FAC)/20%, Carex barbarae (FACW)/80%.
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: .

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in the cumulative analysis: 6
Approximately (0.015) acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.01</td>
<td>Y</td>
<td>0.001</td>
</tr>
<tr>
<td>Y</td>
<td>0.001</td>
<td>Y</td>
<td>0.0005</td>
</tr>
<tr>
<td>Y</td>
<td>0.002</td>
<td>Y</td>
<td>0.0005</td>
</tr>
</tbody>
</table>
Summarize overall biological, chemical and physical functions being performed: Seasonal wetlands provide riparian and seasonal wetland habitat for various species, filter pollutants from runoff from Barton Road, and provide residence time, area, and filtration for seasonal and flood waters associated with Miner's Ravine.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The consultant observed a small swale connecting the adjacent wetland to Miner's Ravine. However, this swale does not meet the three wetland criteria according the the Corps' 1987 Wetland Delineation Manual, nor does it have a bed and bank. The consultant believes that the wetland and swale are part of Miner's Ravine's floodplain and carry water during high flow events. The consultant believes, and I concur, that the wetland and wetland swale have the capacity to carry pollutants and flood waters to the Sacramento River, to reduce the amount of pollutants and flood waters reaching the Sacramento River, and to transfer nutrients and organic carbon to support downstream foodwebs. The wetland provides residence time for flood waters and filters pollutants entering the wetland from the adjacent uplands and roadway.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
Tributary waters: linear feet width (ft).
Other non-wetland waters: acres.
Identify type(s) of waters:

3. Non-RPWs\(^3\) that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.\(^9\)
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):\(^10\)
 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain:
 - Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).

\(^3\)See Footnote # 3.
\(^9\) To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
\(^10\) Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
Other non-wetland waters: acres.
Identify type(s) of waters:
Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
Lakes/ponds: acres.
Other non-wetland waters: acres. List type of aquatic resource:
Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
Lakes/ponds: acres.
Other non-wetland waters: acres. List type of aquatic resource:
Wetlands: acres.

SECTION IV: DATA SOURCES
A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Figure 6. Barton Road Bridge Replacement Jurisdictional Waters, LSA Associates, Incorporated, January 11, 2008.
Data sheets prepared/submitted by or on behalf of the applicant/consultant.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report.
Data sheets prepared by the Corps:
Corps navigable waters’ study:
U.S. Geological Survey Hydrologic Atlas:
USGS NHD data.
USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale & quad name: 7.5', Rocklin Quadrangle.
USDA Natural Resources Conservation Service Soil Survey. Citation: NRCS Soil Survey of Placer County, California, Western Part, July 1980.
National wetlands inventory map(s). Cite name:
State/Local wetland inventory map(s):
FEMA/FIRM maps:
100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
Photographs: Aerial (Name & Date):
or Other (Name & Date):
Applicable/supporting case law:
Applicable/supporting scientific literature:
Other information (please specify):

B. ADDITIONAL COMMENTS TO SUPPORT JD: Section III.B.1.ii.e, under Flow, does not provide a choice for “Perennial” to describe the flow regime of the tributary the adjacent, but not abutting, wetland is associated with. Perennial flow was, therefore, included in the description of the flow regime in the same section. The wetland is associated with Miner's Ravine, a drainage with perennial flow.
38.7589°N, 121.1919°W (NAD83/WGS84)

USGS ROCKLIN (CA) Quadrangle

Projection is UTM Zone 10 NAD83 Datum

FIGURE 6

Legend
- Project Boundary
- Jones & Stokes Data Point
- LSA Data Point
- Waters of the U.S. (0.11 ac)*
- Wetland (0.01 ac)
- Nonwetland (0.10 ac)

*Area reflects a smaller study area than the original delineation.
No changes to waters of the U.S. occurred.

I:\Mro434\gis\juris wats.mxd (1/11/08)

Barton Road Bridge Replacement
Jurisdictional Waters