APPENDIX I

Sanitary Sewer Study

SANITARY SEWER STUDY

LEVEL TWO

For

SUNCREEK SPECIFIC PLAN

COUNTY OF SACRAMENTO, CA

MARCH, 2009

PREPARED FOR: SACRAMENTO COUNTY WATER QUALITY DIVISION SASD 10545 ARMSTRONG AVENUE, SUITE 101 MATHER, CA 95655

PREPARED BY: MACKAY & SOMPS CIVIL ENGINEERS, INC. 1771 TRIBUTE ROAD, SUITE E SACRAMENTO, CA 95815-4487 PROJECT DEVELOPER: **THE SUNCREEK OWNERS GROUP** 7700 COLLEGE TOWN DR. SUITE 220 SACRAMENTO, CA 95826-2304

TABLE OF CONTENTS

	<u>Page</u>
Tables Index	3
Exhibits Index	4
Appendix Index	5
Abbreviations	6
Executive Summary	7
I. Introduction and Background I.1: Purpose of Study I.2: Level of Study I.3: Project Location I.4: Topography I.5: Site Specific Design Consideration I.6: Land Use and Zoning	9
II. Design II.1: Assumptions II.2: Approach and Design Criteria Design Task One: Compile Record Data Design Task Two: Identify Points of Connection and Capacity Design Task Three: Obtain Criteria to Calculate ESD's and Design Flows Design Task Four: Calculate ESD's, Peak Flows and Determine Pipe Sizes	13
III. Summary of Results III.1: Recap of SASD Study Requirements III.2: Summary of Sewer Flows and Alignments III.3: Laguna Creek Interceptor Section 5 III.4: Permanent Sewer Shed Shift III.5: SunCreek Project Sewer Service III.6: SunCreek Project Sewer Pump Station III.7: Exception to SASD Policy	17
IV. Project Phasing	23
V. SunCreek Project Construction Cost	24
VI. Conclusion	24

TABLES INDEX

Table 1: Land Uses and ESD Densities	15
Table 2: Design Flow Factors	15
Table 3: Design Flow Formulas	16
Table 4: Hydraulic Design Criteria	16
Table 5: Minimum Pipe Slopes & Capacities	16
Table 6: Manhole Elevation Criteria	17
Table 7: Calculated Wastewater Flows	18
Table 8: SunCreek Specific Plan - Sanitary Sewer Calculation	26
Table 9: SunCreek Sewer Study Area - Sanitary Sewer Calculation	27
Table 10: SunCreek Specific Plan - Phase 1 Sewer Pump Station Calculation	28
Table 11: Sunrise/Douglas Developments - Sewer Pump Station Capacity Calculations	29
Table 12: SunCreek Specific Plan - Sewer Study Area Detailed Sanitary Sewer Calculations	30
Table 13: SunCreek Specific Plan – Laguna Creek Interceptor Section 5 Sanitary Sewer Peak Dry Weather Flow Calculations	33

<u>Page</u>

EXHIBITS INDEX

Exhibit A: SunCreek Specific Plan – Vicinity Map	35
Exhibit B: SunCreek Specific Plan - Land Use Plan - Reduced 11x17	36
Exhibit C: SunCreek Specific Plan – Sewer Study Area Map	37
Exhibit D: SASD & SRCSD Interceptors and Trunk Sewer	38
Exhibit E: SunCreek Specific Plan – Sanitary Sewer Master Plan Reduced 11x17	39
Exhibit F-1: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario One – Phase 1	40
Exhibit F-2: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario One – Phase 2	41
Exhibit F-3: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario One – Phase 2 (SRCSD Regional Pump Station)	42
Exhibit F-4: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario One – Phase 3	43
Exhibit F-5: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario Two – Phase 1, Option 1	44
Exhibit F-6: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario Two – Phase 1, Option 2	45
Exhibit F-7: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario Two – Phase 2, Option 1	46
Exhibit F-8: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario Two – Phase 2, Option 2	47
Exhibit F-9: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario Two – Phase 2 (SRCSD Regional Pump Station)	48
Exhibit F-10: SunCreek Specific Plan - Service Connection to SASD & SRCSD Facilities; Scenario Two – Phase 3	49
Exhibit G: SunCreek Specific Plan – Sanitary Sewer Trunk Sheds	50
Exhibit H: SunCreek Specific Plan – Sanitary Sewer Backbone Infrastructure Probable Opinion of Construction Cost	51
Exhibit I: SunCreek Specific Plan – Sanitary Sewer Interceptor Open Space / Wetland Buffer, Typical Cross-Section	52
Exhibit J: SunCreek Specific Plan – Sanitary Sewer Interceptor Open Space / Wetland Buffer, Typical Cross Section at Manhole	53

Page

APPENDIX INDEX

	<u></u>
Appendix A: SRCSD Master Plan 2000 – Alternative Grant Line Road Interceptor and Revised Laguna Creek Interceptor Section 5, Figure 15	Bound in Rear
Appendix B: SRCSD Master Plan 2000 – Laguna Creek Interceptor Basins, Figure 4	Bound in Rear
Appendix C: CSD-1 Sewerage Facilities Expansion Master Plan 2006 Update – LC Upper Laguna Creek Trunk Shed	Bound in Rear
Appendix D: CSD-1 Sewerage Facilities Expansion Master Plan 2006 Update – DC Upper Deer Creek Trunk Shed	Bound in Rear
Appendix E: CSD-1 Sewerage Facilities Expansion Master Plan 2006 Update – AJ Sunrise Douglas Trunk Shed	Bound in Rear
Appendix F: Permanent Shed Shift - AJ Sunrise Douglas Trunk Shed & LC Upper Laguna Creek Trunk Shed	Bound in Rear
Appendix G: SunCreek Specific Plan – Sanitary Sewer Master Plan Exhibit - E (Full Size)	Placed in Folder
Appendix H: The Preserve at SunRidge – Sewer Study Exhibit (Wood-Rodgers 2006)	Placed in Folder

ABBREVIATIONS

ADWF Average dry weather flow cfs Cubic feet per second SASD Sacramento Area Sewer District d/D Depth of flow/diameter of pipe ESD Equivalent single family dwelling units Feet per second fps gpd Gallons per day I/IInflow and Infiltration mgd Million gallons per day MSL Mean sea level LC Laguna Creek LCI Laguna Creek Interceptor PF Peaking factor PUE Public Utility Easement PDWF Peak dry weather flow PWWF Peak wet weather flow PUD Planned Unit Development SFEMP Sewerage Facilities Expansion Master Plan SRCSD Sacramento Regional County Sanitation District SRWTP Sacramento Regional Wastewater Treatment Plant

EXECUTIVE SUMMARY

This SASD Level Two sewer study is prepared for the SunCreek Specific Plan hereafter referred to as the "SunCreek Project". The SunCreek Project proposes to develop 1,266+/- acres into mostly single family residential land uses within the Sunrise Douglas Community Plan. The project includes low to high-density single-family residential units, multi-family residential units, schools, parks, open space areas and commercial land uses.

Location

The SunCreek project is located within the limits of the City of Rancho Cordova. Refer to **Exhibit A: SunCreek Specific Plan - Vicinity Map** to see the location of the SunCreek Project. The SunCreek Project is bounded by Sunrise Blvd., the Anatolia III development and Rancho Cordova Parkway on the west. The eastern boundary is adjacent to Grant Line Road and undeveloped County of Sacramento property. Two SunRidge Specific Plan projects, Arista del Sol and the Preserve are adjacent to the northern project boundary while the southern boundary is adjacent to the Arboretum Project (Waegell/Lewis Homes) and undeveloped County of Sacramento property. Refer to **Exhibit B: SunCreek Specific Plan - Land Use Plan** to see the SunCreek Project land uses and adjacent projects.

Purpose of Study

This sewer study intends to satisfy SASD Level Two Minimum Sewer Study Requirements dated February 13, 2008. The purpose of this study is to:

- Ensure technical compliance with the latest SASD Master Plan
- Support EIR documentation and establish a finance plan for the Project
- Confirm the capacity of existing and future sewer improvements that will serve the project
- Establish sewer sheds within project area and identify off-site tributary shed areas
- Size the backbone sewer interceptor and trunk system, locate and size a pump station, establish depth of pipes and verify pipe cover

The focus of this study is on topography, major infrastructure phasing & timing, Laguna Creek Interceptor and its capacity, trunk sewers and their capacity, and shed shifts. This sewer study will be used to support the preparation of the project specific Environmental Impact Report (EIR) and will be used to establish a finance plan for the SunCreek Project.

Sanitary Sewer Sheds and Facilities to Serve the Project

The SunCreek Project is tributary to the proposed Laguna Creek Interceptor and lies within basin LC51. Refer to **Exhibit C: SunCreek Specific Plan – Sanitary Sewer Study Area** to see the SunCreek Project and adjacent sewer sheds included in this study. Exhibit C represents the SunCreek Sewer Study Area discussed throughout this Level Two sanitary sewer study.

Development in the SunCreek Sewer Study Area is expected to exceed the time lines anticipated in the Master Plan Studies of both SASD and Sacramento Regional County Sanitation District (SRCSD). Initial sanitary sewer service for the SunCreek Sewer Study Area may be needed as early as 2011. Due to the potential need for sanitary sewer service prior to the SASD Master Plan year 2020 timetable, SASD and SRCSD may accelerate the Mather Interceptor Project to provide interim sanitary sewer service.

The SunCreek Project proposes to construct a portion of the Laguna Creek Interceptor (LCI). The SunCreek Project will construct a portion of LCI segment no. 5 that lies within the SunCreek Project boundary. The SunCreek portion of LCI-5 will be used on an interim basis by SASD as a sanitary sewer collector and as flows increase as an oversized trunk. Once upstream development occurs and sanitary sewer flows exceed 10 mgd the pipeline will become an interceptor. Located at the downstream end of the SunCreek portion of LCI-5 will be an interim sewer pump station (SunCreek Sewer Pump Station). Sewer flows from the SunCreek Pump Station will be conveyed to the Sacramento Regional Wastewater Treatment Plant (SRWTP). Refer to **Exhibit D: SASD & SRCSD Interceptors and Trunk Sewer** to see the trunk sewers and interceptors near the SunCreek Project.

Within the SunCreek Sewer Study Area, The Arboretum Project, located adjacent to the SunCreek Project's southern boundary is also going through a similar development entitlement process as the SunCreek Project. Therefore, this Level Two Sanitary Sewer Study includes two development scenarios for sewer service to the SunCreek Sewer Study Area. Scenario One describes the sanitary sewer infrastructure should the SunCreek Project develop before the Arboretum Project. Scenario Two describes the sanitary sewer infrastructure should the SunCreek Project.

Calculated Wastewater Flows

Using SASD design criteria for base ESD flow rates, peaking factors, and inflow and infiltration (I/I), the SunCreek Project peak wet weather flows PWWF (mgd) is calculated to be 6.31 mgd and 27.74 mgd for upstream off-site sheds. The combined total calculated wastewater flows for the entire study area through the SunCreek Project is calculated to be 33.32 mgd. Refer to **Table 7-Calculated Wastewater Flows** in section III.2 of this study to see peaking factors, ESD's and areas used to calculate these flows.

Conclusion

This Level Two Sanitary Sewer Study concludes there is sufficient interim capacity within the existing offsite interceptor system to accommodate the SunCreek Specific Plan Project and development with the SunCreek Sanitary Sewer Study Area until the ultimate facilities are completed. An onsite gravity sewer collector system, trunk sewer and interceptor system can be constructed to convey sewer flows to a proposed pump station located within the SunCreek Sanitary Sewer Study Area. Offsite facilities will be constructed and/or utilized to convey sewer flows from the pump station to a SRCSD Interceptor.

SUNCREEK SPECIFIC PLAN SEWER STUDY LEVEL TWO

I. Introduction and Background

I.1 Purpose of Study

This SASD Level Two sewer study is prepared for the SunCreek Specific Plan Area hereafter referred to as the "SunCreek Project", a 1,266-acre mixed-density, mixed land use community within the City of Rancho Cordova. This study establishes the backbone trunk system and sheds, the alignment and design of LCI-5, the location of the SunCreek Sewer Pump Station and defines sewer capacity reservations. Reference the following two exhibits for a SunCreek Project overview:

- Exhibit A: Vicinity Map
- Exhibit B: SunCreek Specific Plan Land Use Plan

The purpose of this study is to satisfy SASD Level Two Minimum Sewer Study Requirements, dated February 13, 2008, which are summarized as follows:

- Ensure technical compliance with the latest SASD Master Plan
- Support EIR documentation and establish a finance plan for the Project
- Define sewer capacity reservations and sewer sheds
- Confirm the capacity of existing and future trunk sewers that will serve the project
- Establish sewer sheds within project area and identify off-site tributary shed areas
- Size the backbone sewer interceptor and trunk system, locate and size the pump station, establish depth of pipes and verify cover

I.2 Level of Study

This study identifies points of connections, locates the SunCreek Pump Station and calculates interceptor and trunk sewer system flows to serve the Project based on:

- SASD Design Standards, Version 1.00, dated February 13, 2008
- 2006 Draft SASD Sewerage Facilities Master Plan Update
- Previously prepared Sewer Master Plans documents for the Preserve at SunRidge and Anatolia III
- Draft Mather Interceptor EIR dated July 31, 2007
- The proposed SunCreek land use plan with acreages and densities

This study provides the necessary information to establish the SunCreek Project sewer backbone infrastructure consisting of a sewer interceptor, sewer trunk sizes and alignments and a sewer pump station location. Sewer sheds, total ESD's at nodes, flow rates, pipeline sizes, pipeline slopes, invert elevations, manhole rim elevations have been calculated to provide a Level Two sewer study detail.

I.3 Project Location

On-Site

The SunCreek project is located within the limits of the City of Rancho Cordova. The SunCreek Project is bounded by Sunrise Blvd., the Anatolia III development and Rancho Cordova Parkway on the west. The eastern boundary is adjacent to Grant Line Road and undeveloped County of Sacramento property. Two SunRidge Specific Plan projects, Arista del Sol and The Preserve are adjacent to the northern project boundary while the southern boundary is adjacent to The Arboretum Project (Waegell/Lewis Homes) and undeveloped County of Sacramento property.

The SunCreek Project applicant is currently processing an entitlement application for a General Plan Amendment and a Specific Plan Rezone with the City of Rancho Cordova.

The project is tributary to the Laguna Creek Interceptor and is located within interceptor basin LC51. Refer to the **Appendix B: SRCSD Master Plan 2000 – Laguna Creek Interceptor Basins, Figure 14** for the Laguna Creek Interceptor Basins.

Off-Site

The project also is tributary to upstream off-site Laguna Creek Interceptor basins LC52, LC61 and LC62 and through an approved permanent shed shift a portion of Aerojet Interceptor Basin AJ11. These upstream off-site interceptor basins will ultimately receive sewer service through the SunCreek Project.

I.4 Topography

On-Site Topography

The overall project site can be characterized as rolling terrain with elevations ranging from 130 to 230 feet above mean sea level. The greatest surface relief occurs in the major drainage way that traverses the SunCreek Project generally from east to west. The ground slopes generally to the west and south, and several intermittent natural and manmade channels drain the property. This main drainage feature is referred to as Kite Creek, which is a tributary of Laguna Creek.

Annual grasslands are interspersed with occasional groups of non-native trees and seasonal wetlands and drainages typical of eastern Sacramento County.

Off-Site Topography

The main drainage feature that traverses the SunCreek Project continues northeast of the SunCreek Project area. This area is upstream of the SunCreek Project and is approximately 600 acres in size with elevations ranging from 230 to 280 feet above mean sea level. This upstream off-site area defines the headwaters for Kite Creek. Kite Creek leaves the SunCreek Project at the southwestern boundary. The terrain in this part of the SunCreek Project area can be characterized as slightly rolling with a gradual slope towards Jackson Road (State Route 16). The elevation at the SunCreek Project southwestern boundary is 120 feet above mean sea level and 110 feet above mean sea level near State Route 16.

I.5 Site Specific Design Consideration

The SunCreek Project proposes to construct the segment of the Laguna Creek Interceptor that falls within the SunCreek Project boundary. This section of the Laguna Creek interceptor within the SunCreek Project boundary represents approximately 80% of segment 5. The Interceptor would begin in Grant Line Road at the northeast project boundary. The interceptor will follow Grant Line road to the north where Grant Line Road will intersect Chrysanthy Blvd. The Interceptor will follow Chrysanthy Blvd. to the west to the Chrysanthy Blyd. Americanos Blyd. intersection. The interceptor will then follow Americanos to the south to the Americanos Blvd, and Central Park Drive Intersection. The Interceptor then follows Central Park Drive to the west until it meets Kite Creek. The Interceptor then follows Kite Creek to the southwest to a point where Kite Creek crosses Rancho Cordova Parkway near the intersection of Rancho Cordova Parkway and Kiefer Blvd. The interceptor then follows Kiefer Blvd. to the west to the Kiefer Blvd. and Sunrise Blvd. intersection. The interceptor then follows Sunrise Blvd to the south to the SunCreek Project southwestern corner where the SunCreek Pump Station is located. The portion of the interceptor alignment that follows Kite Creek will be located within a 70-foot wide wetland buffer area. The interceptor will be designed to SRCSD standards and utilized on an interim basis as an oversized trunk. SASD would maintain the interceptor until flows from upstream shed areas reach interceptor volumes.

The Chrysanthy Blvd. Trunk Sewer has been planned by SASD to be placed adjacent to a portion of the SunCreek Project's northern boundary in Chrysanthy Blvd. The SunCreek Project is planning to place the Laguna Creek Interceptor in this same segment of Chrysanthy Blvd. Therefore, to eliminate redundant sanitary sewer facilities and cost of the Chrysanthy Blvd. trunk sewer, the SunCreek Project processed a permanent shed shift to shift trunk sewer sheds SDA047, SDA048, SDA049 and SDA 051 from this segment of the Chrysanthy Blvd. trunk sewer into the Laguna Creek Interceptor. This approved shed shift moves 641.6 acres and 3,850 ESD's from the Chrysanthy Blvd. Trunk Shed (Aerojet Sunrise Douglas Interceptor Basin AJ11) to the Laguna Creek Interceptor. Refer to Appendix F: Permanent Shed Shift – AJ Sunrise Douglas Trunk Shed & LC Upper Laguna Creek Trunk Shed to review the approved shed shift forms and exhibits.

The Anatolia III project is an existing residential development located upstream and adjacent to the SunCreek Project and is within the LC Upper Laguna Creek Trunk Shed. The Anatolia III Project is receiving sewer service through an existing sewer pump station and force main. The Anatolia III pump station is located near the intersection of Kiefer Blvd. and Country Garden Drive. The Anatolia III Pump Station is connected to the Chrysanthy Blvd. Pump Station by an 8-inch force main. The Anatolia III force main follows Kiefer Blvd. from the Kiefer Blvd.-Country Garden intersection east to Rancho Cordova Parkway then turns to the north and follows Rancho Cordova Parkway to Chrysanthy Blvd. The 8-inch force main connects to a gravity sewer pipeline at the intersection of Rancho Cordova Parkway and Chrysanthy Blvd. Sewer Pump Station currently pumps sewer flows in an 18-inch force main south in Sunrise Blvd. to Kiefer Blvd. then west in Kiefer Blvd. and eventually connects to the Northeast Interceptor.

The Chrysanthy Blvd. Sewer Pump Station and force main will be taken out of service by the construction of the Mather Interceptor. The Mather Interceptor gravity connects the Chrysanthy Blvd. Sewer Pump Station to the Bradshaw Interceptor. The Mather Interceptor or another, yet to be determined, interim sewer facility will be constructed by SRCSD when the current SASD facilities within the SunCreek Sewer Study Area are nearing capacity.

The Anatolia III Project is located upstream of the SunCreek Project and is within the same trunk shed. Therefore, the Anatolia III sewer shed has been incorporated into the design of the SunCreek Project sewer system. Refer to **Exhibit D: SASD & SRCSD Interceptors and Trunk Sewer** for the location of the Anatolia III Sewer Pump Station, the Chrysanthy Blvd. Sewer Pump Station and the regional backbone sewer infrastructure.

The Preserve at SunRidge is a mixed-use residential development project that is adjacent to the SunCreek Project. A portion of the Preserve at SunRidge Project is located with the LC Upper Laguna Creek Trunk Shed. The SunCreek Project has incorporated into its sewer design the portion of the Preserve at SunRidge Project that will sewer through the SunCreek Project.

The Arboretum Project is a mixed-use residential development project located adjacent to the SunCreek Project's southern boundary. The SunCreek Sewer Study has included sewer flows from the Arboretum Project in the sizing of a sewer trunk located along the southern SunCreek Boundary and the SunCreek Pump Station.

The Cordova Hills Development Project is a 3,500 acre mixed-density, mixed-land use development project located upstream of the SunCreek Project and is within the Laguna Creek Interceptor Basin. The Cordova Hills Project will connect Laguna Creek Interceptor Basins LC52, LC61 and LC62 to LCI-5. A formal development application for the Cordova Hills Project has been submitted to the County of Sacramento. Therefore, the SunCreek Project has included the Cordova Hills sewer flows within the Laguna Creek Interceptor and the SunCreek Sewer Pump Station.

Refer to the Appendix D: CSD-1 Sewerage Facilities Expansion Master Plan 2006 Update – DC Upper Deer Creek Trunk Shed which shows offsite sewer shed areas and flows from east of Grant Line Road and the location of SRCSD regional pump station.

I.6 Land Use and Zoning

On-Site

- The SunCreek Project area is currently undeveloped land with relatively poor agricultural soils. The area was used for dry land farming and grazing on spring grasses. The existing 1,266+/- acre project area is currently zoned AG-20 and AG-80.
- The SunCreek Specific Plan is a mixed-use, mixed-density residential development that includes a network of interconnected, large open spaces linked by a pedestrian and bike trail system. Proposed land uses include single family residential,

condominium, multi-family residential, commercial, office, live-work units, schools, parks, open space, habitat preserve, and collector, arterial and local roads.

Off-Site

- The SunCreek Specific Plan is located within the Sunrise Douglas Community Plan, which is approved and is currently being developed. The Sunrise Douglas Community Plan encompasses separate plan areas including the Preserve at SunRidge and the SunRidge Specific Plan.
- Lands to the south of SunCreek and east of Grant Line Road are undeveloped. These lands are used for grazing and limited farming purposes. Existing zoning consists of AG-20 and AG-80. These areas are within the Sacramento County Urban Services Boundary and are being considered for development. The Sacramento County General Plan indicates future land uses of medium to high density residential uses in these areas.

II. Design

II.1 Assumptions

- <u>Downstream Capacity</u>: This study assumes that there is or will be adequate interim capacity within the Mather, Bradshaw and Northeast Interceptors to provide interim sewer service to the SRWTP until the Laguna Creek Interceptor is extended to the SunCreek Project.
- <u>Upstream Shed Areas:</u> This Study assumes that the upstream developments of Anatolia III, Cordova Hills, Arista Del Sol, Arboretum Project and portions of the Preserve and Grant Line 220 will utilize the Laguna Creek Interceptor and the SunCreek Sewer Pump Station and force mains. It is further assumed that as other upstream shed areas develop and connect to the SunCreek Project sewer infrastructure, they will be responsible for capacity increases to sewer facilities (pump stations, force mains) serving their projects.
- <u>Off-site Land Use ESD density for flow calculations</u>: Land use densities of 6 ESD's per acre was assumed for future development in the off-site areas for which sewer flow information was not available. This assumed density is consistent with current SASD design standards.

II.2 Approach and Design Criteria

Design Task One: Compile Record Data

The design approach for the SunCreek Project sewer study began with the compilation of known data and resources within the project vicinity. The following summarizes the resources used to prepare this report:

- SunCreek Specific Plan Land Use Plan
- SASD Design Standards, Version 1.00, dated February 13, 2008

- 2006 Draft SASD Sewerage Facilities Master Plan Update (SFEMP)
- SRCSD Interceptor System Master Plan 2000- Executive Summary Reconciliation Report, July 2003
- Sewer Master Plan for SunRidge Park, March 2004, prepared by Wood-Rodgers
- The Preserve at SunRidge-Sewer Exhibit E, June 2006, prepared by Wood-Rodgers
- The Arboretum (Weagell/Lewis Property) Level 1 Trunk Sewer Design Report dated November 2008

Design Task Two: Identify Points of Connection and Capacity

• Reviewed the 2006 SASD SFEMP, the Mather Interceptor EIR and the Wood-Rodgers sewer study for Anatolia III and The Preserve at SunRidge to identify the SunCreek Project sewer points of connection and verify the available capacity in the existing 8-inch and 18-inch force mains.

Design Task Three: Obtain Criteria to Calculate ESD's and Design Flows

The project area ESD's and sewer flows are based on design standards obtained from:

- SASD Design Standards, Version 1.00, dated February 13, 2008
- 2006 Draft SASD Sewerage Facilities Expansion Master Plan (SFEMP)

The following tables are a summary of on-site ESD densities based on land use, formulas used to calculate average dry weather and peak wet weather flows, and design/capacity criteria to size pipelines.

Table 1: Land Uses and ESD Densities

Land Use	Abbreviation	ESDs / acre or Lot Count
Low Density Residential (2-6 du/ac)	LDR	6
Medium Density Residential (6-12 du/ac)	MDR	Actual lot count
Compact Density Residential (12-18 du/ac)	CMDR	Actual lot count
High Density Residential (18-40 du/ac)	HDR	Actual lot count
Commercial Mixed Use	CMU	6
Village Center	VC	6
Public/Quasi-public	P/QP	6
Park	Р	6
Wetland Buffer/ Bike Path Corridor	WB	6
Detention Basin	DB	6
Storm Drain Channel	Channel	6
Wetland Preserve	WP	6
High School	School	6
Middle School	School	0.060 mgd or 193
Elementary School	School	0.025 mgd or 81
Major Roads	Road	6

Sources:

- SunCreek Specific Plan Land Use Plan
- SASD Design Standards, Version 1.00, dated February 13, 2008
- 2006 Draft SASD SFEMP

Notes:

- 1) Lot counts were used to calculate ESDs where lot counts were greater than or equal to Area x 6 ESD's/acre.
- 2) The High School ESD's were calculated using 6 ESD's per acre because it generated a higher ESD number than 0.080 mgd per High School Site.
- 3) ESD's for High Density Residential (HDR) land use are based on 232 gallons per residential unit/day (0.75 ESD).

Table 2: Design Flow Factors

Item	Value
ESD Flow Factor ~ PDWF	310 GPD per ESD
Inflow & Infiltration (I/I) rate	1400 GPD / acre

Source: SASD Design Standards, Version 1.00, dated February 13, 2008

Table 3: Design Flow Formulas

Collector and Trunk Sewers	Formula or Value
ESDs	Equivalent single family dwelling units
ADWF =	(ESDs X 310) ÷ 1,000,000
I/I =	1400 x sewer shed area
PF =	3.5 - (1.8 x ADWF ^{0.05}), Minimum is 1.2
PDWF (mgd) =	ADWF x PF
PWWF (mgd) =	PDWF + Q _{I/I}

Source: SASD Design Standards, Version 1.00, dated February 13, 2008

Table 4: Hydraulic Design Criteria

Sanitary Sewer ~ Design flow	Value
Manning "n"	0.013
Minimum Velocity at PWWF	2.0 fps
Maximum Velocity	8.0 fps
Maximum $d/D \sim diameter < or = 12$ " with service connections	0.7
Maximum d/D ~diameter = or > 12" without service connections	1.0
Sources SASD Design Standards, Varsian 1.00, dated Estructure 1	2 2000

Source: SASD Design Standards, Version 1.00, dated February 13, 2008

Table 5: Minimum Pipe Slopes & Capacities

Sanitary Sewer ~ Design flow				
Pipe	Minimum Design	Minimum Schematic	Design Capacity	
Diameter	Slope	Slope	(MGD)	
8"	0.0035	0.0060	0.38	
10"	0.0025	0.0035	0.58	
12"	0.0020	0.0024	1.03	
15"	0.0015	0.0018	1.60	
18"	0.0012	0.0014	2.35	
21"	0.0011	0.0012	3.40	
24"	0.0010	0.0011	4.50	
27"	0.0010	0.0010	6.20	
30"	0.0010	0.0010	8.20	
33"	0.0010	0.0010	10.50	
36"	0.0010	0.0010	13.63	

Source: SASD Design Standards, Version 1.00, dated February 13, 2008

Table 6: Manhole Elevation Criteria

Pipe Condition	Minimum Flow line criteria	
Same pipe diameter in / out	0.05 foot invert drop	
Direction change of 20 degree or greater	0.10 foot invert drop	
Pipes in /out are not the same size	Match crown	
Collector to Trunk connection	Collector invert to match Trunk crown	
Trunk to Interceptor connection	Trunk invert to match Interceptor crown	

Sources:

• SASD Design Standards, Version 1.00, dated February 13, 2008

Design Task Four: Calculate ESD's, Peak Flows and Determine Pipe Sizes

- A preliminary grading plan was prepared for the SunCreek Project. The grading plan generally follows the "lay of the land" sloping to the central drainage feature within the Project (Kite Creek which drains from northeast to southwest).
- Utilizing the preliminary grading plan and land use plan determine alignments for LCI-5, trunk sewers and collector pipelines. Extended sewer pipelines to upstream off-site shed areas to provide sewer service through the SunCreek Project. Schematic pipelines were extended to upstream ends of on-site and off-site shed areas to verify serviceability.
- Cover on sewer pipelines were verified using a minimum depth of 8.0 feet.
- Established on-site shed areas based on preliminary grading plan, street network and pipeline network.
- Use the Land Use Map, sewer pipeline network and ESD criteria to calculate the SunCreek Project ESD's plus the ESD's from upstream shed areas.
- Use the ESD counts to calculate PWWF's and size the sewer pipelines and compare the design flow to the available capacity at the point of connection.
- Use the ESD counts to calculate the Laguna Creek Interceptor PDWF's and verify pipe flow characteristics are within acceptable SRCSD parameters.

III. Summary of Results

III.1 Recap of SASD Study Requirements

At the beginning of this study, a description of SASD Minimum Sewer Study Requirements for a Level Two report included:

- Ensure technical compliance with the latest SASD Master Plan
- Confirm the capacity of existing and future sewer improvements that will serve the project
- Establish sewer sheds within project area and identify off-site tributary shed areas
- Size the backbone sewer interceptor and trunk system, locate and size pump station, establish depth of pipes and verify cover
- The focus of the study is on topography, major phasing & timing, Interceptor and its capacity, trunk sewers and their capacity, and shed shifts

This study achieves the SASD requirements and has:

- Used the most current SASD Master Facilities Plan
- Verified capacity of existing Interceptors and force-mains that will connect the project to the SRWTP
- Identified the sanitary sewer points of connection and has established location and capacity of the SunCreek Sanitary Sewer Pump Station.
- Established project and upstream sewer shed areas and sized the project sewer system to accept future development flows from the study area
- Verified cover on sewer using the preliminary grading plan
- · Identified options to build the project in phases

III.2 Summary of Sewer Flows and Alignments

The Peak Wet Weather Flows (PWWF) generated from the SunCreek study area are calculated as follows:

Table 7: Calculated Wastewater Flows

Area	Acres	ESDs	PF	PWWF (mgd)
SunCreek Specific Plan	1,286.8*	9,070.4	1.60	6.31
Total Off-site Area	6,702.6	40,641.0	1.46	27.74
Total	7,989.4	49,711.4	1.44	33.32

* The 1,286.8 acres includes an additional 20.8 acres of major road right-of-way that is not within the 1,266 acre SunCreek Specific Plan boundary.

- The Anatolia III development will be connected to LCI-5
- A 10-inch collector will be extended to The Preserve at SunRidge which will connect to a sewer trunk within SunCreek and then LCI-5
- Schematic 8-inch sewer lines are provided to show serviceability of undeveloped upstream off-site sheds
- The upstream offsite LC Upper Laguna Creek Trunk Shed LCK-183 (LC52) and the DC Upper Deer Creek Trunk Shed (LC61 & LC62) will connect to the upstream end of LCI 5
- The upstream offsite AJ Sunrise Douglas Trunk Sheds SDA047, SDA048, SDA049 & SDA051 (a portion of AJ11) will connect to LCI-5

Refer to the following Tables and Exhibits for detailed design of the sewer infrastructure for the SunCreek Specific Plan:

- Exhibit E: SunCreek Specific Plan Sanitary Sewer Master Plan
- Table 8: SunCreek Specific Plan Sanitary Sewer Calculation
- Table 9: SunCreek Sewer Study Area Sanitary Sewer Calculation
- Table 10: SunCreek Specific Plan Phase 1 Sewer Pump Station Calculation
- Table 11: Sunrise / Douglas Developments Sewer Pump Station Capacity Calculations
- Table 12: SunCreek Specific Plan Sewer Study Area Detailed Sanitary Sewer Calculations
- Table 13: SunCreek Specific Plan Laguna Creek Interceptor Section 5, Sanitary Sewer Peak Dry Weather Flow Calculations

III.3 Laguna Creek Interceptor Section 5

The SunCreek Project proposes to construct the portion of the Laguna Creek Interceptor that has been planned by SRCSD to traverse through the Project. This sewer study has analyzed several alignments for the interceptor to follow while traversing the SunCreek Project. The alignment indicated for LCI-5 in this study is believed to be the best location for this vital component of the Backbone Sewer Infrastructure for the SunCreek Sewer Study Area. The alignment provided in this study considered depth, conflicts with trunk sewers and trunk drainage, terrain, flow velocity, maintenance, access, environmental impacts and the ability to securing off-site easements.

Due to the large elevation difference between the second node located in Grant Line Road and the ninth node located adjacent to Anatolia III, flow velocity was the most difficult flow characteristic to maintain within the typical limits. The terrain at the upper most quadrant of the Specific Plan is the steepest within the Project Area. This segment of the interceptor pipeline will follow Chrysanthy Blvd. to the east from the Americanos Blvd. Intersection to the Grant Line Road Intersection. This segment of LCI-5 will require special pipeline coating materials and manhole coatings to prevent corrosion.

Since the Laguna Creek Interceptor will only see PWWF during large storms the flow characteristics of Peak Dry Weather Flow (PDWF) where also analyzed. Refer to **Table 13: SunCreek Specific Plan - Laguna Creek Interceptor Section 5, Sanitary Sewer Peak Dry Weather Flow Calculations**.

III.4 Permanent Sewer Shed Shift

The SFEMP LC Upper Laguna Creek Trunk Shed was used to determine the upstream off-site shed areas that need to be included in the SunCreek sewer study area. When LC Upper Laguna Creek Trunk Shed was prepared for inclusion in the SFEMP, it was assumed that LCI-5 would not be constructed with the initial phases of the SunCreek development. The SunCreek Project proposes to construct the segment of LCI-5 that is within the SunCreek development and use it on an interim basis as an oversized sewer collector and then as a sewer trunk as development occurs and flow volumes increase. The construction of LCI-5 in the initial phases of the SunCreek Project significantly changes the trunk sheds and trunk system within the SFEMP LC Upper Laguna Creek Trunk Shed.

The SunCreek Project proposes to place LCI-5 within Chrysanthy Blvd. from the Americanos Blvd. intersection to its intersection with Grant Line Road. This alignment for LCI-5 matches the alignment for the Chrysanthy Blvd. Trunk included in SFEMP AJ Sunrise Douglas Trunk Shed. Therefore, the Chrysanthy Blvd. Trunk segment adjacent to the SunCreek northern boundary (Chrysanthy Blvd.) has been eliminated and the sewer sheds have been shifted to LCI-5. This shed shift moves 641.6 acres and 3,850 ESD's from the AJ Sunrise Douglas Trunk to the LC Upper Laguna Creek Trunk.

Due to the inclusion of LCI–5 into the SunCreek Project area, trunk shed areas per the SFEMP LC Upper Laguna Creek Trunk Shed and AJ Sunrise Douglas Trunk Sheds have been reconfigured to conform to the proposed SunCreek sewer pipeline network. Refer to Appendix F: Permanent Shed Shift – AJ Sunrise Douglas Trunk Shed & LC Upper Laguna Creek Trunk Shed to review the new trunk sheds.

III.5 SunCreek Project Sewer Service

This SunCreek Sewer Study includes two development scenarios that describe the necessary sanitary sewer facilities to provide sanitary sewer service to the SunCreek Sewer Study Area. Within the SunCreek Sewer Study Area there are two development Projects that are at the downstream end of the study area. These two Projects will be receiving interim sewer service through common sanitary sewer infrastructure. Since it is not known which Project will develop first, this section of the Sewer Study will describe two development scenarios. Each development scenario will describe the assumed existing sanitary sewer infrastructure built during the previous phase of development and required sanitary sewer infrastructure to provide sewer service for each Project should it develop first and the other follows.

Scenario One: The SunCreek Project develops first followed by the Arboretum Project

Phase 1 Sanitary Sewer Service: The SunCreek Project constructs portions of LCI-5, sewer collectors, sewer trunks and a 2.26 mgd sewer pump station to serve the first phase of development. This first phase of construction connects the Anatolia III development's gravity sewer system to the SunCreek Project's sewer system and the Anatolia III Sewer Pump Station is decommissioned. The SunCreek Project utilizes the Anatolia III force main to convey sewer flows to the Chrysanthy Boulevard Sewer Pump

Station. Should the Arboretum Project begin developing there first phase after the SunCreek Project, the Arboretum Project would build a sewer pump station and convey the sewer flows to the SunCreek Project Phase 1 Sewer Pump Station. To extended time frame that this Phase could be operational, the lower reaches of the LCI-5 built with the SunCreek Project could be used to temporally store peak sewer flows. Refer to **Exhibit F-1: SunCreek Project Sewer Service** to review a schematic layout of the sewer infrastructure associated this scenario and phase.

Phase 2 Sanitary Sewer Service: The Chrysanthy Pump Station is decommissioned due to the construction of the Mather Interceptor. The SunCreek Sewer Pump Station capacity is increased up to 9.91 mgd and utilizes the Sunrise Boulevard segment of the Chrysanthy Blvd. Pump Station force main to convey sewer flows to the Mather Interceptor. The Arboretum Project increases the capacity of their sewer pump station to 4.3 mgd and continues to pump to the SunCreek Sewer Pump Station. As with Phase 1, the time duration that this Phase can provide sewer service could be extended by utilizing the lower reaches of LCI-5 to temporally store peak sewer flows. Refer to Exhibit F-2: SunCreek Project Sewer Service to review a schematic layout of the sewer infrastructure associated this scenario and phase. As development continues to occur and sewer flows increase, SRCSD could decide to increase the capacity of the SunCreek Sewer Pump Station up to 19.0 mgd and utilize the Kiefer Boulevard segment of the Chrysanthy Blvd. Sewer Pump Station force main to convey sewer flows to the Bradshaw Interceptor. Refer to Exhibit F-3: SunCreek Project Sewer Service to review a schematic layout of the sewer infrastructure associated this scenario and phase.

Phase 3 Sanitary Sewer Service: This phase of development is how the SunCreek Sewer Study Area ultimately receives sanitary sewer service to the Sacramento regional Wastewater Treatment Plant (SRWTP). The lowers reaches of LCI are constructed from the SRWTP and connected to LCI-5. The SunCreek and Arboretum Project's gravity sewer systems are connected to LCI. The SunCreek and Arboretum Sewer Lift Station's and associated force mains are decommissioned. Refer to **Exhibit F-4: SunCreek Project Sewer Service** to review a schematic layout of the sewer infrastructure associated this scenario and phase.

Scenario Two: The Arboretum Project develops first followed by the SunCreek Project

Phase 1 Sanitary Sewer Service: The Arboretum Project has constructed gravity sewer collectors, sewer trunks and a sewer pump station to serve their first phase of development. A sewer force main connects the 1.5 mgd Arboretum Sewer Pump Station to the Anatolia III Sewer Pump Station. The Anatolia III Pump Station capacity has been increased to 2.26 mgd. SASD would have several options on how to provide sanitary sewer service to the SunCreek Project should they start developing during this Phase. One option would be for the SunCreek Project to develop as follows: The Anatolia III Pump Station would be decommissioned and the Anatolia III development would be gravity connected to the SunCreek Sewer Pump Station. The Arboretum Pump Station force main would be connected to the SunCreek Sanitary Sewer Pump Station. The SunCreek Pump Station force main would be connected to the SunCreek Sanitary Sewer Pump Station.

Station force main and connect it to the Anatolia III Pump Station force main. The Anatolia III Pump Station would be decommissioned. The SunCreek Sewer Pump Station would pump to the Chrysanthy Sewer Pump Station. Refer to **Exhibit F-5: SunCreek Project Sewer Service** to review a schematic layout of the sewer infrastructure associated this scenario and phase. Another option would be for the SunCreek Project to extend either LCI-5 from the SunCreek Project or a smaller gravity sewer pipeline to the Arboretum Sewer Pump Station. Thus the SunCreek Project would gravity sewer to the Arboretum Sewer Pump Station which would pump to the Anatolia III Sewer Pump Station which would pump to the Chrysanthy Sewer Pump Station. Refer to **Exhibit F-6: SunCreek Project Sewer Service** to review a schematic layout of the sewer pipeline to the sewer infrastructure associated this scenario and pump to the Chrysanthy Sewer Pump Station. Refer to **Exhibit F-6: SunCreek Project Sewer Service** to review a schematic layout of the sewer infrastructure associated this scenario and phase.

Phase 2 Sanitary Sewer Service: The Chrysanthy Blvd. Pump Station has been decommissioned due to the construction of the Mather Interceptor. The Arboretum Sewer Pump Station capacity has been increased to 9.91 mgd and utilizes the Sunrise Boulevard segment of the Chrysanthy Blvd. Pump Station force main to convey sewer flows to the Mather Interceptor. The Arboretum force main to the Anatolia III Sewer Pump Station is decommissioned. The 2.26 mgd Anatolia III Sewer Pump Station remains operational to pump the Anatolia III sewer flows to the Chrysanthy Blvd. gravity sewer system and to the Mather Interceptor. SASD would have several options on how to provide sanitary sewer service to the SunCreek Project should they start developing during this Phase. One option would be for SunCreek to develop as follows: The SunCreek Project would construct a Sewer Pump Station with approximately 1.5 mgd The SunCreek Pump Station would connect to the decommissioned capacity. Arboretum Project force main that is connect to the Anatolia III Sewer Pump Station. The Arboretum Pump Station would pump to the Chrysanthy Blvd. gravity sewer system and to the Mather Interceptor. Refer to Exhibit F-7: SunCreek Project Sewer Service to review a schematic layout of the sewer infrastructure associated this scenario and phase. As development continued to occur within and upstream of the SunCreek Project and the 2.26 mgd capacity of the Anatolia III force main is reached, the SunCreek Project would need to either extend LCI-5 or a smaller gravity pipeline to the Arboretum Sewer Pump Station in order for the SunCreek Project to continue receiving sanitary sewer service. During this phase of development the Anatolia III development gravity sewer system would be connected to the SunCreek Project sewer system and the Sewer Pump Station and associated force main would be decommissioned. Refer to Exhibit F-8: SunCreek Project Sewer Service to review a schematic layout of the sewer infrastructure associated this scenario and phase. As development within the SunCreek Sewer Study Area continues to occur and sewer flows increase, SRCSD could decide to increase the capacity of the Arboretum Sewer Pump Station up to 19.0 mgd. A second force main would be extended from the Arboretum Sewer Pump Station to Kiefer Blvd. and connected to the Kiefer Blvd. segment of the Chrysanthy Blvd. Sewer Pump Station force main and sewer flows would be conveyed to the Northeast Interceptor. Refer to Exhibit F-9: SunCreek Project Sewer Service to review a schematic layout of the sewer infrastructure associated this scenario and phase.

Phase 3 Sanitary Sewer Service: This phase of development is how the SunCreek Sewer Study Area ultimately receives sanitary sewer service to the SRWTP. The

lowers reaches of LCI are constructed from the SRWTP and connected to LCI-5. The SunCreek and Arboretum Project's gravity sewer systems are connected to LCI. The SunCreek and Arboretum Sewer Lift Station's and associated force mains are decommissioned. Refer to **Exhibit F-10: SunCreek Project Sewer Service** to review a schematic layout of the sewer infrastructure associated this scenario and phase.

III.6 SunCreek Project Sewer Pump Station

This Level Two Sewer Study has been prepared for the SunCreek Owners Group, for the purposes of this discussion regarding the SunCreek Project Sewer Pump Station it will be assumed that the SunCreek Project will precede the Arboretum Project.

The SunCreek Pump Station will be constructed in phases and will ultimately serve 13,800 ESD's on 2,300+/-acres with a PWWF of 9.91 mgd. The sewer pump station will be designed to pump at a maximum flow rate of 6,880 gpm. The SunCreek Sewer Pump Station will serve development within the SunCreek Sewer Study Area and on interim basis adjacent developments. SRCSD could decide to further increase the capacity of the SunCreek Sewer Pump Station to serve additional development within the SunCreek Sewer Study Area.

III.7 Exception to SASD Policy

This sewer study does not request any exceptions to SASD policy.

IV. Project Phasing

The SunCreek Specific Plan will be developed in phases. The development phasing is not known at this time, but Phase 1 would likely begin at the southwest corner of the SunCreek Specific Plan Area and progress towards the east. The Phase 1 sewer infrastructure will include the 2.26 mgd SunCreek Sewer Pump Station and 8-inch force main, Laguna Creek Interceptor section LCI-5 from the SunCreek Pump Station to Americanos Boulevard.

The Phase 2 sewer infrastructure will increase the capacity of the SunCreek Sewer Pump Station to 9.91 mgd and connect two 18-inch force mains to the Chrysanthy Blvd. force main

The Phase 3 sewer infrastructure will extend LCI-5 to Grant Line Road.

The SunCreek Sanitary Sewer Study Area will build out at a pace set by the home construction market. As the 9.91 mgd SunCreek Sewer Pump Station nears, its capacity limit SRCSD may upgrade the SunCreek Sewer Pump Station to a 19.0 mgd Regional Pump Station.

V. SunCreek Project Construction Cost

A Preliminary Probable Opinion of Construction Cost for the SunCreek Specific Plan Backbone Sanitary Sewer Infrastructure has been prepared. The construction cost opinion is based on the backbone sanitary sewer infrastructure depicted in Exhibit E and includes trunk sewer pipes, the portion of LCI-5 through the SunCreek Project, Phase 1 and Phase 2 Sanitary Sewer Pump Stations and force mains. The total cost of \$44,719,000 is for the necessary backbone sanitary sewer infrastructure to provide sanitary sewer service for the SunCreek Sanitary Sewer Study Area. The cost of the collection system to provide sanitary sewer service to each lot will be in addition to the backbone sanitary sewer infrastructure cost.

VI. Conclusion

- The total sewer flow from the SunCreek Project and the upstream off-site shed areas were determined to be 6.31 mgd PWWF and 27.74 mgd PWWF respectively. The total sewer flow for the entire study area is calculated to be 33.32 mgd PWWF.
- The SunCreek Specific Plan area of 1,286+/- acres and total off-site area of 6,703+/acres contributing 9,070 ESD's and 40,641 ESD's respectively were analyzed in this study.
- A 9.91 mgd (6,880 gpm) SunCreek Pump Station is proposed for the SunCreek project.
- Trunk shed shifts have been approved within the LC Upper Laguna Creek Trunk Shed and AJ Sunrise Douglas Trunk due to the proposed construction of LCI-5 within the SunCreek Project.
- Laguna Creek Interceptor Section 5 will be constructed through the SunCreek Project and will serve upstream off-site development and the SunCreek Project, initially as an oversized trunk, and ultimately as an interceptor as flows increase above 10 mgd.
- Interim Interceptor capacity is available to serve the SunCreek Specific Plan until the downstream Laguna Creek Interceptor segments are constructed.
- A SASD Level Three study will be prepared prior to submission of improvement plans for the SunCreek project.

In conclusion, there is sufficient interim capacity within the existing offsite interceptor system to accommodate the SunCreek Specific Plan until the ultimate facilities are completed. An onsite gravity collector, trunk and interceptor sewer system will be constructed to convey sewer flows to a proposed pump station located on the southwest project boundary. The SunCreek Pump Station will convey sewer flows the Northeast Interceptor and when available to the Mather Interceptor.

TABLES

Table 8SunCreek Specific PlanSanitary Sewer Calculation

Land Use Designation	Total Acres	ESD's/Acre	ESD's								
Low Density Residential (2.1 to 6 du/ac)	194.8	6.00	1,168.8								
Medium Density Residential (6.1 to 12 du/ac) ¹	379.0	7.97	3,020.0								
Compact Density Residential (12.1 to 18 du/ac) ¹	27.0	17.37	469.0								
High Density Residential (18.1 to 40 du/ac) ²	29.0	15.0	435.0								
Commercial Mixed Use	29.0	6.0	174.0								
Village Center	3.0	6.0	18.0								
Public/Quasi Public	7.3	6.0	43.8								
Neighborhood Park	60.5	6.0	363.0								
Community Park	35.1	6.0	210.6								
Parkway, Paseos and Trails	28.3	6.0	169.8								
Wetland Buffer/Bike Path Corridor	29.8	6.0	178.8								
Detention Basin	31.0	6.0	186.0								
Storm Drain Channel	9.1	6.0	54.6								
Wetland Preserve	218.3	6.0	1,309.8								
High School ³	48.0	6.0	288.0								
Middle School ⁴	35.9	N/A	194.0								
Elementary School ⁴	31.0	N/A	243.0								
Major Roads	90.7	6.0	544.2								
Subtotal	1,286.8		9,070.4								
Average Dry Weat	her Flow (mgd)		2.81								
		1.60									
Peak Dry Weat	Peak Dry Weather Flow (mgd)										
Peak Wet Weath	er Flow (mgd)		6.31								

¹ Denotes that the ESD's are based on actual unit counts.

² Denotes that the ESD's are based on 232 gallons per unit/day or 0.75 ESD's /unit. Total High Density Residential Units equals 580.

³ Denotes that average dry weather flow was calculation is based on 6 ESD's per Acre.

⁴ Denotes that SASD minimum average dry weather flow of 0.025 mgd per Elementary School, 0.060 mgd per Middle School were used to determine ESD's.

Table 9
SunCreek Sewer Study Area
Sanitary Sewer Calculation

Land Use Designation	Total Area (Acres)	Total ESD's
SunCreek Specific Plan	1,286.8	9,070.4
Anatolia III - Shed 6-1	197.7	1,186.0
The Arboretum - Sheds 7-4 & 7-6	396.7	2,380.2
Offsite - Shed 4-1	85.5	513.0
Offsite - Sheds 3-1, 3-2, 3-3	171.8	1,031.8
The Preserve at SunRidge - Shed 3-10	68.5	835.0
Offsite -Shed LCK 183	241.4	1,448.0
Offsite - Permanent shed shift from AJ Sunrise Douglas Trunk Shed	641.6	3,850.0
DC Upper Deer Creek Trunk Shed	4,899.4	29,397.0
Subtotal	7,989.4	49,711.4
Ave	erage Design Flow (mgd)	15.41
	1.44	
Peak	Dry Weather Flow (mgd)	22.13
Peak W	33.32	

Table 10SunCreek Specific PlanPhase 1 Sanitary SewerPump Station Calculation

Land Use Designation	Total Acres	ESD's
SunCreek Sewer Study Area and the Arboretum	295	1,770
Anatolia III	198	1,186
Subtotal	493	2,956
Avera	age Design Flow (mgd)	0.92
	Peaking Factor	1.71
Peak Di	1.56	
Peak Wet	Weather Flow (mgd)	2.26

Force-main Capacity Calculations:

Assumptions:

- 1) Existing 8-inch force-main pipe material is Ductile Iron, Pressure Class 350
- 2) Force-main length is 14,700 feet. (SunCreek Pump Station to Discharge Manhole)
- 3) 8-inch force-main discharge elevation of 165.0
- 4) SunCreek Pump-Off Elevation 95.0 (Assumed)

Calculations:

8-inch diameter pipe flowing at 10 fps carries a flow of 1,569 gpm or 2.26 mgd.

Velocity Friction Loss : 14,700-ft x 41.963-ft / 1,000-ft = 616.9-ft / 2.3072 psi/ft = 267.4 psi. Static Head Loss: (165 - 95)/2.3071psi/ft = 30 psi.

Max. Pressure is in force main is approx. 297 psi which is less than the pipe rating of 350 psi.

Table 11Sunrise / Douglas DevelopmentsSewer Pump Station Capacity Calculations

Pump Station	Total Acres	ESD's
SunCreek Sewer Pump Station - Phase 1	493	2,956
Subtotal	493	2,956
Avera	ge Design Flow (mgd)	0.92
	Peaking Factor	1.71
Peak Dr	y Weather Flow (mgd)	1.56
Peak Wet	Weather Flow (mgd)	2.26
SunCreek Sewer Pump Station - Phase 2	2,300	13,800
Subtotal	2,300	13,800
Avera	ge Design Flow (mgd)	4.28
	Peaking Factor	1.56
Peak Dr	y Weather Flow (mgd)	6.69
Peak Wet	Weather Flow (mgd)	9.91
SunCreek Regional Sewer Pump Station - Phase 3	4,540	27,240
Subtotal	4,540	27,240
Avera	ge Design Flow (mgd)	8.44
	Peaking Factor	1.50
Peak Dr	y Weather Flow (mgd)	12.64
Peak Wet	Weather Flow (mgd)	19.00
Chrysanthy Blvd. Pump Station	1,530	9,180
Subtotal	1,530	9,180
Avera	ge Design Flow (mgd)	2.85
	Peaking Factor	1.60
Peak Dr	y Weather Flow (mgd)	4.56
Peak Wet	Weather Flow (mgd)	6.70

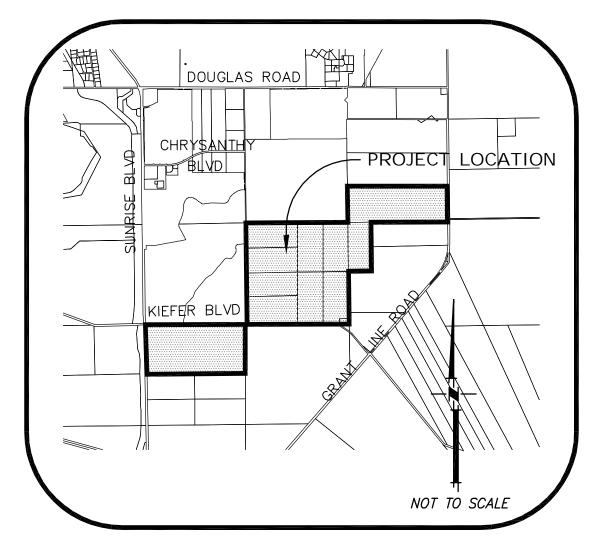
Table 12SunCreek Specific Plan - Sewer Study AreaDetailed Sanitary Sewer Calculations

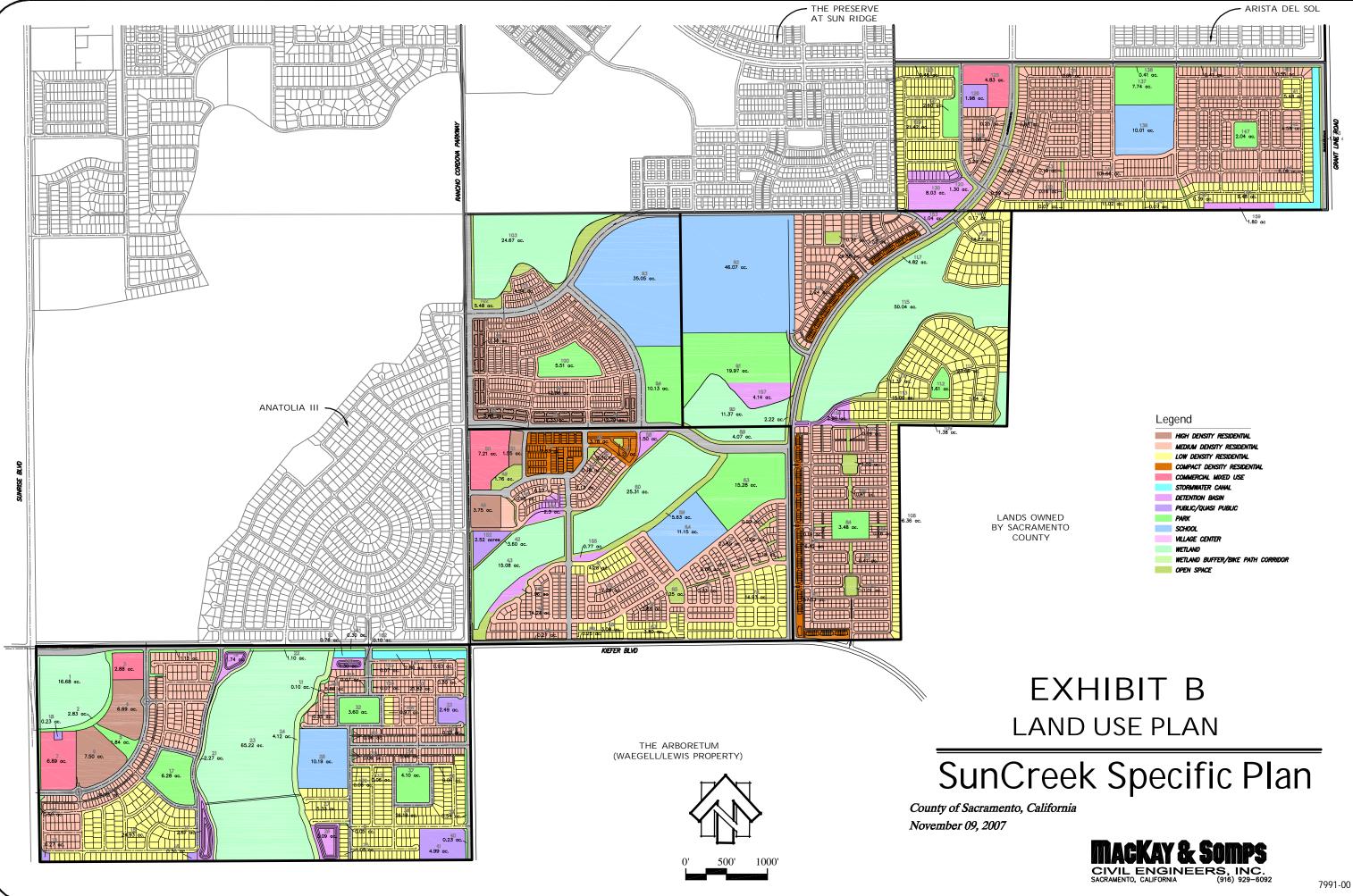
Node In	Node Out	ESD	Sum ESD	ADWF (mgd)	Peaking Factor	PDWF (mgd)	Area (acres)	Sum Area (acres)	Q _⊮ (mgd)	PWWF (mgd)	PWWF (gpm)	PWWF (cfs)	Dia. (in.)	Length (ft)	US Rim Elev. (ft)	US Invert (ft)	Depth @ US Invert (ft)	DS Rim Elev. (ft)	DS Invert (ft)	Depth @ DS Invert (ft)	Slope (ft/ft)	Velocity (fps)
	1.0	20045	20045	0.50	4 40	44.00	54.44	54.44	7.00	04.40	4 4 9 5 9	00.40		4000	005.0	010.0	00.4	004.0	000.0	04.4	0.0005	5.00
1-1	1-2	30845	30845	9.56	1.48	14.20	5141	5141	7.20	21.40	14858	33.10	36	1300	235.0	212.9	22.1	231.0	209.6	21.4	0.0025	5.33
SDA049	SDA048	1434	1434	0.44	1.77	0.79	238.9	238.9	0.33	1.12	779	1.74	15	2850	245.5	225.3	20.2	239.5	220.2	19.3	0.0018	2.36
SDA049	3DA040 1-2	680	2114	0.66	1.74	1.14	113.3	352.2	0.33	1.63	1133	2.52	13		240.5	219.4	20.2	231.0	217.0	14.0	0.0013	2.35
007040	1-2	000	2117	0.00	1.74	1.14	110.0	002.2	0.40	1.00	1100	2.02	10	1700	200.0	210.4	20.1	201.0	217.0	14.0	0.0014	2.00
1-2	1-3	329.0	33288	10.32	1.48	15.24	54.8	5548	7.77	23.01	15979	35.60	36	2700	231.0	209.5	21.5	225.3	201.4	23.9	0.0030	5.84
1-3	1-4	0.0		10.32	1.48	15.24	0.0	5548	7.77	23.01	15979	35.60	36		211.4	201.3	10.1	197.9	181.3	16.6	0.0200	12.14
1-4	1-5	0.0		10.32	1.48	15.24	0.0		7.77	23.01	15979	35.60	36	100	197.9	174.0	23.9	196.4	173.7	22.7	0.0030	
SDA051	1-5	1407	1407	0.44	1.77	0.77	234.6	234.6	0.33	1.10	765	1.70	15	1060	202.0	183.4	18.6	196.4	181.5	14.9	0.0018	2.36
1-5	1-6	1407.0	34695	10.76	1.47	15.84	234.6	5782.4	8.10	23.94	16624	37.04	36	2660	196.4	173.6	22.8	183.0	157.6	25.4	0.0060	7.93
2-1	2-3	216.2	216.2	0.07	1.93	0.13	32.4	32.4	0.05	0.17	121	0.27	8	1880	229.3	220.0	9.3	223.5	208.7	14.8	0.0060	2.23 2.11
2-2	2-3	157.2	157.2	0.05	1.95	0.10	24.9	24.9	0.03	0.13	90	0.20	8	1160	226.2	215.7	10.5	223.5	208.7	14.8	0.0060	2.11
2-3	2-5	0.0	373.4	0.12	1.88	0.22	0.0	57.3	0.08	0.30	207	0.46	8	530	223.5	208.6	14.9	222.4	205.4	17.0	0.0060	2.55
2-4	2-5	116.4	116.4	0.04	1.98	0.07	19.4	19.4	0.03	0.10	68	0.15	8	1400	227.0	213.8	13.2	222.4	205.4	17.0	0.0060	1.93
2-5	2-7	156.4	646.2	0.20	1.84	0.37	25.0	101.7	0.14	0.51	355	0.79	8	2450	222.4	205.3	17.1	193.6	176.3	17.3	0.0118	3.97
2-6	2-7	216.0	216.0	0.07	1.93	0.13	29.3	29.3	0.04	0.17	118	0.26	8	1460	228.0	213.1	14.9	193.6	176.3	17.3	0.0252	2.91
2-7	2-9	13.2	875.4	0.27	1.81	0.49	2.2	133.2	0.19	0.68	471	1.05	10	330	193.6	176.1	17.5	185.3	174.9	10.4	0.0035	2.64
2-8	2-9	249.8	249.8	0.08	1.92	0.15	36.0	36.0	0.05	0.20	138	0.31	8	2570	222.0	208.4	13.6	185.3	175.0	10.3	0.0130	3.10
2-9	2-11	0.0	1125.2	0.35	1.79	0.63	0.0	169.2	0.24	0.86	599	1.33	10	170	185.3	174.8	10.5	183.7	173.8	9.9	0.0060	3.41
2-10 2-11	2-11 2-13	294.2	294.2	0.09	1.90 1.77	0.17 0.78	47.9 0.0	47.9 217.1	0.07	0.24 1.08	167 753	0.37 1.68	8 12	710 540	186.2 183.7	178.1 172.8	8.1	183.7 182.3	173.8 169.0	9.9 13.3	0.0060	2.44 3.91
		0.0	1419.4	0.44									12				10.9 17.2					1.42
2-12 2-13	2-13 2-16	88.8	88.8 1508.2	0.03 0.47	2.00 1.77	0.05 0.83	14.8 0.0	14.8 231.9	0.02	0.08 1.15	53 799	0.12 1.78	8 12	1480 330	196.0 182.3	178.8 168.9		182.3 183.3	169.9 166.9	12.4 16.4	0.0060	3.71
2-13	2-16	0.0 91.6		0.47	1.77	0.83	0.0 15.2		0.32	0.08	799 54	0.12	12	1740	182.3	168.9	13.4 10.5		166.9			1.42
2-15	2-16 1-6	<u>91.6</u> 39.6	91.6 1639.4	0.03	1.99	0.06	15.2	15.2 253.7	0.02	1.25	54 868	1.93	8 12	200	188.9	178.4	10.5	183.4 183.3	167.9	15.5 22.8	0.0060	7.04
2-10	0-1	39.0	1039.4	0.01	1.70	0.09	0.0	200.7	0.30	1.20	000	1.93	12	200	103.3	100.6	10.5	103.3	100.5	22.0	0.0315	7.04
1-6	1-7	1639.4	36334.4	11.26	1.47	16.54	253.7	6036.1	8.45	24.99	17353	38.66	36	2840	183.0	157.5	25.5	172.9	140.5	32.4	0.0060	7.93

Table 12SunCreek Specific Plan - Sewer Study AreaDetailed Sanitary Sewer Calculations

Node In	Node Out	ESD	Sum ESD	ADWF (mgd)	Peaking Factor	PDWF (mgd)	Area (acres)	Sum Area (acres)	Q _⊮ (mgd)	PWWF (mgd)	PWWF (gpm)	PWWF (cfs)	Dia. (in.)	Length (ft)	US Rim Elev. (ft)	US Invert (ft)	Depth @ US Invert (ft)	DS Rim Elev. (ft)	DS Invert (ft)	Depth @ DS Invert (ft)	Slope (ft/ft)	Velocity (fps)
3-1	3-4	405.6	405.6	0.13	1.88	0.24	67.6	67.6	0.09	0.33	230	0.51	8	3400	225.0	215.0	10.0	178.0	159.4	18.6	0.0164	3.87
3-2	3-4	335.4	335.4	0.10	1.89	0.20	55.9	55.9	0.08	0.28	191	0.43	8	2600	220.0	210.0	10.0	178.0	159.4	18.6	0.0195	
3-3	3-4	289.8	289.8	0.09	1.90	0.17	48.3	48.3	0.07	0.24	166	0.37	8	2300	181.5		8.3	178.0	159.4	18.6	0.0060	
3-4	3-6	0.0	1030.8	0.32	1.80	0.58	0.0	171.8	0.24	0.82	566	1.26	10		178.0	159.2	18.8	170.5	151.6	18.9	0.0050	3.15
3-5	3-6	283.8	283.8	0.09	1.91	0.17	47.3	47.3	0.07	0.23	162	0.36	8	2630	189.0	177.9	11.1	170.5	151.6	18.9	0.0100	2.88
3-6	3-9	0.0	1314.6	0.41	1.78	0.72	0.0	219.1	0.31	1.03	716	1.60	12		170.5	150.6	19.9	171.3	147.8	23.5	0.0028	
3-7	3-8	403.2	403.2	0.12	1.88	0.23	43.2	43.2	0.06	0.30	205	0.46	8	2270	178.0	167.1	10.9	175.0	153.5	21.5	0.0060	2.55
3-8	3-9	367.6	770.8	0.24	1.82	0.44	44.2	87.4	0.12	0.56	388	0.86	10		175.0	153.2	21.8	171.3	148.8	22.5	0.0035	
3-9	3-16	0.0	2085.4	0.65	1.74	1.12	0.0	306.5	0.43	1.55	1079	2.40	15		171.3	147.5	23.8	172.9	147.1	25.8	0.0018	2.50
3-10	3-13	835.0	835.0	0.26	1.82	0.47	68.5	68.5	0.10	0.57	393	0.88	10		176.0	158.6	17.4	169.1	152.6	16.5	0.0035	
3-11	3-13	239.2	239.2	0.07	1.92	0.14	32.4	32.4	0.05	0.19	130	0.29	8	1900	174.6	164.1	10.5	169.1	152.7	16.4	0.0060	2.35
3-12	3-13	288.0	288.0	0.09	1.90	0.17	48.0	48.0	0.07	0.24	165	0.37	8	1830	172.5	163.7	8.8	169.1	152.7	16.4	0.0060	2.44
3-13 3-14	3-15	0.0 300.6	1362.2 300.6	0.42 0.09	1.78	0.75 0.18	0.0 50.1	148.9 50.1	0.21	0.96	666 172	1.48	12	420 2800	169.1	152.4	16.7 21.6	168.9	151.3 151.6	17.6 17.3	0.0026	2.57 2.55
3-14	3-15 3-16	21.6	1684.4	0.09	1.90 1.76	0.18	3.6	202.6	0.07	0.25	834	0.38 1.86	12		190.0 168.9	168.4 150.3	18.6	168.9 172.9	131.6	25.6	0.0060	2.55
3-15	3-10 1-7	0.0	3769.8	1.17	1.69	1.97	0.0	509.1	0.28	2.68	1863	4.15	12		172.9		25.9	172.9	147.5	23.0	0.0033	12.93
0-10	1-7	0.0	5703.0	1.17	1.05	1.57	0.0	503.1	0.71	2.00	1005	4.15	10	50	172.5	147.0	20.0	172.3	140.0	23.4	0.1170	12.30
1-7	1-8	3769.8	40104.2	12.43	1.46	18.13	509.1	6545.2	9.16	27.29	18953	42.23	42	860	172.9	140.0	32.9	167.4	137.4	30.0	0.0030	6.27
4-1	4-2	513.0	513.0	0.16	1.86	0.30	85.5	85.5	0.12	0.42	288	0.64	8	2690	188.0	180.0	8.0	172.0	163.9	8.1	0.0060	2.87
4-2	4-4	214.8	727.8	0.23	1.83	0.41	35.8	121.3	0.17	0.58	405	0.90	8	1760	172.0	163.8	8.2	167.1	149.7	17.4	0.0080	3.44
4-3	4-4	193.0	193.0	0.06	1.94	0.12	35.9	35.9	0.05	0.17	115	0.26	8	1400	172.5	158.1	14.4	167.1	149.7	17.4	0.0060	2.23
4-4	4-6 4-6	0.0 523.0	920.8 523.0	0.29 0.16	1.81	0.52	0.0 51.3	157.2 51.3	0.22	0.74	511 259	1.14 0.58	10	830 1300	167.1 163.2	149.5 154.0	17.6	162.9 162.9	146.2	16.7 16.7	0.0040	2.82 2.83
4-5 4-6	4-6	<u> </u>	1443.8	0.16	1.86 1.77	0.30 0.79	0.0	208.5	0.07	0.37	259 753	0.58	<u>ہ</u> 12		163.2	154.0	9.2 17.7	162.9	146.2 143.5	18.4	0.0060	2.63
4-0	4-9 4-9	368.8	368.8	0.45	1.88	0.79	30.3	30.3	0.29	0.26	179	0.40	8	1390	163.0	145.2	10.2	161.9	143.5	17.4	0.0024	2.51
4-8	4-9	306.0	306.0	0.09	1.90	0.18	51.0	51.0	0.07	0.25	175	0.39	8	2050	166.0	156.8	9.2	161.9	144.5	17.4	0.0060	2.55
4-9	1-8	27.6	2146.2	0.67	1.74	1.16	4.6	294.4	0.41	1.57	1088	2.43	15		161.9	143.2	18.7	167.4	140.8	26.6	0.0018	
1-8	1-9	2146.2	42250.4	13.10	1.45	19.03	294.4	6839.6	9.58	28.61	19865	44.26	42	2750	167.4	137.3	30.1	147.0	128.2	18.8	0.0033	6.58
5-1	5-2	355.2	355.2	0.11	1.89	0.21	56.2	56.2	0.08	0.29	199	0.44	8	1120	167.0		14.3	162.0	146.0	16.0	0.0060	2.55
5-2	5-3	125.2	480.4	0.15	1.86	0.28	17.6	73.8	0.10	0.38	264	0.59	8	650	162.0	145.9	16.1	150.0	136.6	13.4	0.0140	
5-3 5-4	5-8 5-8	200.0	680.4 118.0	0.21	1.83 1.97	0.39 0.07	29.6 15.6	103.4 15.6	0.14	0.53	369 65	0.82 0.15	10	1010 1520	150.0 153.0	136.5 142.2	13.5 10.8	147.1 147.1	133.0 133.0	14.1 14.1	0.0035	2.51 1.93
5-4 5-5	5-8 5-7	134.4	134.4	0.04	1.97	0.07	22.4	22.4	0.02	0.09		0.15	<u>ס</u> פ	1520	153.0	142.2	8.0	147.1	135.6	14.1	0.0060	1.93
5-6	5-8	197.4	197.4	0.04	1.90	0.08	32.9	32.9	0.03	0.11	114	0.18	<u>ہ</u> 8	2000	153.4	144.0	8.4	147.1	133.0	14.1	0.0060	2.23
5-7	5-8	500.0	634.4	0.00	1.84	0.12	55.3	77.7	0.00	0.10	327	0.23	10		147.1	135.4	11.7	147.1	133.0	14.1	0.0035	2.45
5-8	1-9	0.0	1630.2	0.51	1.76	0.89	0.0	229.6	0.32	1.21	841	1.87	12		147.1	132.0	15.1	147.0	131.6	15.4	0.0030	2.81

Table 12SunCreek Specific Plan - Sewer Study AreaDetailed Sanitary Sewer Calculations


Node In	Node Out	ESD	Sum ESD	ADWF (mgd)	Peaking Factor	PDWF (mgd)	Area (acres)	Sum Area (acres)	Q _{I/I} (mgd)	PWWF (mgd)	PWWF (gpm)	PWWF (cfs)	Dia. (in.)	Length (ft)	US Rim Elev. (ft)	US Invert (ft)	Depth @ US Invert (ft)	DS Rim Elev. (ft)	DS Invert (ft)	Depth @ DS Invert (ft)	Slope (ft/ft)	Velocity (fps)
1.0	4.40	4000.0	40000.0	40.00	4.45	40.74	000.0	7000.0		00.04	00504	45.04	10	2000	4 4 7 0	400.4	40.0	407.0	440.0	04.4	0.0000	
1-9	1-10	1630.2	43880.6	13.60	1.45	19.71	229.6	7069.2	9.90	29.61	20561	45.81	42	3800	147.0	128.1	18.9	137.6	113.2	24.4	0.0039	7.09
6-1	7-11	1186.0	1186.0	0.37	1.79	0.66	197.7	197.7	0.28	0.93	649	1.45	12	1770	137.5	120.3	17.2	137.0	116.0	21.0	0.0024	2.47
01	7 11	1100.0	1100.0	0.07	1.75	0.00	107.1	107.7	0.20	0.35	0+3	1.40	12	1110	107.0	120.0	17.2	107.0	110.0	21.0	0.0024	2.77
1-10	1-11	0.0	43880.6	13.60	1.45	19.71	0.0	7069.2	9.90	29.61	20561	45.81	48	5880	137.6	112.7	24.9	140.0	105.7	34.3	0.0012	4.45
7-1	7-2	470.4	470.4	0.15	1.87	0.27	63.2	63.2	0.09	0.36	250	0.56	8	2070	149.0	140.7	8.3	141.0	128.3	12.7	0.0060	
7-2	7-8	81.0	551.4	0.17	1.85	0.32	10.2	73.4	0.10	0.42	291	0.65	8	1240	141.0	128.2	12.8	140.0	120.8	19.2	0.0060	
7-3	7-5	303.6	303.6	0.09	1.90	0.18	50.6	50.6	0.07	0.25	173	0.39	8	730	152.0	141.6	10.4	153.0	134.3	18.7	0.0100	3.03
7-4	7-5	1880.4	1880.4	0.58	1.75	1.02	313.4	313.4	0.44	1.46	1012	2.26	15	210	156.0	133.4	22.6	153.0	133.0	20.0	0.0018	2.48 5.00
7-5	7-7	0.0	2184.0	0.68	1.73	1.17	0.0	364.0	0.51	1.68	1170	2.61	15	1280	153.0	132.9	20.1	140.0	120.1	19.9	0.0100	5.00
7-6	7-7	499.8	499.8	0.15	1.86	0.29	83.3	83.3	0.12	0.40	281	0.63	10	410	138.0	122.7	15.3	140.0	121.3	18.7	0.0035	
7-7	7-8	0.0	2683.8	0.83	1.72	1.43	0.0	447.3	0.63	2.05	1427	3.18	18	340	140.0	119.8	20.2	140.0	119.3	20.7	0.0014	
7-8	7-13	0.0	3235.2	1.00	1.70	1.70	0.0	520.7	0.73	2.43	1690	3.77	18	1900	140.0	119.2	20.8	136.0	113.0	23.0	0.0032	
7-9	7-13	462.0	462.0	0.14	1.87	0.27	77.0	77.0	0.11	0.38	261	0.58	8	2100	136.0	127.2	8.8	136.0	114.6	21.4	0.0060	2.83 2.43
7-10	7-11	82.2	82.2	0.03	2.00	0.05	13.7	13.7	0.02	0.07	49	0.11	8	1100	155.0	143.3	11.7	137.0	124.0	13.0	0.0175	2.43
7-11	7-13	119.4	1387.6	0.43	1.77	0.76	19.9	231.3	0.32	1.09	755	1.68	15	1300	137.0	115.7	21.3	136.0	113.3	22.7	0.0018	
7-12	7-13	526.4	526.4	0.16	1.86	0.30	54.6	54.6	0.08	0.38	263	0.59	8	1200	140.0	127.6	12.4	136.0	118.0	18.0	0.0080	
7-13	7-15	0.0	5611.2	1.74	1.65	2.87	0.0	883.6	1.24	4.11	2852	6.35	24	1940	136.0	112.5	23.5	138.0	110.3	27.7	0.0011	2.65
7-14	7-15	219.6	219.6	0.07	1.93	0.13	36.6	36.6	0.05	0.18	127	0.28	8	920	149.0	138.0	11.0	138.0	126.0	12.0	0.0130	
7-15	1-11	0.0	5830.8	1.81	1.65	2.98	0.0	920.2	1.29	4.26	2961	6.60	24	540	138.0	110.2	27.8	140.0	109.7	30.3	0.0011	2.67
1-11	PS	5830.8	49711.4	15.41	1.44	22.13	722.5	7791.7	10.91	33.04	22945	51.12	54	100.0	140.0	105.2	34.8	142.0	105.1	36.9	0.0010	4.34


Table 13SunCreek Specific PlanLaguna Creek Interceptor Section 5Peak Dry Weather Flow Sanitary Sewer Calculations

Node In	Node Out	ESD	Sum ESD	ADWF (mgd)	Peaking Factor	Area (acres)	Sum Area (acres)	Q _{I/I} (mgd)	PDWF (mgd)	PDWF (gpm)	PDWF (cfs)	Dia. (in.)	Length (ft)	US Rim Elev. (ft)	US Invert (ft)	Depth @ US Invert (ft)	DS Rim Elev. (ft)	DS Invert (ft)	Depth @ DS Invert (ft)	Slope (ft/ft)	Velocity (fps)	d/D ratio
1-1	1-2	30845	30845	9.56	1.48	5141	5141	0.00	14.20	9860	21.97	36	1300	235.0	212.9	22.1	231.0	209.6	21.4	0.0025	4.77	0.50
1-2	1-3	2443.0	33288	10.32	1.48	407.0	5548	0.00	15.24	10586	23.58	36	2700	231.0	209.5	21.5	225.3	201.4	23.9	0.0030	5.22	2 0.50
1-3	1-4	0.0	33288	10.32	1.48	0.0	5548	0.00	15.24	10586	23.58	36	1000	211.4	201.3	10.1	197.9	181.3	16.6	0.0200	10.48	3 0.30
1-4	1-5	0.0	33288	10.32	1.48	0.0	5548	0.00	15.24	10586	23.58	36	100	197.9	174.0	23.9	196.4	173.7	22.7	0.0030	5.22	2 0.50
1-5	1-6	1407.0	34695	10.76	1.47	234.6	5782.4	0.00	15.84	11002	24.51	36	2660	196.4	173.6	22.8	183.0	157.6	25.4	0.0060	6.94	0.44
1-6	1-7	1639.4	36334.4	11.26	1.47	253.7	6036.1	0.00	16.54	11485	25.59	36	2840	183.0	157.5	25.5	172.9	140.5	32.4	0.0060	6.94	0.44
1-7	1-8	3769.8	40104.2	12.43	1.46	509.1	6545.2	0.00	18.13	12590	28.05	42	860	172.9	140.0	32.9	167.4	137.4	30.0	0.0030	5.78	0.50
1-8	1-9	2146.2	42250.4	13.10	1.45	294.4	6839.6	0.00	19.03	13215	29.44	42	2750	167.4	137.3	30.1	147.0	128.2	18.8	0.0033	6.07	0.50
1-9	1-10	1630.2	43880.6	13.60	1.45	229.6	7069.2	0.00	19.71	13688	30.50	42	3800	147.0	128.1	18.9	137.6	113.2	24.4	0.0039	6.20	0.44
1-10	1-11	0.0	43880.6	13.60	1.45	0.0	7069.2	0.00	19.71	13688	30.50	48	5880	137.6	112.7	24.9	140.0	105.7	34.3	0.0012	4.00	0.50
1-11	PS	5830.8	49711.4	15.41	1.44	722.5	7791.7	0.00	22.13	15370	34.24	54	100.0	140.0	105.2	34.8	142.0	105.1	36.9	0.0010	3.95	0.50

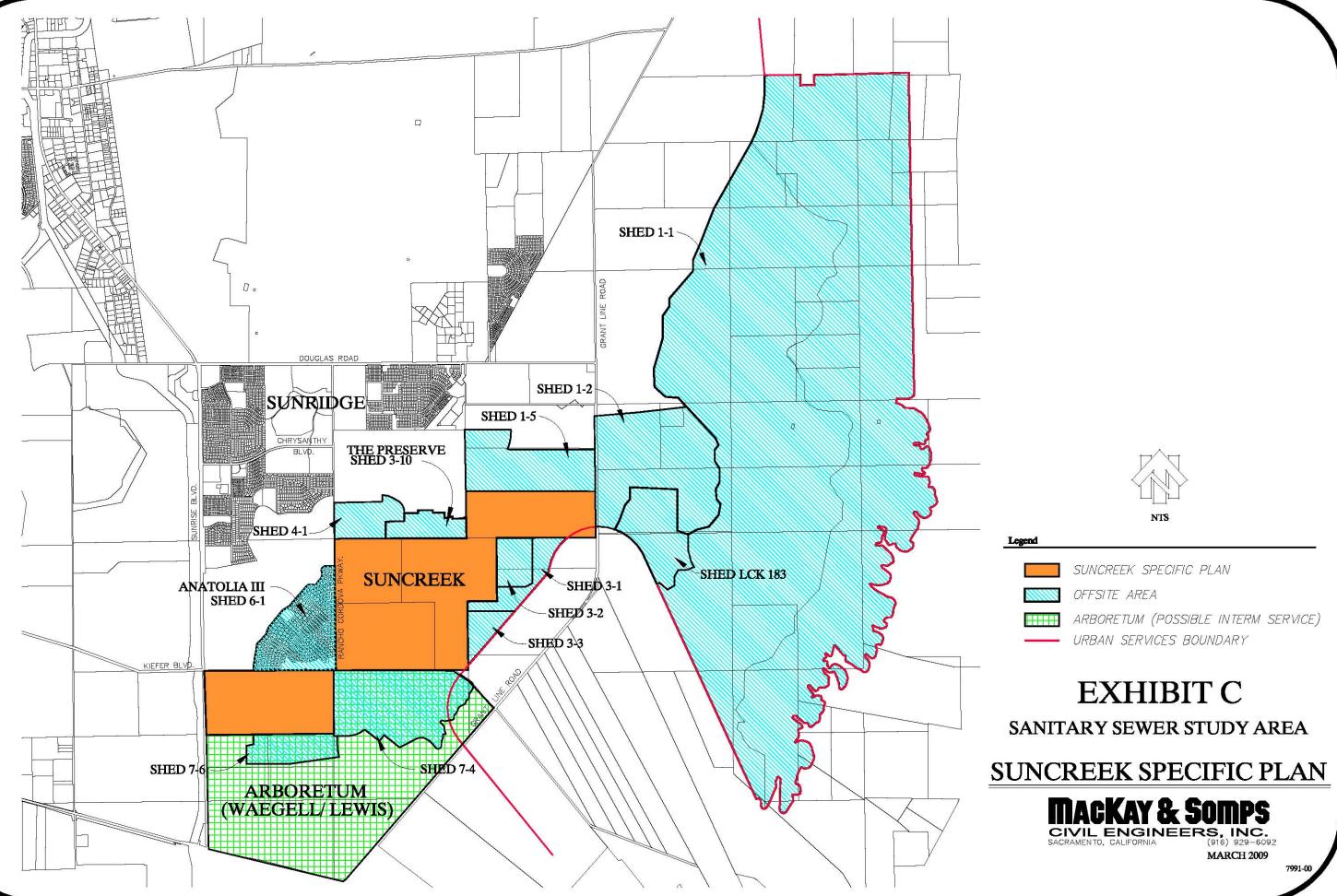
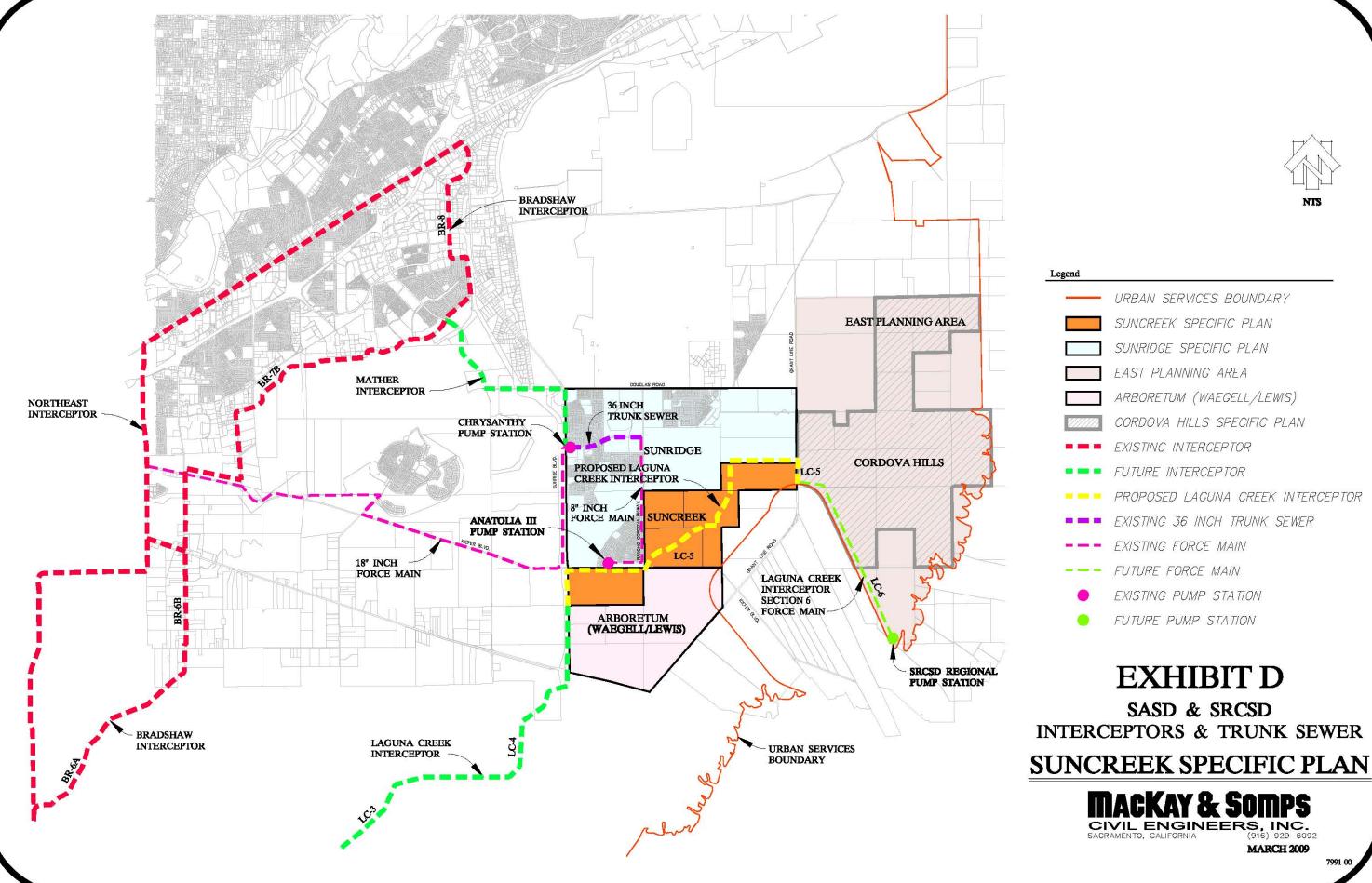
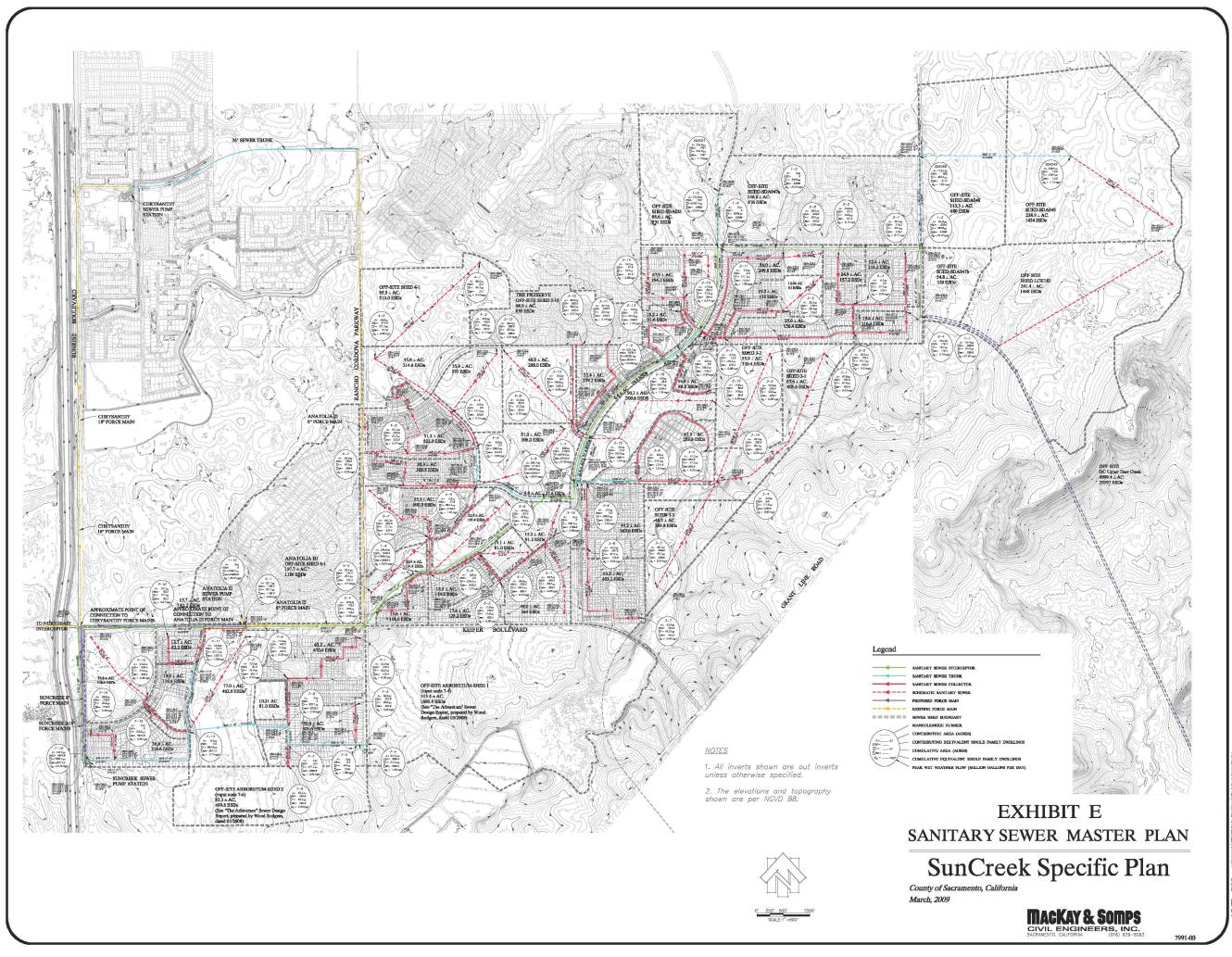
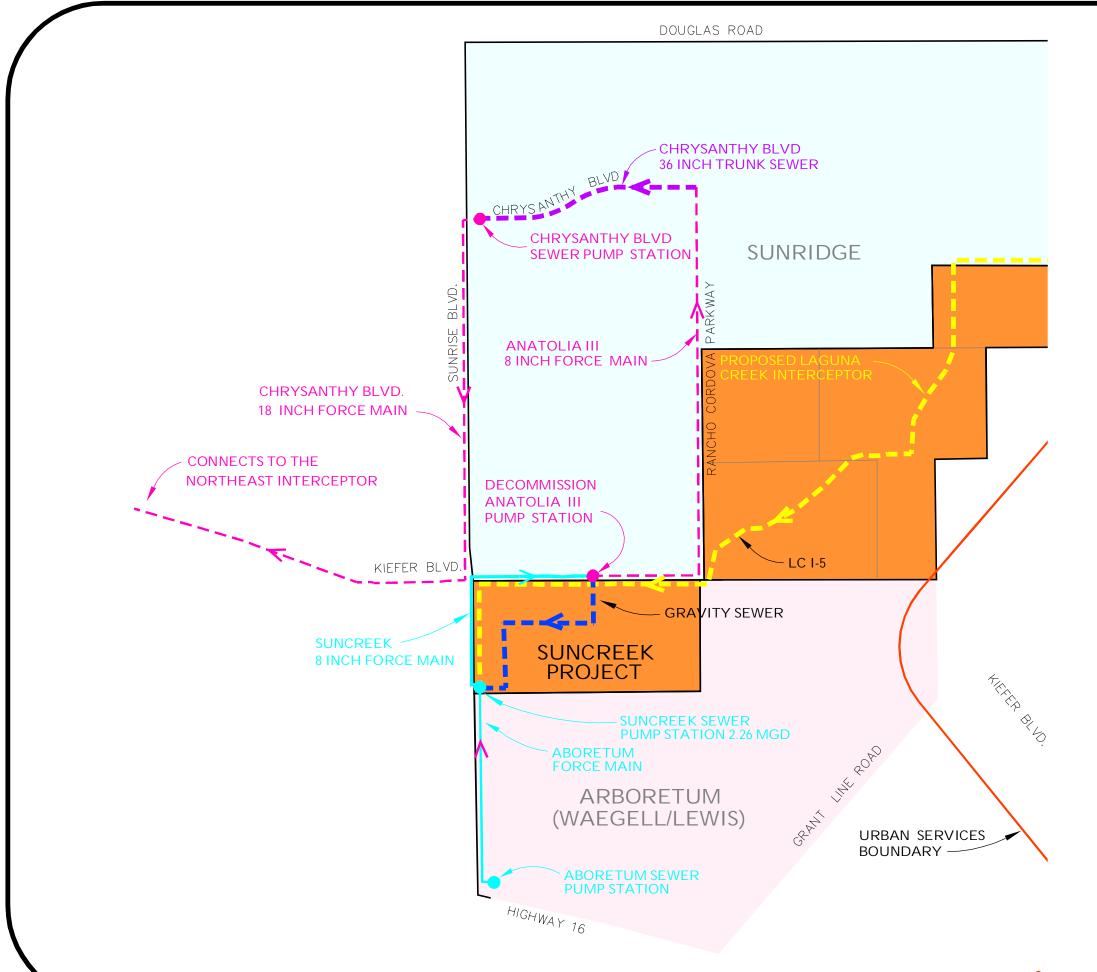

EXHIBITS

EXHIBIT A SUNCREEK SPECIFIC PLAN VICINTY MAP



nto \ 7991 \ 00 \ M dwg. Plans \2007F J-20-2009 09: 18: 47 L: \; [1] L: \Sacramento \ 7991 \ 00 \ Master




INTERCEPTORS & TRUNK SEWER

MARCH 2009

Plans \ 200] 09: 25: 07 L: \ ento \ 7991 \ 00 \ Master 3–20–2009 [1] L: \Sacr

8 4

Legend

	URBAN SERVICES BOUNDARY
	SUNCREEK SPECIFIC PLAN
	SUNRIDGE SPECIFIC PLAN
	ARBORETUM (WAEGELL/LEWIS)
	EXISTING INTERCEPTOR
	FUTURE INTERCEPTOR
	PROPOSED LAGUNA CREEK INTERCEPTOR
	PROPOSED GRAVITY SEWER
	EXISTING 36 INCH TRUNK SEWER
	EXISTING FORCE MAIN
	PROPOSED INTERIM SERVICE
	PROPOSED LONG TERM SERVICE
•	EXISTING PUMP STATION

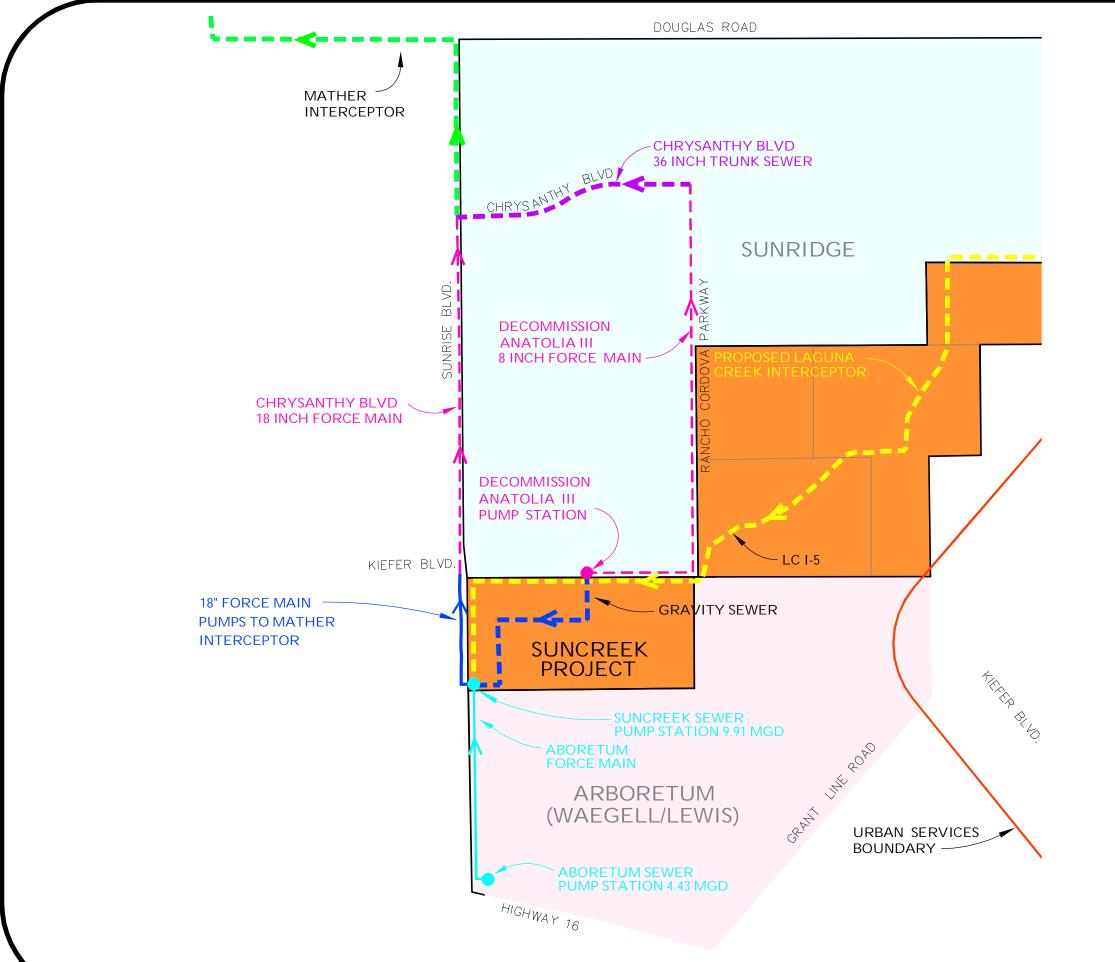

PROPOSED PUMP STATION

EXHIBIT F-1 Service Connection to SASD & SRCSD Facilities Scenario One - Phase 1

to \ 7991 \ 00 \ Master 10-19-201([1] L: \Sac

~ ~

Legend

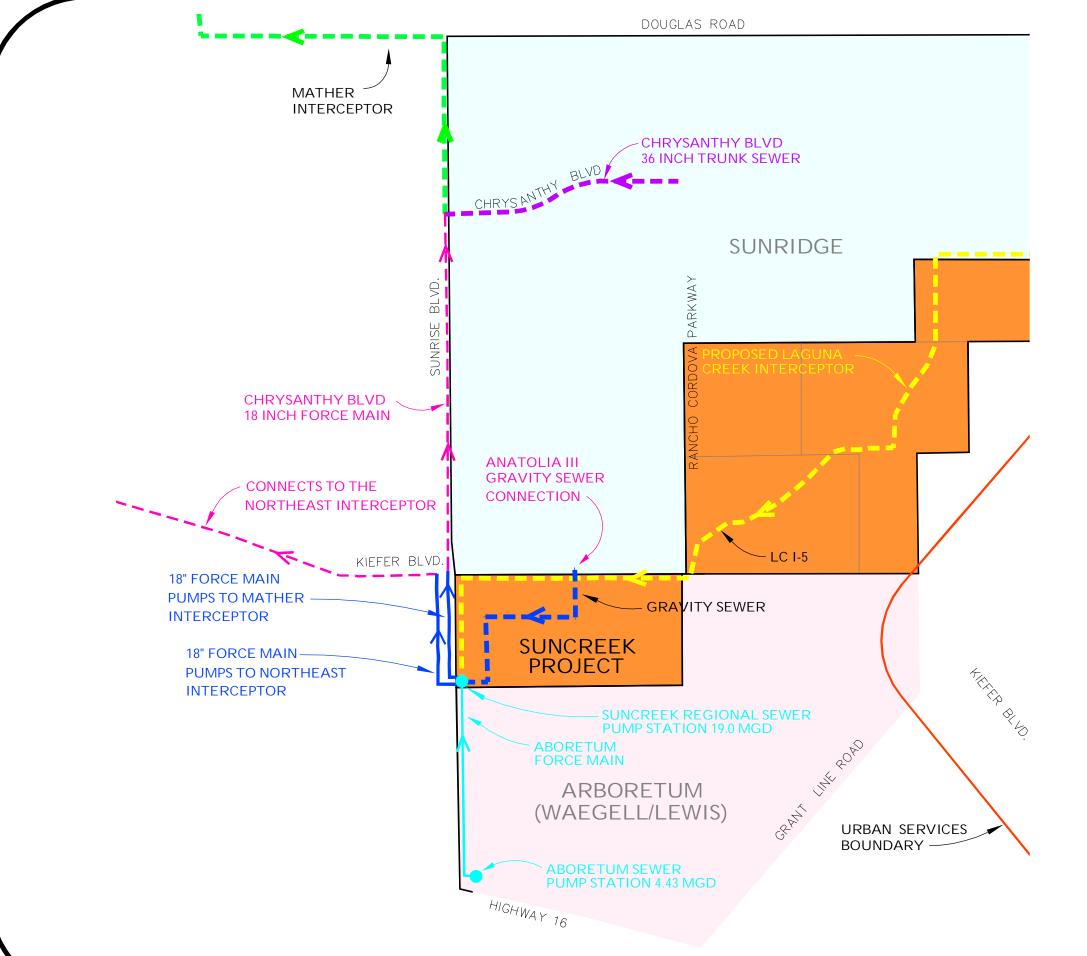

- SUNCREEK SPECIFIC PLAN
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- - FUTURE INTERCEPTOR
- -- PROPOSED LAGUNA CREEK INTERCEPTOR
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- - EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- *EXISTING PUMP STATION*
- PROPOSED PUMP STATION

EXHIBIT F-2 Service Connection to SASD & SRCSD Facilities Scenario One - Phase 2

10–19–2010 14:33:33 P: \7991 \7991–SC \00\Master Plans \Sewer \EXH–F2_0309.d [1] L: \Sacramento \7991 \00\Master Plans \2007Parcels.dwg

٩

Legend

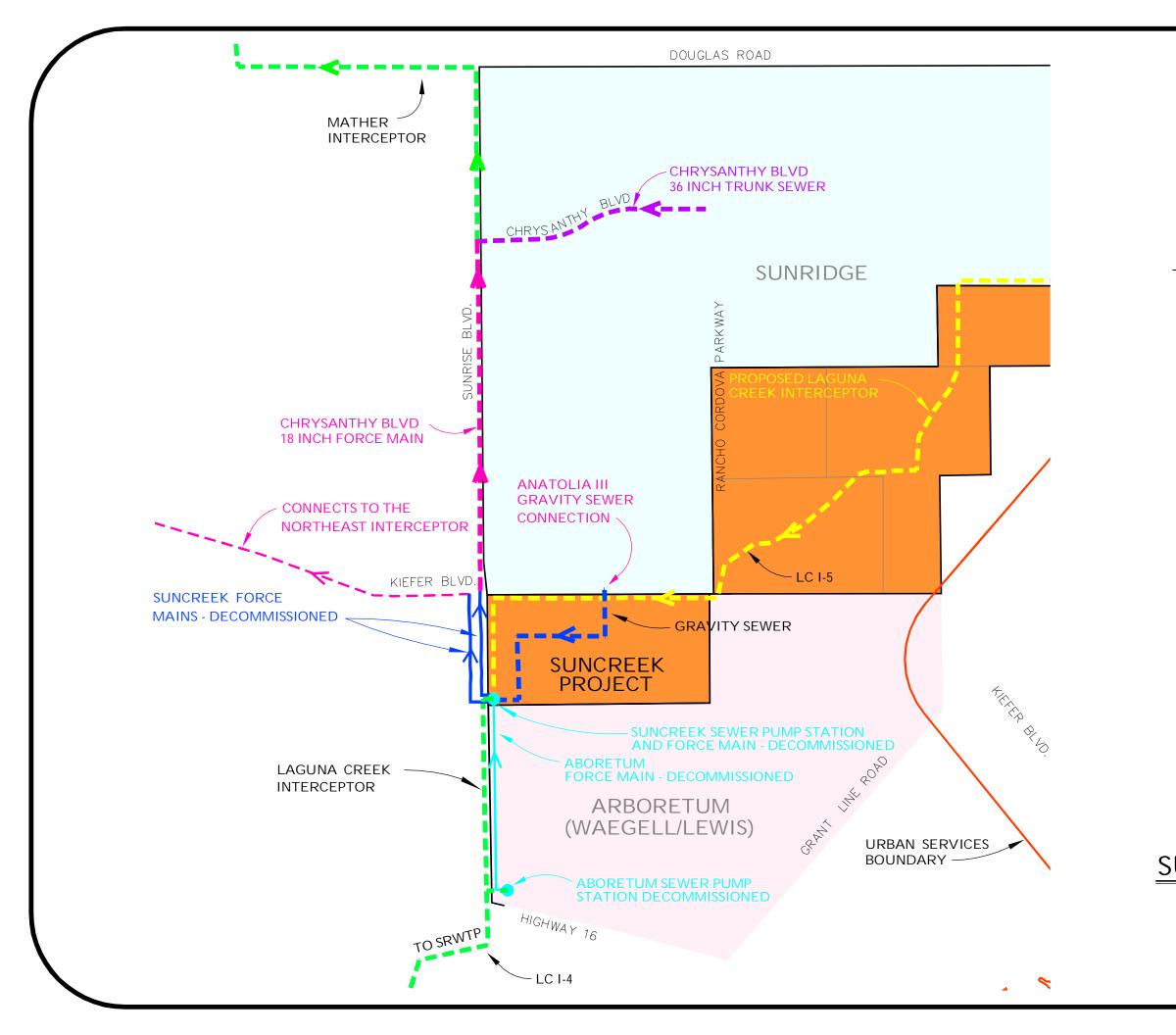

- URBAN SERVICES BOUNDARY
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- - FUTURE INTERCEPTOR
- PROPOSED LAGUNA CREEK INTERCEPTOR
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- - EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- EXISTING PUMP STATION
- PROPOSED PUMP STATION

EXHIBIT F-3 Service Connection to SASD & SRCSD Facilities Scenario One - Phase 2 (SRCSD Regional Pump Station)

10–19–2010 14:36:37 P: \7991 \7991 - SC \00 \Master Plans \Sewer \EXH-F3_0309. [1] L: \Sacramento \7991 \00 \Master Plans \2007Parcels.dwg

Legend

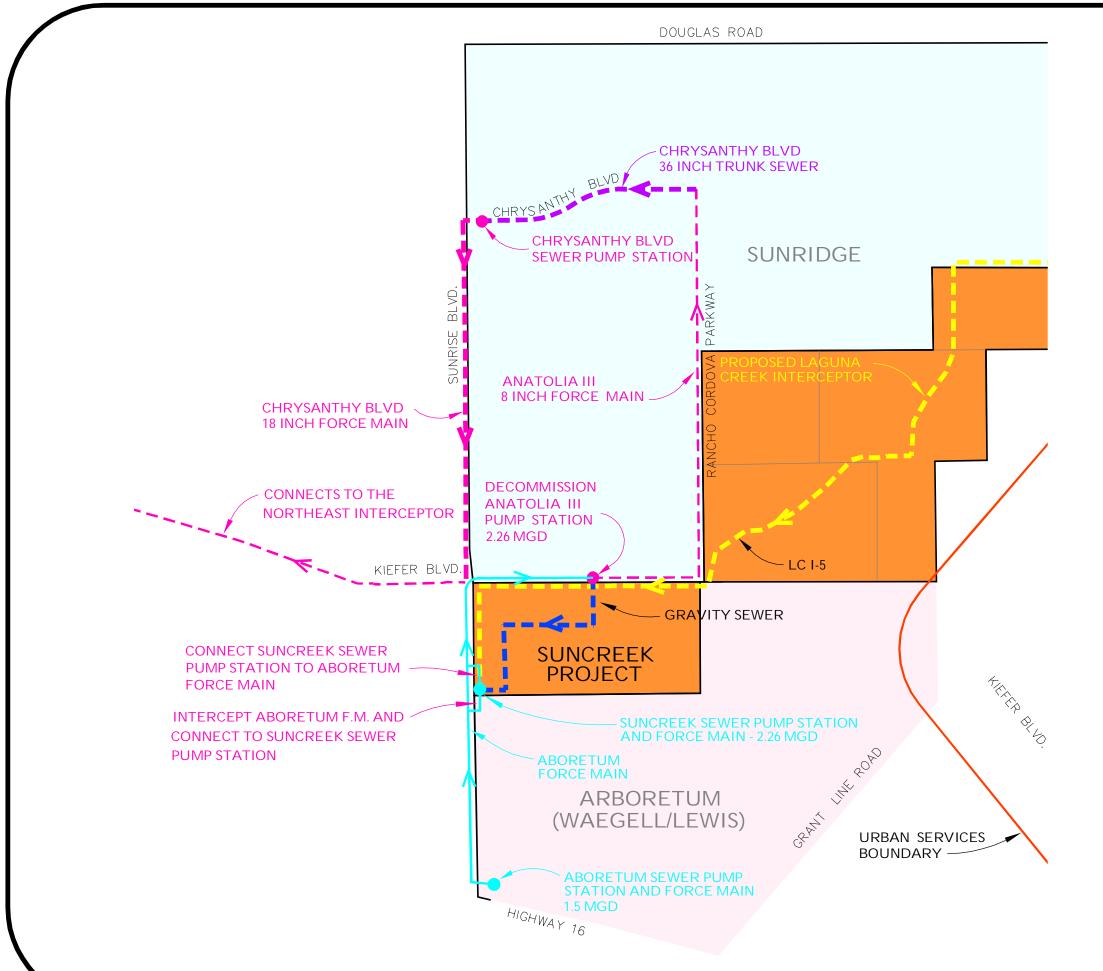

- URBAN SERVICES BOUNDARY
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- FUTURE INTERCEPTOR
- PROPOSED LAGUNA CREEK INTERCEPTOR
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- - EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- EXISTING PUMP STATION
- PROPOSED PUMP STATION

EXHIBIT F-4 Service Connection to SASD & SRCSD Facilities Scenario One - Phase 3

SUNCREEK SPECIFIC PLAN

10–19–2010 14:39:22 P: \7991\7991-SC\00\Master Plans\Sewer\EXH–F4_0309. [1] L: \Sacramento \7991\00\Master Plans\2007Parcels.dwg

× ~

Legend

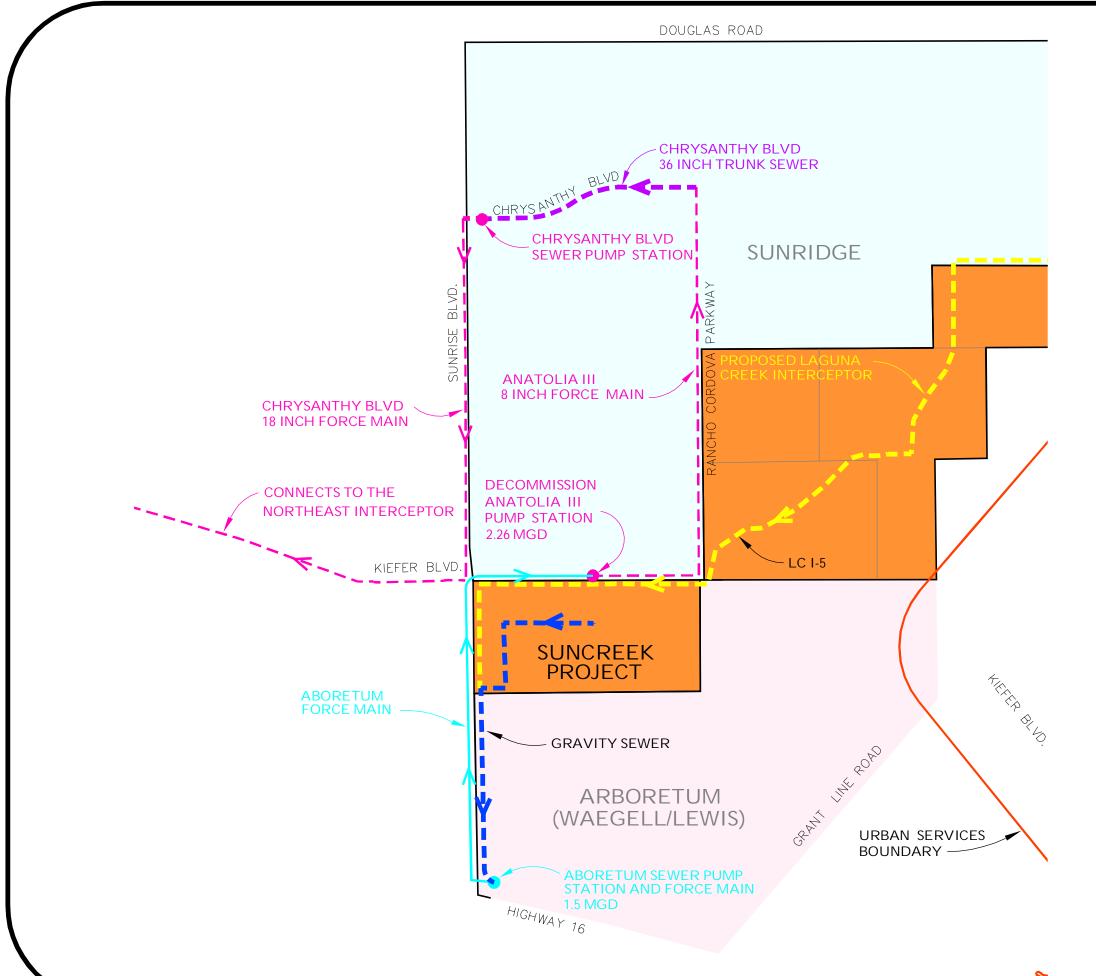

- URBAN SERVICES BOUNDARY
 SUNCREEK SPECIFIC PLAN
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- FUTURE INTERCEPTOR
- Proposed Laguna Creek Interceptor
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- - EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- EXISTING PUMP STATION
- PROPOSED PUMP STATION

EXHIBIT F-5 Service Connection to SASD & SRCSD Facilities Scenario Two - Phase 1, Option 1

10–19–2010 14:41:07 P: \7991\7991-SC\00\Master Plans\Sewer\EXH-F5_0309. [1] L: \Sacramento \7991\00\Master Plans\2007Parcels.dwg

8

Legend

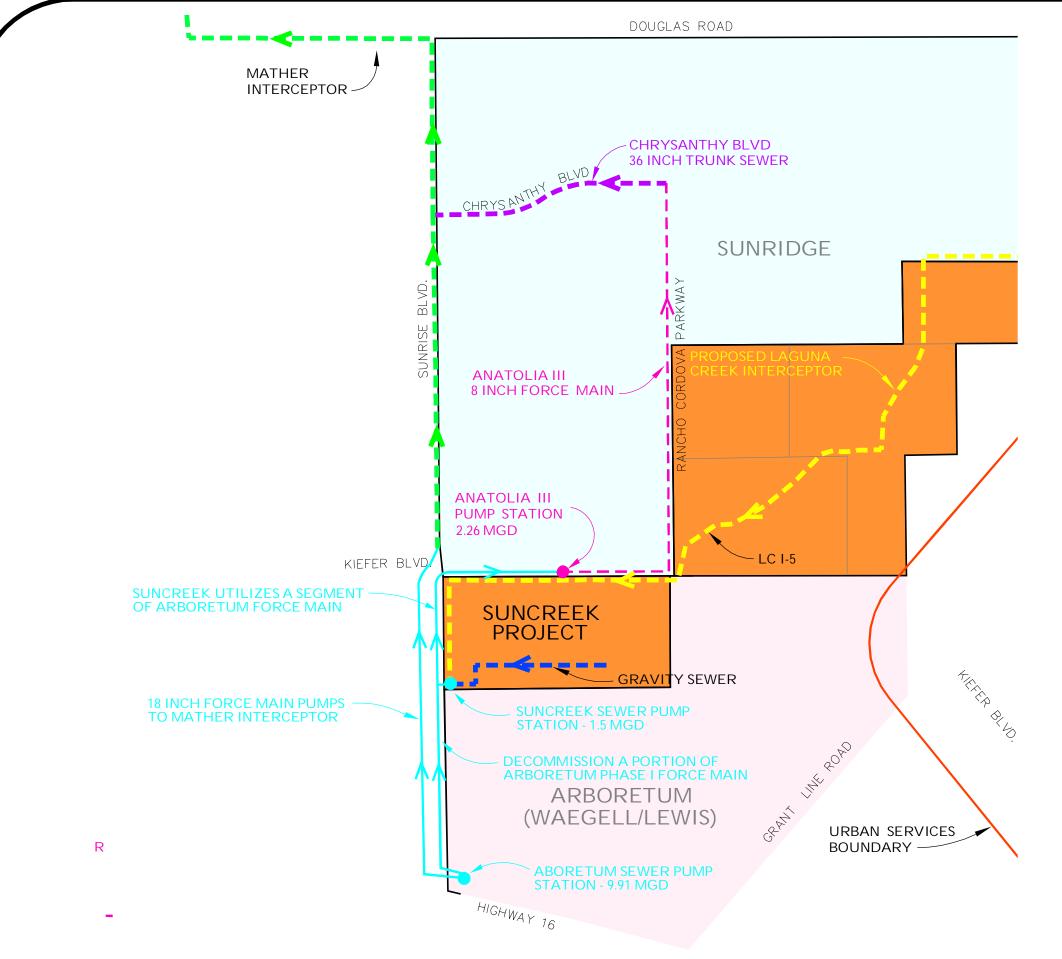

- URBAN SERVICES BOUNDARY SUNCREEK SPECIFIC PLAN
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- FUTURE INTERCEPTOR
- PROPOSED LAGUNA CREEK INTERCEPTOR
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- EXISTING PUMP STATION
- PROPOSED PUMP STATION

EXHIBIT F-6 Service Connection to **SASD & SRCSD Facilities** Scenario Two - Phase 1, Option 2

00 \Masi to \ 7991' 10-19-201 [1] L: \Sad

<u>></u>

8

Legend

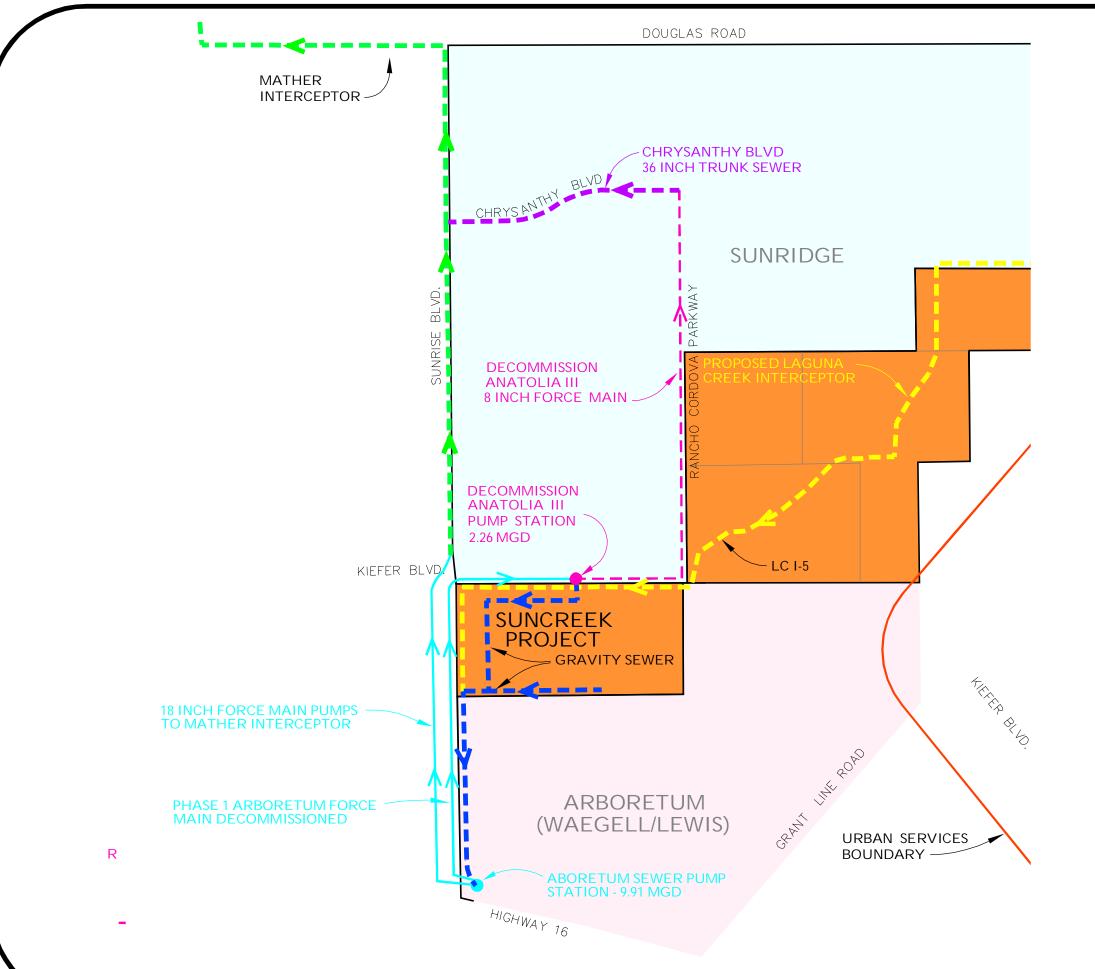

- URBAN SERVICES BOUNDARY
 SUNCREEK SPECIFIC PLAN
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- FUTURE INTERCEPTOR
- PROPOSED LAGUNA CREEK INTERCEPTOR
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- - EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- EXISTING PUMP STATION
- PROPOSED PUMP STATION

EXHIBIT F-7 Service Connection to SASD & SRCSD Facilities Scenario Two - Phase 2, Option 1

10–19–2010 14:44:16 P: \7991 \7991 -SC \00 \Master Plans \Sewer \EXH-F7_0309. [1] L: \Sacramento \7991 \00 \Master Plans \2007Parcels.dwg

Legend

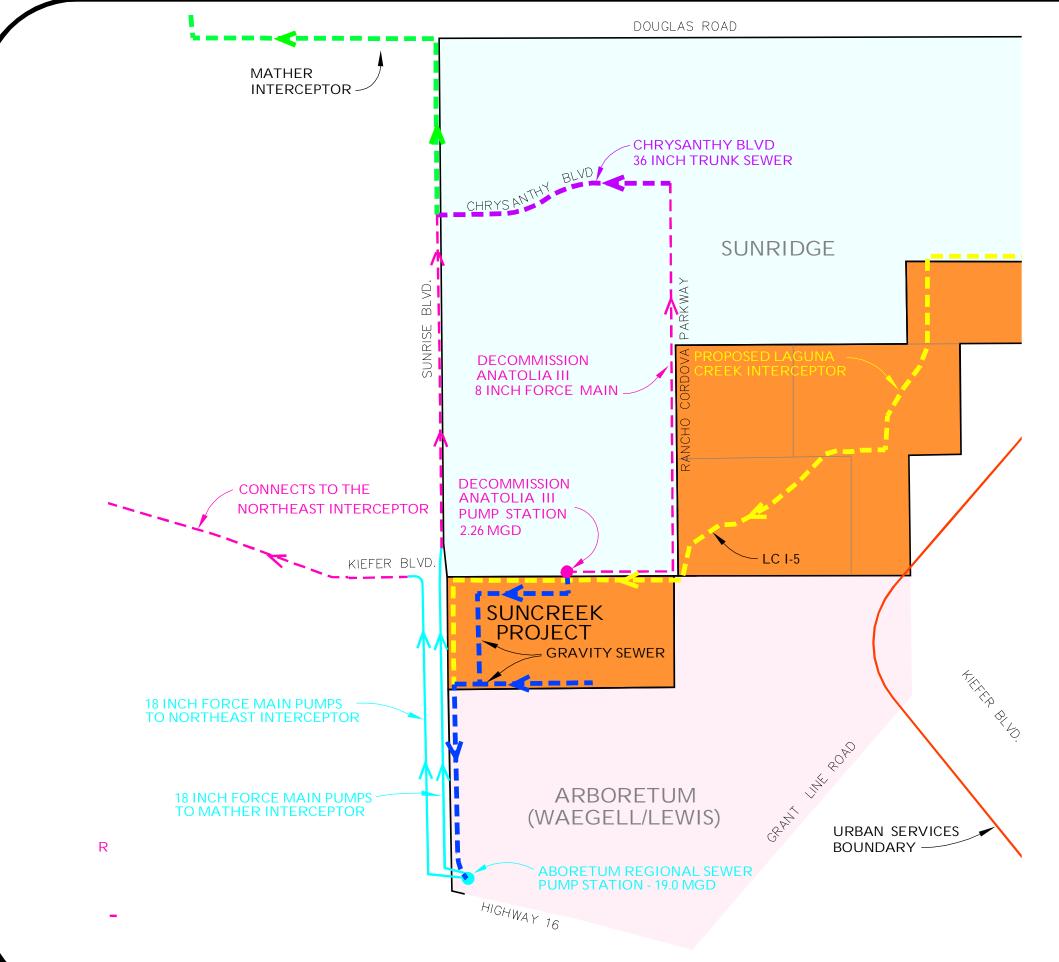

- URBAN SERVICES BOUNDARY
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- FUTURE INTERCEPTOR
- PROPOSED LAGUNA CREEK INTERCEPTOR
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- - EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- EXISTING PUMP STATION
- PROPOSED PUMP STATION

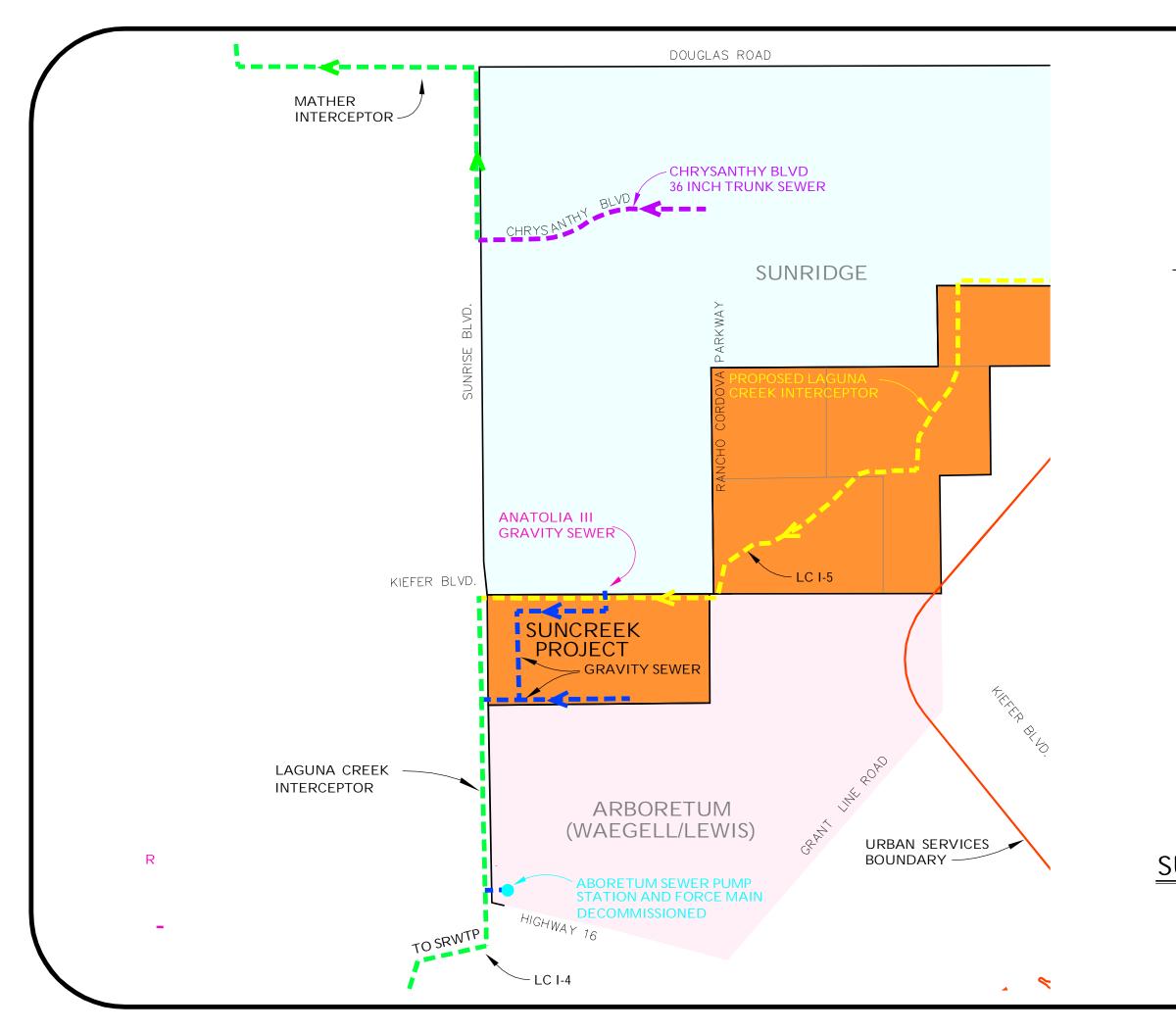
EXHIBIT F-8 Service Connection to SASD & SRCSD Facilities Scenario Two - Phase 2, Option 2

10–19–2010 14:45:34 P: \7991 \7991–SC \00\Master Plans \Sewer \EXH–F8_0309.d [1] L: \Sacramento \7991 \00\Master Plans \2007Parcels.dwg

8

Legend

- URBAN SERVICES BOUNDARY
- SUNCREEK SPECIFIC PLAN
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- FUTURE INTERCEPTOR
- PROPOSED LAGUNA CREEK INTERCEPTOR
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- EXISTING PUMP STATION
- PROPOSED PUMP STATION


EXHIBIT F-9 Service Connection to **SASD & SRCSD Facilities** Scenario Two - Phase 2 (SRCSD Regional Pump Station)

MARCH 2009

7991-00

to \ 7991 \ 00 \ Masi 10-19-201 [1] L: \Sad

Legend

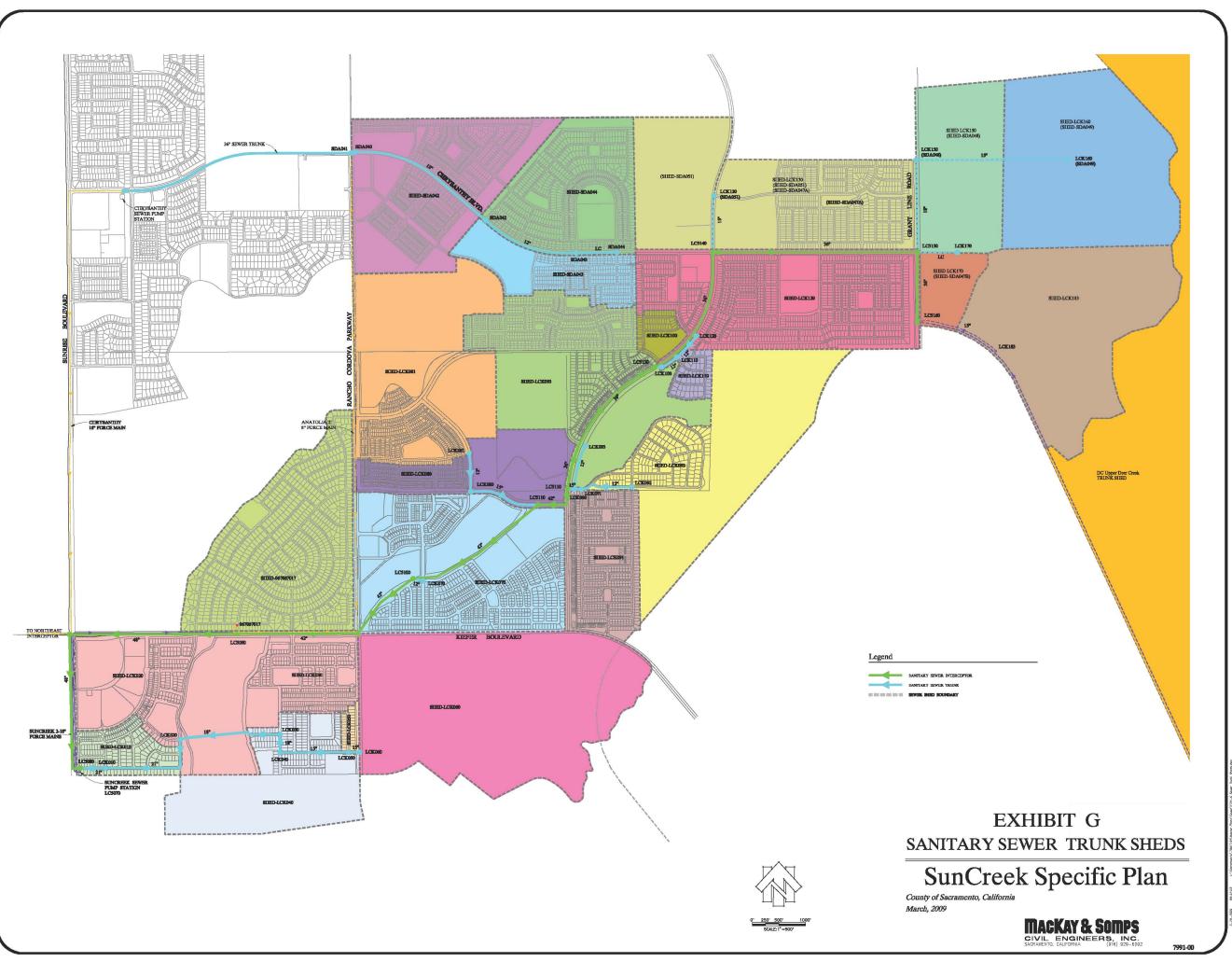
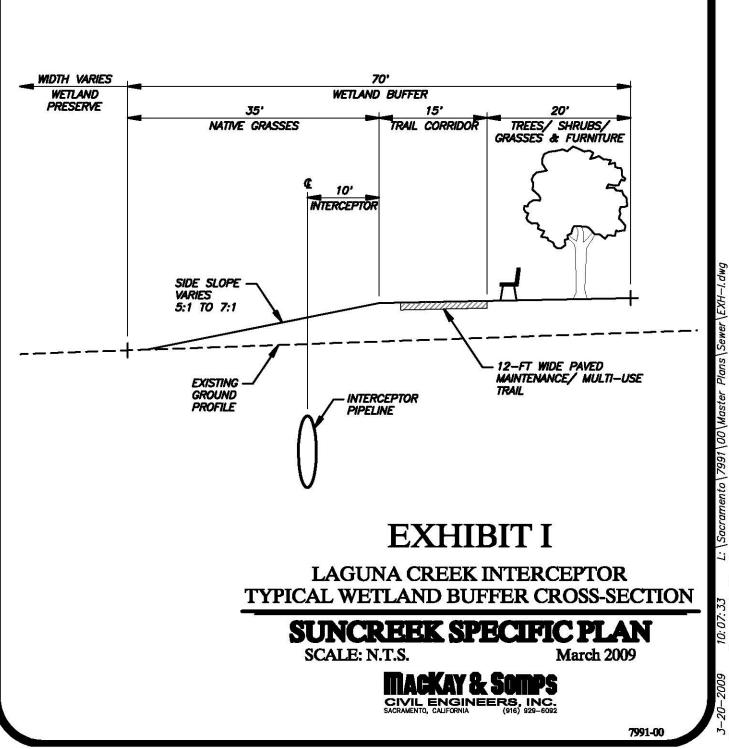

- URBAN SERVICES BOUNDARY
- SUNRIDGE SPECIFIC PLAN
- ARBORETUM (WAEGELL/LEWIS)
- EXISTING INTERCEPTOR
- FUTURE INTERCEPTOR
- PROPOSED LAGUNA CREEK INTERCEPTOR
- PROPOSED GRAVITY SEWER
- EXISTING 36 INCH TRUNK SEWER
- - EXISTING FORCE MAIN
- PROPOSED INTERIM SERVICE
- PROPOSED LONG TERM SERVICE
- EXISTING PUMP STATION
- PROPOSED PUMP STATION

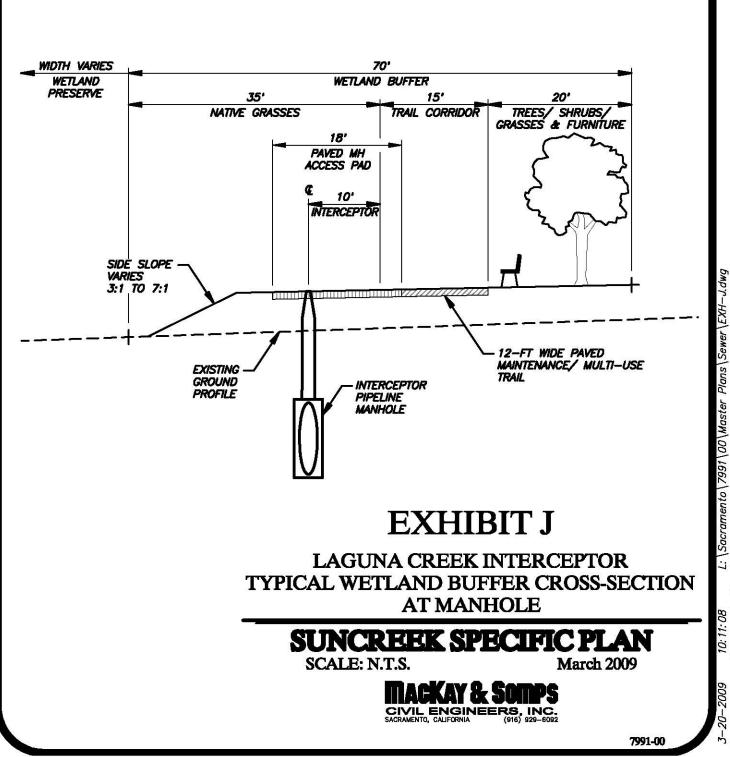
EXHIBIT F-10 Service Connection to SASD & SRCSD Facilities Scenario Two - Phase 3

10–19–2010 14:47:55 P: \7991 \7991 -SC \00\Master Plans \Sewer \EXH-F10_0309.dw [1] L: \Sacramento \7991 \00\Master Plans \2007Parcels.dwg

EXHIBIT H

SunCreek Specific Plan

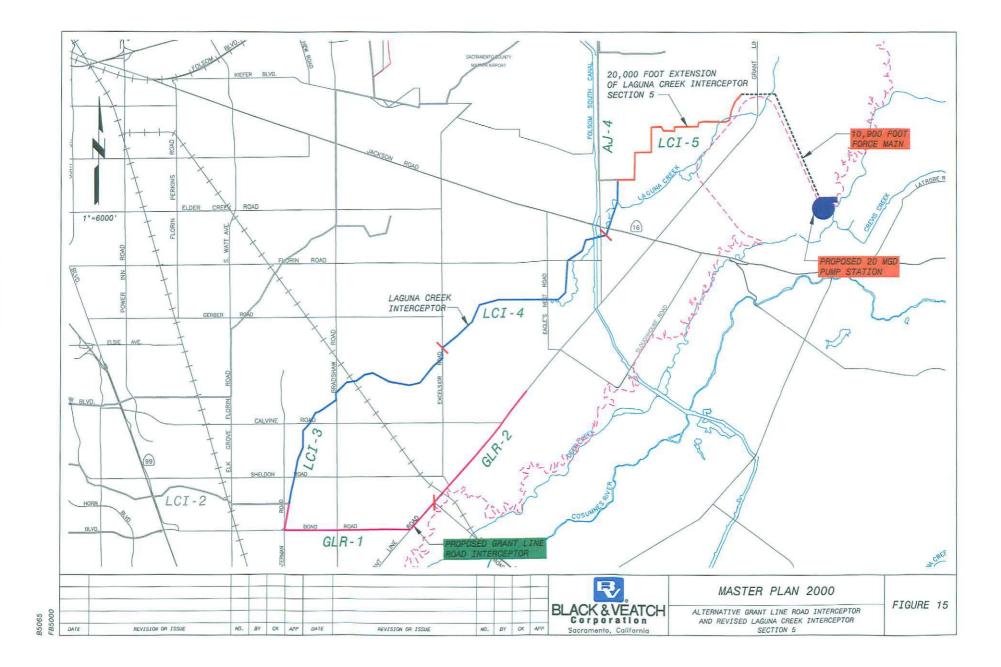

SANITARY SEWER BACKBONE INFRASTRUCTURE


PROBABLE OPINION OF CONSTRUCTION COST

The SunCreek Ownership Group 7700 College Town Dr. Suite 220 Sacramento Ca 95826-2304

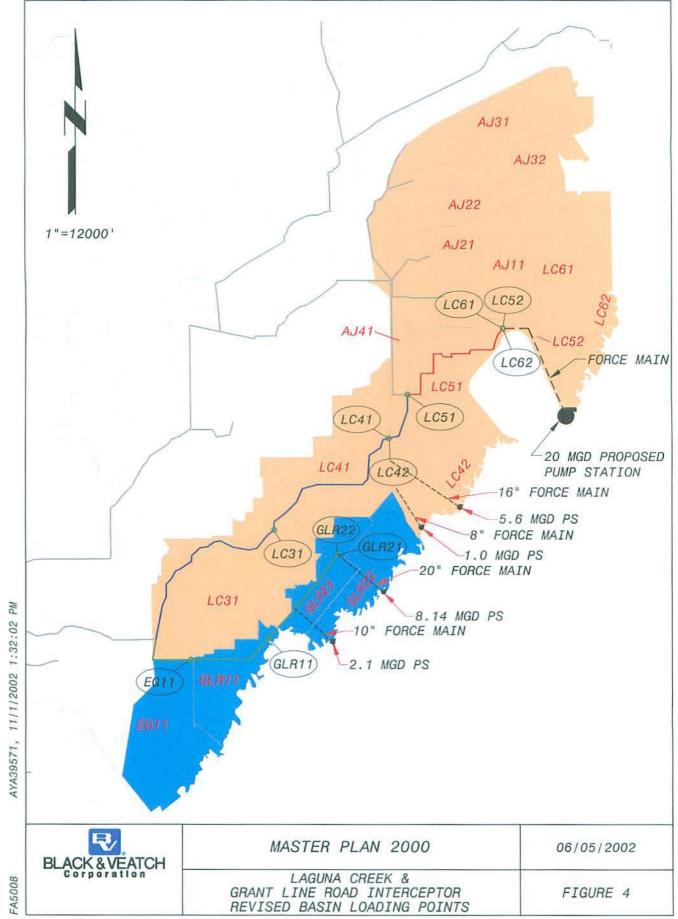
ITEM	QUANTITY	UNIT	DESCRIPTION	UNIT PRICE	AMOUNT
1	5,550	l.f.	12-inch, VCP, Sanitary Trunk Sewer Pipeline ¹	\$150.00	\$832,500
2	3,540	l.f.	15-inch, VCP, Sanitary Trunk Sewer Pipeline	\$175.00	\$619,500
3	2,240	l.f.	18-inch, VCP, Sanitary Trunk Sewer Pipeline	\$200.00	\$448,000
4	2,480	l.f.	24-inch, VCP, Sanitary Trunk Sewer Pipeline	\$300.00	\$744,000
5	10,600	l.f.	36-inch, VCP, Sewer Interceptor Pipeline	\$500.00	\$5,300,000
6	7,410	l.f.	42-inch, VCP, Sewer Interceptor Pipeline	\$550.00	\$4,075,500
7	5,880	l.f.	48-inch, VCP, Sewer Interceptor Pipeline	\$600.00	\$3,528,000
8	100	l.f.	52-inch, VCP, Sewer Interceptor Pipeline	\$650.00	\$65,000
9	20	each	48-inch Sanitary Trunk Sewer Manhole	\$6,000.00	\$120,000
10	10	each	60-inch Sanitary Trunk Sewer Manhole	\$10,000.00	\$100,000
11	50	each	60-inch Sewer Interceptor Manhole	\$15,000.00	\$750,000
12	12	each	72-inch Sewer Interceptor Manhole	\$18,000.00	\$216,000
13	2	each	84-inch Sewer Interceptor Manhole	\$21,000.00	\$42,000
14	1	each	2.26 mgd Sanitary Sewer Pump Station	\$1,000,000.00	\$1,000,000
15	1	each	9.91 mgd Sanitary Sewer Pump Station	\$8,000,000.00	\$8,000,000
16	5,900	l.f.	8-inch Force Main	\$150.00	\$885,000
17	5,440	l.f.	18-inch Force Main	\$225.00	\$1,224,000
			SUBTOTAL SANITARY SEWER SYSTEM		\$27,949,500
			Mobilization and Traffic Control (10%) Construction Contingency (25%) Engineering, Permits & Inspection (25%)		\$2,794,950 \$6,987,380 \$6,987,380
			GRAND TOTAL CONSTRUCTION COST		\$44,719,000

1. Quantity includes 1,770 LF of 12-inch sewer pipe to connect the Anatolia III Sewer Pump Station to the SunCreek Sewer Pump Station (Node 6-1 to Node 7-11). This sewer pipe segment is not trunk sewer but is a required component of the SunCreek Project's backbone sewer infrastructure,



3–20–2009 10:11:08 L: \Sacramento \7991 \00\Master There are no xreferences in this drawing.

APPENDICES


Appendix A:

SRCSD Master Plan 2000-Alternative Grant Line Road Interceptor and Revised Laguna Creek Interceptor Section 5, Figure 15

Appendix B:

SRCSD Master Plan 2000 - Laguna Creek Interceptor Sheds, Figure 4

A50005

Appendix C:

CSD – 1 Sewerage Facilities Expansion Master Plan 2006 Update LC Upper Laguna Creek Trunk Shed

CSD-1 SEWERAGE FACILITIES EXPANSION MASTER PLAN 2006 UPDATE

LC UPPER LAGUNA CREEK TRUNK SHED

Area Description

The LC Upper Laguna Creek Trunk Shed is located east of Sunrise Boulevard and west of the Kiefer landfill. The majority of the shed is located west of Grant Line Road. The trunk shed includes the Sunrise Douglas 2 Specific Plan area, expected to start developing within the 2011 to 2020. Areas south of Jackson Road and east of Grant Line Road are not anticipated to start developing before 2020.

Trunk System Facilities

The Sunrise Douglas 2 area would be served by two major trunk sewers (Trunks LCK and LCJ) which would flow from east to west. The area south of Jackson Road and east of Grant Line Road would be served by trunk sewers extending south on Sunrise Boulevard (Trunk LCY) and east on Jackson Road (Trunk LCZ). Most of the trunk sewers in this trunk shed would connect to Section 5 of the Laguna Creek Interceptor; Trunk LCY would connect to the upper end of Section 4 of the interceptor.

The Laguna Creek Interceptor Section 5 is not anticipated to be on line until after year 2020. Therefore interim trunk facilities would be required to serve the development in the Sunrise Douglas 2 area that occurs before that time. The interim solution would be to pump wastewater north on Sunrise Boulevard to the upstream end of the Mather Interceptor.

Trunk Projects

Four trunk projects are identified for this trunk shed, as shown in the table below.

Project ID	Diam. (in.)	Length (ft.)	Phase	Estimated Construction Cost (\$)	Estimated Capital Cost (\$)
LCJ	15-18	3,710	2011-2020	1,678,793	2,098,000
LCK	15-33	20,490	2011-2020	11.170.950	13,964,000
LCY	15-24	8,150	After 2020	4,908,750	6,136,000
LCZ	15-24	7,950	After 2020	5,119,931	6,400,000

Attachments

- Trunk shed map showing proposed trunk sewers, sizes, model manhole ID numbers, and sewersheds.
- Project map showing trunk projects and interim facilities (if needed).
- Trunk shed ESD projections by sewershed.
- Sewershed load manholes.
- Trunk project cost estimates.

		Г <u> </u>		2005		[Buildout	
Sewershed	Load Manhole	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)	% Buildout	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)
Shed-067067017	067067017	0.0	0	-	0	175.1	1017	5.8
Shed-LCJ010	LCJ010	0.0	0	-	0	366.2	2197	6.0
Shed-LCJ020	LCJ020	0.0	0	-	0	120.0	720	6.0
Shed-LCJ030	LCJ030	0.0	0	-	0	210.8	1265	6.0
Shed-LCJ910	LCJ910	0.0	0		0	191.1	1147	6.0
Shed-LCK020	LCK020	0.0	0	-	0	381.5	2288	6.0
Shed-LCK030	LCK030	0.0	0	-	0	47.4	284	6.0
Shed-LCK031	LCK031	0.0	0	-	0	144.0	862	6.0
Shed-LCK040	LCK040	0.0	0	- 1	0	94.9	568	6.0
Shed-LCK060	LCK060	0.0	0	-	0	20.8	124	6.0
Shed-LCK090	LCK090	0.0	0	-	0	20.0	119	6.0
Shed-LCK091	LCK091	0.0	0	-	0	165.6	991	6.0
Shed-LCK120	LCK120	0.0	0	-	0	214.1	1283	6.0
Shed-LCK130	LCK130	0.0	0	- 1	0	20.5	123	6.0
Shed-LCK140	LCK140	0.0	0	-	0	76.3	456	6.0
Shed-LCK150	LCK150	0.0	0		0	54.5	326	6.0
Shed-LCK151	LCK151	0.0	0	-	Ó	196.9	1180	6.0
Shed-LCK160	LCK160	0.0	0	+	0	55.4	332	6.0
Shed-LCK180	LCK180	0.0	0	-	0	50.7	304	6.0
Shed-LCK181	LCK181	0.0	0	- 1	0	63.9	383	6.0
Shed-LCK182	LCK182	0.0	0	-	0	76.9	460	6.0
Shed-LCK183	LCK183	0.0	0	~	0	241.4	1448	6.0
Shed-LCK190	LCK190	0.0	0	-	0	46.4	278	6.0
Shed-LCK200	LCK200	0.0	0	-	0	17.7	106	6.0
Shed-LCK220	LCK220	0.0	0	-	0	48.7	292	6.0
Shed-LCK230	LCK230	0.0	0	-	0	26.0	155	6.0
Shed-LCK250	LCK250	0.0	0	-	0	153.7	920	6.0
Shed-LCY010	LCY010	0.0	0	-	0	243.8	1463	6.0
Shed-LCY030	LCY030	0.0	0	-	0	234.5	1407	6.0
Shed-LCY040	LCY040	0.0	0	-	0	191.9	1151	6.0
Shed-LCY050	LCY050	0.0	0	-	0	234.8	1409	6.0
Shed-LCZ020	LCZ020	0.0	0	- 1	0	89.4	537	6.0
Shed-LCZ030	LCZ030	0.0	0	-	0	175.2	1051	6.0
Shed-LCZ050	LCZ050	0.0	0	-	0	221.5	1329	6.0
Shed-LCZ060	LCZ060	0.0	0		0	137.8	827	6.0
Shed-LCZ110	LCZ110	0.0	0	-	0	232.8	1397	6.0
Total		0.0	0	-	0	5042.2	30199	6.0

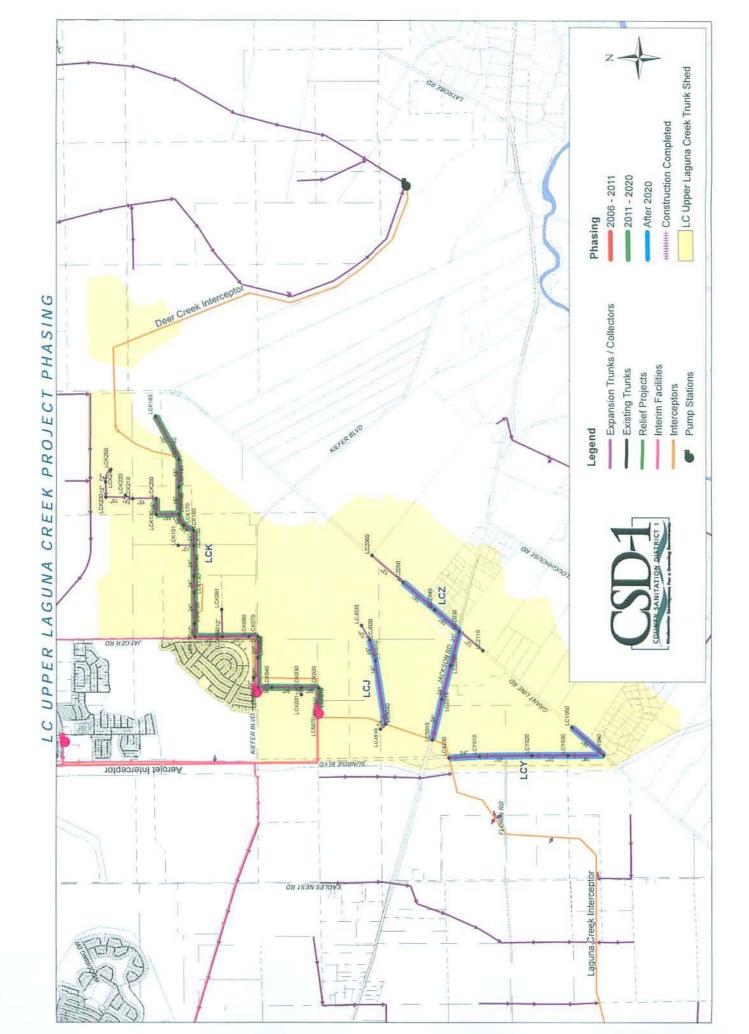
LC Upper Laguna Creek Sewershed Load Manholes and Land Use Projections

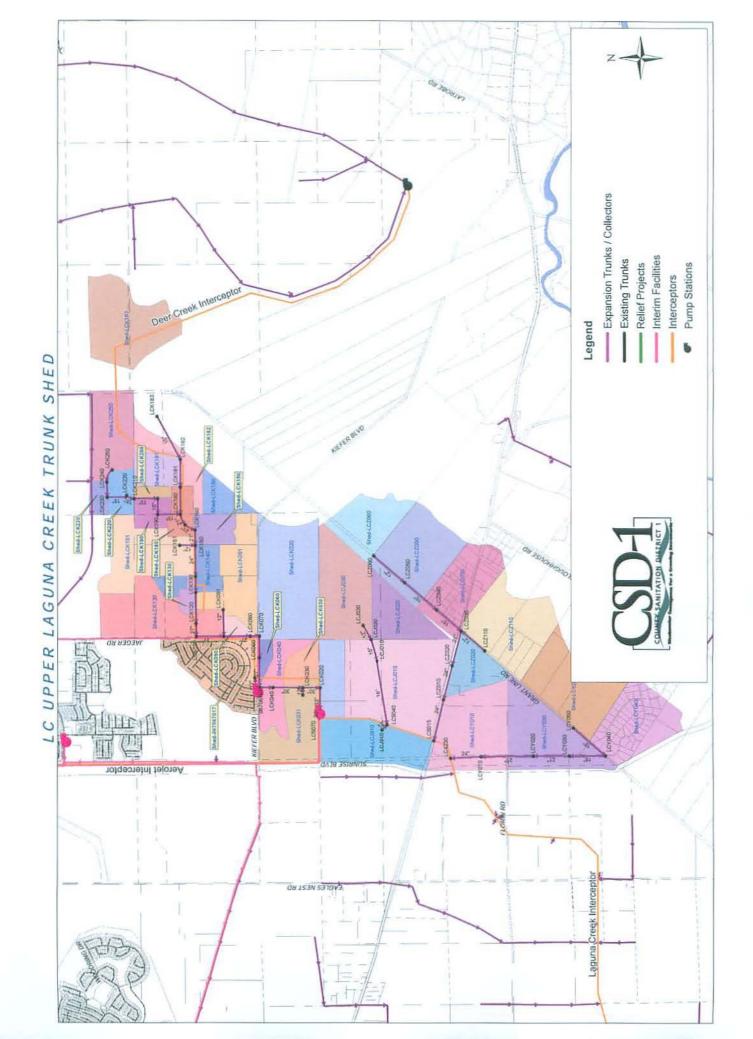
LC Upper Laguna Creek. Trunk Sewer Data and Model Results Buildout 10-Year Design Storm

Link ID	US Manhole	DS Manhole	Link Type	Diameter (in)		US Rim Elev. (ft)	US Invert (ft)	DS Rim Elev. (ft)	DS Invert (ft)	Slope, %	Full Capacity (mgd)	Peak Flow (mgd)	% Full Capacity	DS d/D
067067015.3	067067015	LC5130	Pipe	12.0	560.5	136.100	117.750	129.987	112.730	0.896	2.18	0.7365	34	0.4
LCJ010.1	LCJ010	LC5040	Pipe	18.0	2759.2	127.001	106.932	116.995	97.001	0.360	4.07	2.9880	73	0.6
LCJ020.1	LCJ020	LCJ010	Pipe	15.0	951.4	129.987	110.230	127.001	107.182	0.320	2.37	1.4198	60	0.6
LCJ030.1	LCJ030	LCJ020	Pipe	12.0	698.8	131.988	112.497	129.987	110.479	0.289	1.24	0.9055	73	0.5
LCJ910.1	LCJ910	LC5040	Pipe	12.0	98.4	116.995	95.322	116.995	95.079	0.247	1,15	0.8220	71	0.5
LCK010.1	LCK010	LC5070	Pipe	33.0	354.9	128.000	107.300	129.987	97.360	2.801	57.27	9.2348	16	0.3
LCK020.1	LCK020	LCK010	Pipe	33.0	1150.0	124.000	109.200	128.000	107.300	0.165	13.91	9.2348	66	0.5
LCK030.1	LCK030	LCK020	Pipe	30.0	700.0	126,000	110.600	124.000	109.200	0,200	11.87	7.6917	65	0.7
LCK031.1	LCK031	LCK030	Pipe	12.0	440.0	124.000	113.090	126.000	112.100	0.225	1.09	0.6171	57	0.4
LCK040.1	LCK040	LCK030	Pipe	30.0	1240.0	128.000	113.000	126.000	110.600	0.194	11.68	6.9153	59	0.6
LCK050.1	LCK050	LCK040	Pipe	30.0	690.0	130.100	115.250	128.000	113.000	0.326	15.16	6.5312	43	0.6
LCK060.1	LCK060	LCK050	Pipe	27.0	1290.0	135.000	118.000	130.100	115.500	0.194	8.82	6.5319	74	0.5
LCK070.1	LCK070	LCK060	Pipe	27.0	930.0	144.000	119.000	135.000	118.000	0.108	6.57	6.4480	98	0.6
LCK080.1	LCK080	LCK070	Pipe	27.0	420.0	132.000	119.800	144.000	119.000	0.190	8.75	6.4505	74	0.8
LCK090.1	LCK090	LCK080	Pipe	27.0	900.0	161.000	124.850	132.000	119.800	0.561	15.01	6.4535	43	0.7
LCK091.1	LCK091	LCK090	Pipe	12.0	1170.0	138.200	128.440	161.000	126.100	0.200	1.03	0.7076	69	0.4
LCK100.1	LCK100	LCK090	Pipe	27.0	1310.0	163.000	130.700	161.000	126,100	0.351	11.87	5.6772	48	0.5
LCK120.1	LCK120	LCK100	Pipe	27.0	590.0	162.000	132.200	163.000	130.700	0.254	10.10	5.6778	56	0.5
LCK130.1	LCK130	LCK120	Pipe	24.0	1380.0	150.000	133.700	162.000	132.200	0.109	4.83	4.7866	99	0.6
LCK140.1	LCK140	LCK130	Pipe	24.0	600.0	153.000	135.200	150.000	133.700	0.250	7.32	4.7046	64	0.8
LCK150.1	LCK150	LCK140	Pipe	24.0	1315.0	158.000	147.100	153.000	135.200	0.905	13.92	4.3888	32	0.6
LCK151.1	LCK151	LCK150	Pipe	12.0	590.0	162.000	149.500	158,000	148.100	0.237	1.12	0.8451	75	0.5
LCK160.1	LCK160	LCK150	Pipe	21.0	616.0	163.000	149,900	158,000	148.100	0.292	5.54	3.3267	60	0.5
LCK170.1	LCK170	LCK160	Pipe	21.0	475.0	160.000	151.400	163.000	149.900	0.316	5.76	3.0930	54	0.6
LCK180.1	LCK180	LCK170	Pipe	21.0	575.0	166.000	154.900	160.000	151.400	0.609	8.00	3.0935	39	0.5
LCK181.1	LCK181	LCK180	Pipe	15.0	1320.0	188.000	163.300	166.000	155.900	0.561	3.13	1.6356	52	0.5
LCK182.1	LCK182	LCK181	Pipe	15.0	1063.0	190.000	171.700	188.000	163.300	0.790	3.72	1.3633	37	0.5
LCK183.1	LCK183	LCK182	Pipe	15.0	1862.0	195.000	176.000	190.000	171.700	0.231	2.01	1.0353	52	0.4
LCK190.1	LCK190	LCK180	Pipe	15.0	993.0	166.000	157.200	166.000	155.400	0.181	1.78	1.2467	70	0.4
LCK200.1	LCK200	LCK190	Pipe	15.0	700.0	174.000	162.800	166.000	157.200	0.800	3.74	1.0513	28	0.6
LCK210.1	LCK210	LCK200	Pipe	15.0	1000.0	178.000	166.800	174.000	162.800	0.400	2.64	0.9762	37	0.4
LCK220.1	LCK220	LCK210	Pipe	15.0	350.0	180.000	168.600	178.000	166.800	0.514	3.00	0.9764	33	0.4
LCK230.1	LCK230	LCK220	Pipe	15.0	800.0	180.000	170.000	180,000	168.600	0.175	1.75	0.7686	44	0.4
LCK240.1	LCK240	LCK230	Pipe	12.0	612.0	184.000	174.900	180.000	170.000	0.801	2.06	0.6591	32	0.6
LCK250.1	LCK250	LCK240	Pipe	12.0	682.0	206.000	197.400	184.000	174.900	3.299	4.19	0.6598	16	0.4
LCY010.1	LCY010	LC4230	Pipe	24.0	1400.9	112.992	91.749	114.009	90.249	0.107	4.80	3.8141	79	0.4
LCY020.1	LCY020	LCY010	Pipe	21.0	2250.7	108.990	94.701	112.992	92.001	0.120	3.54	2.8029	79	0.6
LCY030.1	LCY030	LCY020	Pipe	21.0	1499.3	110.991	96.800	108.990	94.701	0.140	3.84	2.8128	73	0.7
LCY040.1	LCY040	LCY030	Pipe	18.0	1499.3	112.992	99.150	110.991	97.051	0.140	2.54	1.8223	72	0.6
LCY050.1	LCY050	LCY040	Pipe	15.0	1499.3	110.007	102.001	112.992	99.400	0.174	1.74	1.0057	58	0.6
LCZ010.1	LCZ010	LC5015	Pipe	24.0	1801.2	139.993	115.299	114.993	105.000	0.572	11.09	3.6290	33	0.4
LCZ020.1	LCZ020	LCZ010	Pipe	24.0	1499.3	139.993	117.001	139,993	115.299	0.114	4.94	3.6296	73	0.4
LCZ030.1	LCZ030	LCZ020	Pipe	21.0	1499.3	150.000	119.049	139.993	117.251	0.120	3.54	3.2564	92	0.6
LCZ040.1	LCZ040	LCZ030	Pipe	15.0	1348.4	139.993	121.850	150.000	119.551	0.171	1.73	1.5320	89	0.7
LCZ050.1	LCZ050	LCZ040	Pipe	15.0	1801.2	152.001	124.951	139,993	121.850	0.172	1.73	1.5324	89	0.7
LCZ060.1	LCZ060	LCZ050	Pipe	12.0	1801.2	150.000	129.199	152.001	125.200	0.222	1.09	0.5904	54	0.7
LCZ110.1	LCZ110	LCZ030	Pipe	12.0	1499.3	139.993	122.851	150.000	119.551	0.220	1.08	0.9921	92	0.8

SEWER SY	STEM PR	OJECT DESCRIP	PTION			_		
	JILMITIN			erlaqui	na Creek			
+ -	kson Rd			•		wes	st of Grant	
	-		•					
950 feet of 15-inch pipe and 2760 feet of 18-inch pipe								
			,	.pc.				
0.000.000	050.00							
	LC5040							
N/A								
•								
•••	ostream) to	3.0 mga (aownsi	(ream).					
100%								
This project	roquiros H	no Laguna Crook	Intercenter					
rnis project	requies i	le Laguna Cleek	merceptor	•				
	_		LENGTH					
	DIA. (in)	DEPTH (feet)	(feet)	UNIT	COST		COST	
				•			\$228,000	
	18	20-24	2760	\$	290		\$800,400	
		20% of baseline	nine cost			\$	205,680	
		2070 OF Basenne	pipe cost			Ŷ	200,000	
			1	s	45,000	\$	45,000	
			•	÷	10,000	Ŷ	10,000	
						s	1,279,080	
					5%	-	63,954	
						•	,	
						\$	1,343,034	
						•		
nditions					25%	\$	335,759	
						\$	1,678,793	
ts					25%	\$	419,698	
						\$	2,098,491	
	LCJ North of Jac Line Rd. C 250 feet of LCJ020 to L N/A Expansion f 1.4 mgd (up 0% 100%	LCJ North of Jackson Rd., Line Rd. Connects to 050 feet of 15-inch pip LCJ020 to LC5040 N/A Expansion for future d 1.4 mgd (upstream) to 0% 100% This project requires th DIA. (in) 15 18	CJ TRUNK SHED. North of Jackson Rd., south of Kiefer R Line Rd. Connects to Laguna Creek In 250 feet of 15-inch pipe and 2760 feet of LCJ020 to LC5040 N/A Expansion for future development 1.4 mgd (upstream) to 3.0 mgd (downst 0% 100% This project requires the Laguna Creek DIA. (in) DEPTH (feet) 15 16-20 18 20-24 20% of baseline	North of Jackson Rd., south of Kiefer Rd., east of S Line Rd. Connects to Laguna Creek Interceptor at 950 feet of 15-inch pipe and 2760 feet of 18-inch p LCJ020 to LC5040 N/A Expansion for future development 1.4 mgd (upstream) to 3.0 mgd (downstream). 0% 100% This project requires the Laguna Creek Interceptor DIA. (in) DEPTH (feet) LENGTH (feet) 15 16-20 950 18 20-24 2760 20% of baseline pipe cost 1 1	LCJ TRUNK SHEDLC Upper Lagun North of Jackson Rd., south of Kiefer Rd., east of Sunrise E Line Rd. Connects to Laguna Creek Interceptor at MH LC3 250 feet of 15-inch pipe and 2760 feet of 18-inch pipe. LCJ020 to LC5040 N/A Expansion for future development 1.4 mgd (upstream) to 3.0 mgd (downstream). 0% 100% This project requires the Laguna Creek Interceptor. DIA. (in) DEPTH (feet) LENGTH UNIT (feet) 15 16-20 950 \$ 18 20-24 2760 \$ 20% of baseline pipe cost 1 \$ nditions 1 \$	LCJ TRUNK SHEDLC Upper Laguna Creek North of Jackson Rd., south of Kiefer Rd., east of Sunrise Blvd., and Line Rd. Connects to Laguna Creek Interceptor at MH LC5040. 950 feet of 15-inch pipe and 2760 feet of 18-inch pipe. LCJ020 to LC5040 N/A Expansion for future development 1.4 mgd (upstream) to 3.0 mgd (downstream). 0% 100% This project requires the Laguna Creek Interceptor. DIA. (in) DEPTH (feet) LENGTH (feet) 15 16-20 950 \$ 240 18 20-24 2760 \$ 290 20% of baseline pipe cost 1 \$ 45,000 5% 5% 5%	LCJ TRUNK SHEDLC Upper Laguna Creek North of Jackson Rd., south of Kiefer Rd., east of Sunrise Blvd., and westline Rd. Connects to Laguna Creek Interceptor at MH LC5040. 250 feet of 15-inch pipe and 2760 feet of 18-inch pipe. LCJ020 to LC5040 V/A Expansion for future development 1.4 mgd (upstream) to 3.0 mgd (downstream). 0% 100% This project requires the Laguna Creek Interceptor. DIA. (in) DEPTH (feet) LENGTH (feet) 15 16-20 950 \$ 18 20-24 2760 \$ 20% of baseline pipe cost \$ \$ 1 \$ 45,000 \$ 5% \$ \$ \$ 1 \$ 45,000 \$ 1 \$ 45,000 \$ 5% \$ \$ \$ 1 \$ 45,000 \$ 1 \$ 45,000 \$ 5% \$ \$ \$ 1 \$ 45,000 \$ 5% \$ \$ \$	

	K SEWER SYSTEM PR										
ROJECT ID: LCK TRUNK SHED. LC Upper Laguna Creek VCATION: West of Grant Line Rd, parallel and to north of Kiefer Blvd. Along Jaeger Rd. to Kiefer Blvd. Along Kiefer Blvd. between Jaeger Rd. and Country Garden Dr. South of Kiefer Blvd. and parallel to Sunrise Blvd. Connects to Laguna Creek Interceptor at MH LC5070.											
BRIEF PROJECT DESCRIPTION:	5940 feet of 15-inch pi feet of 27-inch pipe, 26						•				
MODEL REFERENCE:	LCK200 to LCK180, L0	CK183 to LCK 180	and I CK18	30 to I C	5070						
LOCATION OF CAPACITY DEFICIENCY	N/A										
REASON FOR PROJECT	Expansion for future de	evelopment									
DESIGN FLOW:	1.0 mgd (upstream) to	•	eam)								
PERCENT FOR EXISTING FLOW	0%		,								
PERCENT FOR FUTURE FLOW	100%										
SPECIAL CONSIDERATIONS:	This project requires th	ie Laguna Creek li	nterceptor.								
ALTERNATIVES:											
MAJOR ITEMS	DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNI	т соѕт		COST				
Baseline Pipe Construction Cost											
LCK200 to LCK180	15	<16	1700	\$	220		\$374,000				
LCK183 to LCK 182	15	16-20	1860	\$	240		\$446,40				
LCK182 to LCK181	15	20-24	1060	\$	250		\$265,00				
LCK181 to LCK180	15	16-20	1320	\$	240		\$316,80				
LCK180 to LCK150	21	<16	1670	\$	280		\$467,600				
LCK150 to LCK140	24	<16	1320	\$	310		\$409,200				
LCK140 to LCK130	24	16-20	600	\$	330		\$198,000				
LCK130 to LCK120	24	20-24	1380	\$	350		\$483,00				
LCK120 to LCK080	27	>24	2800	\$	420		\$1,176,00				
LCK080 to LCK070	27	16-20	420	\$	360		\$151,20				
LCK070 to LCK060	27	20-24	930	\$	390		\$362,70				
LCK060 to LCK050	27	<16	1290	\$	340		\$438,60				
LCK050 to LCK020	30	<16	2630	\$	370		\$973,10				
LCK020 to LCK010	33	16-20	1150	\$	430		\$494,50				
LCK010 to LC5070	33	>24	360	\$	490		\$176,400				
Keifer Blvd. crossing (27" direct jack)	27	microtunnel	200	\$	961		\$192,20				
Jacking pits			1	\$	70,000		\$70,000				
Receiving pits			1	\$	45,000		\$45,000				
Goetechnical Factors Cobble construction factor (undeveloped)		20% of baseline	pipe cost			\$	1,346,500				
Surface Restoration											
Creek restoration			200	\$	400		\$80,000				
Structures Interceptor junction structure			1	\$	45,000	\$	45,000				
Subtotal Mobilization and Demobilization					5%	5 c	8,511,20 425,56				
					576	·					
Construction Cost Subtotal						\$	8,936,760				
Contingencies for Unknown Subsurface Co	onditions				25%	_	2,234,19				
Construction Cost Total					[\$	11,170,95				
Engineering, Administration, and Legal Co	sts				25%	\$	2,7 9 2,73				
Capital Improvement Cost Total					•	\$	13,963,68				


\$ 13,964,000


rounded

TRUNI	SEWER SYSTEM PROJECT DESCRIPTION
PROJECT ID:	LCY TRUNK SHEDLC Upper Laguna Creek
LOCATION:	Along Grant Line Rd. to Sunrise Blvd. Along Sunrise Blvd. between Grant Line Rd. and Jackson Rd. Connects to Laguna Creek Interceptor at MH LC4230.
BRIEF PROJECT DESCRIPTION	1500 feet of 15-inch pipe, 1500 feet of 18-inch pipe, 3750 feet of 21-inch pipe, and 1400 feet of 24-inch pipe.
MODEL REFERENCE: LOCATION OF CAPACITY DEFICIENCY: REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW:	LCY050 to LC4230 N/A Expansion for future development 1.0 mgd (upstream) to 3.8 mgd (downstream) 0% 100%
SPECIAL CONSIDERATIONS:	This project requires the Laguna Creek Interceptor Section 4.
ALTERNATIVES:	

MAJOR ITEMS	DIA, (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST	COST
Baseline Pipe Construction Cost						
LCY050 to LCY040	15	<16	1500	\$	220	\$330,00
LCY040 to LCY030	18	<16	1500	\$	250	\$375,00
LCY030 to LCY020	21	<16	1500	\$	280	\$420,00
LCY020 to LCY010	21	16-20	2250	\$	300	\$675,00
LCY010 to LC4230	24	20-24	1400	\$	350	\$490,00
Geotechnical Factors						
Cobble construction factor (undeveloped)	20%	of baseline pipe	cost			\$ 458,000
Traffic and Productivity Factors						
Increased Traffic Contol	5%	of baseline pipe of	costs			\$114,50
Congested traffic or utility corridor factor	15%	of baseline pipe	costs			\$343,50
Surface Restoration						
Pavement Restoration		15	8150	\$	4	\$489,000
Structures						
Interceptor sewer junction structure			1	\$	45,000	\$ 45,00
Subtotal						\$ 3,740,00
Mobilization and Demobilization					5%	\$ 187,00
Construction Cost Subtotal						\$ 3,927,00
Contingencies for Unknown Subsurface Conditions					25%	\$ 981,75
Construction Cost Total					l	\$ 4,908,75
Engineering, Administration, and Legal Costs					25%	\$ 1,227,18
Capital Improvement Cost Total						\$ 6,135,93

TRUNK	SEWER SY	STEM PRO	JECT DESCRIP	PTION	-		-				
PROJECT ID:	LCZ		TRUNK SHED.	LC Upp	er Lagi	una Creek					
	Along Jacks	son Rd. bet	ween Grant Line	Rd. and Su	nrise E	Blvd.					
BRIEF PROJECT DESCRIPTION:	3150 feet of 15-inch pipe, 1500 feet of 21-inch pipe, and 3300 feet of 24-inch pipe.										
MODEL REFERENCE:	LCZ050 to	LC5015									
LOCATION OF CAPACITY DEFICIENCY	N/A										
REASON FOR PROJECT:	Expansion for future development										
DESIGN FLOW:	1.5 mgd (upstream) to 3.6 mgd (downstream)										
PERCENT FOR EXISTING FLOW:	0%										
PERCENT FOR FUTURE FLOW:	100%										
SPECIAL CONSIDERATIONS: ASSUMPTIONS:	This project requires the Laguna Creek Interceptor.										
ALTERNATIVES:			_								
MAJOR ITEMS		DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNI	т соѕт		COST			
Baseline Pipe Construction Cost					-	-					
LCZ050 to LCZ040		15	20-24	1800	\$	250		\$450,000			
LCZ040 to LCZ030		15	>24	1350	\$	270		\$364,500			
LCZ030 to LCZ020		21	20-24 20-24	1500	\$	320		\$480,000			
LCZ020 to LCZ010 LCZ010 to LC5015		24 24	20-24 16-20	1500 1800	\$ \$	350 330		\$525,000 \$594,000			
		24	10-20	1800	J	330		\$594,000			
Geotechnical Factors											
Cobble construction factor (undeveloped)		20%	of baseline pipe	cost			\$	482,700			
Traffic and Productivity Factors											
Increased Traffic Contol		5% (of baseline pipe o	osts				\$120,675			
Congested traffic or utility corridor factor		15%	of baseline pipe	costs				\$362,025			
Surface Restoration											
Pavement Restoration			15	7950	\$	4		\$477,000			
Structures											
Interceptor sewer junction structure				1	\$	45,000	\$	45,000			
Subtotal							\$	3,900,900			
Mobilization and Demobilization						5%	\$	195,045			
Construction Cost Subtotal							\$	4,095,945			
Contingencies for Unknown Subsurface C	onditions					25%	\$	1,023,986			
Construction Cost Total							\$	5,119,931			
Engineering, Administration, and Legal Co	osts					25%	\$	1,279,983			
Capital Improvement Cost Total							\$	6,399,914			

Appendix D:

CSD – 1 Sewerage Facilities Expansion Master Plan 2006 Update DC Upper Deer Creek Trunk Shed

CSD-1 SEWERAGE FACILITIES EXPANSION MASTER PLAN 2006 UPDATE

DC UPPER DEER CREEK TRUNK SHED

Area Description

The DC Upper Deer Creek Trunk Shed is located between the ridgeline east of Grant Line Road and the Urban Services Boundary. north of the Kiefer Landfill. This entire trunk shed is not anticipated to develop until after 2020.

Trunk System Facilities

The trunk shed would be served by two parallel trunk systems. Trunks LCO and LCQ would serve the western portion of the trunk shed, and trunks LCP, LCN, and LCM would serve the eastern portion of the trunk shed. These trunks would connect to the upstream end of the realigned Deer Creek Interceptor.

All of Trunk DCX and most of Trunk DCY would be located in the Deer Creek and Coyote Creek Valleys, outside of the Urban Services Boundary. The Deer Creek Interceptor is anticipated to be on line by the time the trunk facilities in this trunk shed are required. Therefore the need for interim facilities is not anticipated within the planning period of this Master Plan.

Trunk Projects

Project ID	Diam. (in.)	Length (ft.)	Phase	Estimated Construction Cost (\$)	Estimated Capital Cost (\$)
LCM	27-36	8,070	After 2020	3.579,450	4.474.000
LCN	18-27	19.200	After 2020	7.614.600	9.518.000
LCO	12-24	8.840	After 2020	3.173.888	3.967.000
LCP	10-18	8,650	After 2020	2.195,944	2,745,000
LCQ	24-30	17,000	After 2020	8,244,338	10.305.000

Five trunk projects are identified for this trunk shed, as shown in the table below.

Attachments

- Trunk shed map showing proposed trunk sewers, sizes, model manhole ID numbers. and sewersheds.
- Project map showing trunk projects.
- Trunk shed ESD projections by sewershed.
- Sewershed load manholes.
- Trunk project cost estimates.

				2005		<u> </u>	Buildout	
Sewershed	Load Manhole	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)	% Buildout	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)
Shed-LCM050	LCM050	0.0	0	-	0	166.1	997	6.0
Shed-LCM060	LCM060	0.0	0	-	0	42.9	257	6.0
Shed-LCM070	LCM070	0.0	0	-	0	77.2	463	6.0
Shed-LCM080	LCM080	0.0	0	-	0	69.2	415	6.0
Shed-LCN010	LCN010	0.0	0	-	0	343.2	2059	6.0
Shed-LCN030	LCN030	0.0	0	-	0	133.0	798	6.0
Shed-LCN050	LCN050	0.0	0	-	0	521.9	3131	6.0
Shed-LCN120	LCN120	0.0	0	-	0	144.4	866	6.0
Shed-LCO010	LC0010	0.0	0	-	0	260.0	1561	6.0
Shed-LCO020	LCO020	0.0	0	-	0	180.3	1082	6.0
Shed-LCO030	LC0030	0.0	0	-	0	237.8	1427	6.0
Shed-LCO040	LCO040	0.0	0		0	237.2	1423	6.0
Shed-LCO060	LC0060	0.0	0		0	89.7	538	6.0
Shed-LCO070	LC0070	0.0	0		0	128.4	770	6.0
Shed-LCO080	LC0080	0.0	0		0	142.3	854	6.0
Shed-LCO090	LCO090	0.0	0	-	0	94.5	567	6.0
Shed-LCO100	LCO100	0.0	0	-	0	78.7	472	6.0
Shed-LCO110	LCO110	0.0	0	-	0	118.9	714	6.0
Shed-LCP020	LCP020	0.0	0	-	0	194.2	1165	6.0
Shed-LCP030	LCP030	0.0	0	-	0	87.1	523	6.0
Shed-LCP040	LCP040	0.0	0	-	0	63.0	378	6.0
Shed-LCP070	LCP070	0.0	0	- 1	0	163.0	978	6.0
Shed-LCP080	LCP080	0.0	0	-	0	99.8	599	6.0
Shed-LCP090	LCP090	0.0	0	-	0	138.6	832	6.0
Shed-LCQ020	LCQ020	0.0	0	-	0	152.9	917	6.0
Shed-LCQ050	LCQ050	0.0	0	-	0	161.8	971	6.0
Shed-LCQ070	LCQ070	0.0	0		0	243.5	1461	6.0
Shed-LCQ090	LCQ090	0.0	0	- 1	0	146.2	878	6.0
Shed-LCQ120	LCQ120	0.0	0		0	176.7	1060	6.0
Shed-LCQ130	LCQ130	0.0	0	- 1	0	43.2	259	6.0
Shed-LCQ910	LCQ910	0.0	0	- 1	0	163.6	982	6.0
Total	<u>. </u>	0.0	0		0	4899.4	29397	6.0

DC Upper Deer Creek Sewershed Load Manholes and Land Use Projections

DC Upper Deer Creek Trunk Sewer Data and Model Results Buildout 10-Year Design Storm

Link ID	US Manhole	DS Manhole	Link Type	Diameter (in)	Length (ft)	US Rim Elev. (ft)	US Invert (ft)	DS Rim Elev. (ft)	DS Invert (ft)	Slope, %	Full Capacity (mgd)	Peak Flow (mgd)	% Full Capacity	DS d/D
LCM020.1	LCM020	LCPS1	Pipe	36.0	60.4	102.986	89.138	103.000	88.987	0.250	21.58	20.1457	93	0.6
LCM030.1	LCM030	LCM020	Pipe	27.0	1945.3	108.005	94.751	102.986	89.888	0.250	10.02	9.1286	91	0.6
LCM040.1	LCM040	LCM030	Pipe	27.0	2030.8	112.992	99.826	108.005	94.751	0.250	10.03	8.5722	85	0.8
LCM050.1	LCM050	LCM040	Pipe	27.0	1968.5	122.014	105.741	112.992	99.826	0.300	10.99	8.5731	78	0.7
LCM060.1	LCM060	LCM050	Pipe	27.0	1968.5	125.000	110.666	122.014	105.741	0.250	10.03	7.9358	79	0.7
LCM070.1	LCM070	LCM030	Pipe	8.0	1968.5	129.987	116.460	108.005	96.749	1.001	0.78	0.6279	81	0.7
LCM080.1	LCM080	LCM070	Pipe	8.0	1181.1	145.013	131.401	129.987	116.460	1.265	0.88	0.2972	34	0.7
LCN010.1	LCN010	LCM060	Pipe	27.0	2860.9	131.004	116.093	125.000	110.666	0.190	8.73	7.7717	89	0.7
LCN020.1	LCN020	LCN010	Pipe	27.0	1860.2	131.988	118.514	131.004	116.093	0.130	7.24	6.4269	89	0.7
LCN030.1	LCN030	LCN020	Pipe	27.0	1909.4	135.007	120.994	131.988	118.514	0.130	7.23	6.4263	89	0.7
LCN040.1	LCN040	LCN030	Pipe	27.0	2201.4	141.995	123.855	135.007	120.994	0.130	7.23	5.8996	82	0.7
LCN050.1	LCN050	LCN040	Pipe	27.0	1811.0	139.993	126.207	141.995	123.855	0.130	7.23	5.9034	82	0.7
LCN060.1	LCN060	LCN050	Pipe	18.0	1738.8	147.999	135.656	139.993	126.955	0.500	4.80	3.7869	79	0.6
LCN070.1	LCN070	LCN060	Pipe	18.0	479.0	152.986	139.029	147.999	135.656	0.704	5.70	3.7889	66	0.7
LCN080.1	LCN080	LCN070	Pipe	18.0	1049.9	160.007	146.381	152.986	139.029	0.700	5.68	3.7892	67	0.6
LCN090.1	LCN090	LCN080	Pipe	18.0	1289.4	170.013	155.430	160.007	146.381	0.702	5.69	3.7899	67	0.6
LCN100.1	LCN100	LCN090	Pipe	18.0	1601.0	179.987	166.660	170.013	155.430	0.701	5.69	3.7908	67	0.6
LCN110.1	LCN110	LCN100	Pipe	18.0	1161.4	185.007	174.800	179.987	166.660	0.701	5.68	3.7919	67	0.6
LCN120.1	LCN120	LCN110	Pipe	18.0	1240.2	200.000	183.451	185.007	174.800	0.698	5.67	3.7928	67	0.6
LCO010.1	LCO010	LCQ100	Pipe	24.0	1801.2	170.013	152.726	158.005	140.679	0.669	11.99	6.6706	56	0.8
LCO020.1	LCO020	LCO010	Pipe	21.0	1909.4	179.987	162.884	170.013	152.976	0.519	7.37	5.5734	76	0.6
LCO030.1	LCO030	LCO020	Pipe	21.0	1958.7	185.007	168.747	179.987	162.884	0.299	5.60	4.8093	86	0.7
LCO040.1	LCO040	LCO030	Pipe	15.0	2030.8	200.000	185.518	185.007	169.249	0.801	3.74	3.1913	85	0.7
LCO050.1	LCO050	LCO040	Pipe	12.0	1138.5	210.007	196.047	200.000	185.771	0.903	2.19	1.7801	81	0.7
LCO060.1	LCO060	LCO050	Pipe	10.0	1509.2	220.013	206.631	210.007	196.220	0.690	1.18	0.9345	79	0.7
LCO070.1	LCO070	LCO060	Pipe	8.0	810.4	233.005	223.123	220.013	206.965	1.994	1.10	0.5517	50	0.5
LCO080.1	LCO080	LCO030	Pipe	8.0	2080.1	225.000	216.621	185.007	175.000	2.001	1.10	0.6113	56	0.5
LCO090.1	LCO090	LCO040	Pipe	8.0	2139.1	235.007	223.379	200.000	187.001	1.701	1.02	0.4058	40	0.5
LCO100.1	LCO100	LC0050	Pipe	8.0	1899.6	250.000	225.000	210.007	196.380	1.507	0.96	0.8470	88	0.7
LCO110.1	LCO110	LCO100	Pipe	8.0	1400.9	285.007	260.000	250.000	225.000	2.498	1.23	0.5111	42	0.8
LCP020.1	LCP020	LCP030	Pipe	8.0	331.4	245.013	229.659	235.007	223.041	1.997	1.10	0.8348	76	0.7
LCP030.1	LCP030	LCP040	Pipe	10.0	1118.8	235.007	222.871	225.000	212.910	0.890	1.34	1.2053	90	0.7
LCP040.1	LCP040	LCP050	Pipe	10.0	1328.7	225.000	212.910	200.000	187.661	1,900	1.95	1.4740	76	0.7
LCP050.1	LCP050	LCN120	Pipe	18.0	1361.5	200.000	186,991	200,000	183,451	0.260	3.46	3.1857	92	0.6
LCP060.1	LCP060	LCP050	Pipe	15.0	1299.2	204.987	192.188	200.000	187.244	0.381	2.58	1.7194	67	0.7
LCP070.1	LCP070	LCP060	Pipe	12.0	1440.3	220.013	206,808	204,987	192.438	0.998	2.31	1.7223	75	0.6
LCP080.1	LCP080	LCP070	Pipe	10.0	2099.7	250.000	238.533	220.013	206.972	1.503	1.74	1.0241	59	0.6
LCP090.1	LCP090	LCP080	Pipe	8.0	1171.3	279.987	269.147	250.000	238,701	2.599	1.26	0.5959	47	0.5
LCQ020.1	LCQ020	LCM020	Pipe	30.0	98.4	102.986	93.159	102.986	92.913	0.250	13.27	11.0452	83	0.6
LCQ030.1	LCQ030	LCQ020	Pipe	30.0	3203.1	121.000	102.556	102.986	93,159	0.293	14.38	10.4528	73	0.6
LCQ040.1	LCQ040	LCQ030	Pipe	30.0	3782.9	129.987	115.000	121.000	102.556	0.329	15.22	10.4533	69	0.6
LCQ050.1	LCQ050	LCQ040	Pipe	30,0	2191.6	139.993	118.720	129.987	115.000	0.170	10.93	9.8024	90	0.6
LCQ060.1	LCQ060	LCQ050	Pipe	30.0	1768.4	139.993	121.729	139.993	118.720	0.170	10.95	9.1530	84	0.7
LCQ070.1	LCQ070	LCQ060	Pipe	30.0	1250.0	139.993	123.848	139.993	121.729	0.170	10.93	9.1542		0.7
LCQ080.1	LCQ080	LCQ070	Pipe	24.0	1630.6	147.014	130.558	139.993	124.350	0.381	9.05	8.1674	90	0.6
LCQ090.1	LCQ090	LCQ080	Pipe	24.0	1879.9	156.004	137.694	147.014	130.558	0.380	9.03	8.1732	91	0.8
LCQ100.1	LCQ100	LCQ090	Pipe	24.0	1200.8	158.005	140.682	156.004	137.694	0.249	7.32	6.6574	91	0.8
LCQ120.1	LCQ120	LCQ090	Pipe	8.0	1338.6	179.987	163.425	156.004	142,001	1.600	0.99	0.9366	95	0.8
LCQ130.1	LCQ130	LCQ120	Pipe	8.0	1440.3	200.000	186.552	179.987	163.593	1.594	0.98	0.1854	19	0.6
LCQ910.1	LCQ910	LCQ040	Pipe	10.0	98.4	129.987	117.451	129.987	117.001	0.457	0.96	0.7038	73	0.6

	SEWER SY	STEM PRO	OJECT DESCRIP				_			
PROJECT ID:	LCM		TRUNK SHED.	DC Upp	er Deer	Creek				
LOCATION:	North of Jac	ckson Rd.,	east of Grant Lin	e Rd. and no	orthwes	t of Latrol	be R	ld.		
BRIEF PROJECT DESCRIPTION	7910 feet of	f 27-inch pi	pe and 60 feet of	36-inch pip	e.					
MODEL REFERENCE: LOCATION OF CAPACITY DEFICIENCY: REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW:	LCM060 to LCPS1 N/A Expansion for future development 7.9 mgd (upstream) to 20.1 mgd (downstream). 0% 100%									
SPECIAL CONSIDERATIONS:	This project	requires th	ne Deer Creek Ini	erceptor.						
ALTERNATIVES:										
MAJOR ITEMS		DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST		соѕт		
Baseline Pipe Construction Cost										
LCM060 to LCM020		27	<16	7910	\$	340	\$	2,689,400		
LCM020 to LCPS1		36	<16	60	\$	430	\$	25,800		
Structures										
Trunk junction structure				1	\$	12,000	\$	12,000		
Subtotal							\$	2,727,200		
Mobilization and Demobilization						5%	\$	136,360		
Construction Cost Subtotal							\$	2,863,560		
Contingencies for Unknown Subsurface C	Conditions					25%	\$	715,890		
Construction Cost Total						[\$	3,579,450		
Engineering, Administration, and Legal Co	osts					25%	\$	894,863		

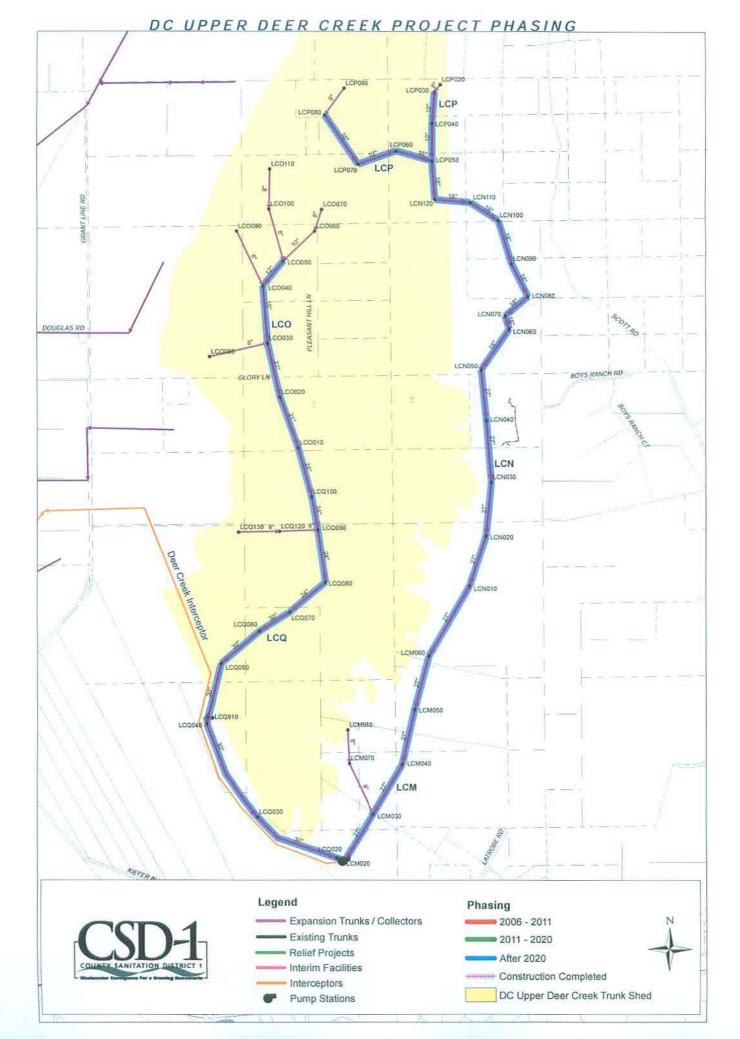
Capital Improvement Cost Total

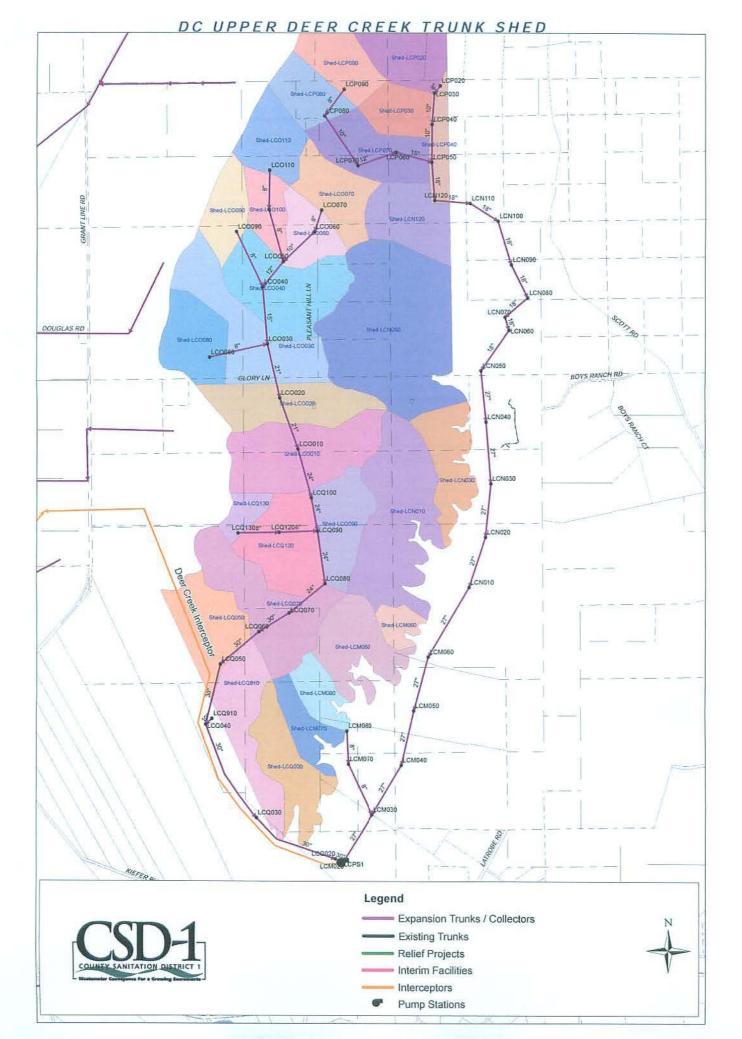
rounded \$ 4,474,000

\$ 4,474,313

TRUNK	SEWER SI	STEM PRO	DJECT DESCRIP	PTION						
PROJECT ID:	LCN		TRUNK SHED.	DC Upp	er Deer	Creek				
LOCATION:	Located no	rth/west of	Sacramento Cou	nty Boys Ra	anch (Bo	ys Ranch	n Rd	.).		
BRIEF PROJECT DESCRIPTION:	8560 feet o	of 18-inch pi	pe and 10640 fee	et of 27-inch	pipe.					
MODEL REFERENCE:	LCN120 to	LCM060								
LOCATION OF CAPACITY DEFICIENCY	N/A									
REASON FOR PROJECT:	Expansion	for future d	evelopment							
DESIGN FLOW:	3.8 mgd (upstream) to 7.8 mgd (downstream).									
PERCENT FOR EXISTING FLOW:	0%									
PERCENT FOR FUTURE FLOW:	100%									
SPECIAL CONSIDERATIONS:	This projec	t requires th	ne Deer Creek In	terceptor.						
ALTERNATIVES:										
MAJOR ITEMS		DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST	_	COST		
Baseline Pipe Construction Cost										
LCN120 to LCN050		18	<16	8560	\$	250	\$	2,140,00		
LCN050 to LCN040		27	<16	1810	\$	340	•	615,40		
LCN040 to LCN030		27	16-20	2200	\$	360	\$	792,00		
LCN030 to LCM060		27	<16	6630	\$	340	\$	2,254,20		
Subtotal							\$	5,801,60		
Mobilization and Demobilization						5%	\$	290,08		
							_			
Construction Cost Subtotal							\$	6,091,68		
Contingencies for Unknown Subsurface C	Conditions					25%	\$	1,522,92		
Construction Cost Total							\$	7,614,60		
Engineering, Administration, and Legal Co	osts					25%	\$	1,903,65		
Capital Improvement Cost Total							\$	9,518,25		

	K SEWER SYSTEM PROJECT DESCRIPTION
PROJECT ID:	LCO TRUNK SHEDDC Upper Deer Creek
LOCATION:	East of Grant Line Rd. crossing Glory Ln.
BRIEF PROJECT DESCRIPTION:	1140 feet of 12-inch pipe, 2030 feet of 15-inch pipe, 3870 feet of 21-inch pipe, and 1800 feet of 24-inch pipe.
MODEL REFERENCE:	LCO050 to LCO010
LOCATION OF CAPACITY DEFICIENCY	N/A
REASON FOR PROJECT:	Expansion for future development
DESIGN FLOW:	1.8 mgd (upstream) to 6.7 mgd (downstream).
PERCENT FOR EXISTING FLOW:	0%
PERCENT FOR FUTURE FLOW:	100%
SPECIAL CONSIDERATIONS:	This project requires the Deer Creek Interceptor.
ASSUMPTIONS:	


ALTERNATIVES:....


MAJOR ITEMS	DiA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST	 COST
Baseline Pipe Construction Cost						
LCO050 to LCO040	12	<16	1140	\$	190	\$ 216,600
LCO040 to LCO030	15	<16	2030	\$	220	\$ 446,600
LCO030 to LCO010	21	16-20	3870	\$	300	\$ 1,161,000
LCO010 to LCQ100	24	16-20	1800	\$	330	\$ 594,000
Subtotal						\$ 2,418,200
Mobilization and Demobilization					5%	\$ 120,910
Construction Cost Subtotal						\$ 2,539,110
Contingencies for Unknown Subsurface Conditions					25%	\$ 634,778
Construction Cost Total						\$ 3,173,888
Engineering, Administration, and Legal Costs					25%	\$ 793,472
Capital Improvement Cost Total						\$ 3,967,359
				rounded	d	\$ 3,967,000

PROJECT ID:	LCP TRUNK SHEDDC Upper Deer Creek
LOCATION	Located north/west of Sacramento County Boys Ranch (Boys Ranch Rd.). East of Grantline Rd.
BRIEF PROJECT DESCRIPTION	4550 feet of 10-inch pipe, 1440 feet of 12-inch pipe, 1300 feet of 15-inch pipe, and 1360 feet of 18-inch pipe.
MODEL REFERENCE: LOCATION OF CAPACITY DEFICIENCY: REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW:	LCP080 to LCN120 and LCP030 to LCP050 N/A Expansion for future development 1.0 mgd (upstream) to 3.2 mgd (downstream). 0% 100%
SPECIAL CONSIDERATIONS: ASSUMPTIONS:	This project requires the Deer Creek Interceptor.

MAJOR ITEMS	DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST	COST
Baseline Pipe Construction Cost						
LCP080 to LCP070	10	<16	2100	\$	170	\$357,000
LCP070 to LCP060	12	<16	1440	\$	190	\$273,600
LCP060 to LCP050	15	<16	1300	\$	220	\$286,000
LCP050 to LCN120	18	<16	1360	\$	250	\$340,000
LCP030 to LCP050	10	<16	2450	\$	170	\$416,500
Subtotal					\$	1,673,100
Mobilization and Demobilization					5% \$	83,655
Construction Cost Subtotal					\$	1,756,755
Contingencies for Unknown Subsurface Conditions					25% \$	439,189
Construction Cost Total					\$	2,195,944
Engineering, Administration, and Legal Costs					25% \$	548,986
Capital Improvement Cost Total					\$	2,744,930
				rounded	\$	2,745,000

	SEWER S	YSTEM PRO	OJECT DESCRIF	PTION						
PROJECT ID:	LCQ		TRUNK SHED.	DC Upp	er Deer	Creek				
LOCATION:	East of Gr	antline Rd. t	etween Glory Ln	. and Kiefer	Blvd.					
BRIEF PROJECT DESCRIPTION:	4710 feet	of 24-inch pi	pe and 12290 fee	et of 30-inch	pipe.					
MODEL REFERENCE:	LCQ100 to	LCM020								
LOCATION OF CAPACITY DEFICIENCY	N/A									
REASON FOR PROJECT:	Expansion	for future d	evelopment							
DESIGN FLOW:	6.7 mgd (upstream) to 11.0 mgd (downstream)									
PERCENT FOR EXISTING FLOW:	0%									
PERCENT FOR FUTURE FLOW:	100%									
SPECIAL CONSIDERATIONS:	This projec	ct requires th	ne Deer Creek In	terceptor.						
ALTERNATIVES:										
MAJOR ITEMS		DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST	COST			
Baseline Pipe Construction Cost										
LCQ100 to LCQ070		24	16-20	4710	\$	330	\$1,554,3			
LCQ070 to LCQ030		30	16-20	8990	\$	390	\$3,506,1			
LCQ030 to LCM020		30	<16	3300	\$	370	\$1,221,0			
Subtotal						;	\$ 6,281,4			
Mobilization and Demobilization						5%	\$ 314,0			
Construction Cost Subtotal							\$ 6,595,4			
Contingencies for Unknown Subsurface Co	onditions					25%	\$ 1,648,8			
Construction Cost Total						[\$ 8,244,3			
	sts					25%	\$ 2,061,0			
Engineering, Administration, and Legal Co	0.0									
Engineering, Administration, and Legal Co Capital Improvement Cost Total							\$ 10,305,4			

Appendix E:

CSD – 1 Sewerage Facilities Expansion Master Plan 2006 Update AJ Sunrise Douglas Trunk Shed

CSD-1 SEWERAGE FACILITIES EXPANSION MASTER PLAN 2006 UPDATE

AJ SUNRISE DOUGLAS TRUNK SHED

Area Description

The AJ Sunrise Douglas Trunk Shed is located east of Sunrise Boulevard, north of Kiefer Boulevard, and west of the Deer Creek watershed. The majority of the shed is south of Douglas Road, but a portion of the shed is located north of Douglas Road along Grant Line Road. The trunk shed includes all but the southeastern corner of the Sun Ridge Specific Plan area. The Sun Ridge area has begun developing and will continue to develop during the 2006-2011 period. Areas east of Grant Line Road are not anticipated to start developing until the 2011-2020 period.

Trunk System Facilities

The trunk shed would be served by two major trunk sewers (Trunks SDA-1 and SDA-2) which would flow from east to west. Both trunk sewers would ultimately connect to the Aerojet Interceptor in Sunrise Boulevard. Portions of the trunk sewers, including an interim lift station and force main to the Northeast interceptor, have been constructed.

Because the Aerojet Interceptor is not scheduled for construction until after 2020. interim facilities are required. An interim regional lift station is planned, which will convey wastewater north along Sunrise Blvd. to the Mather and Bradshaw interceptors. Until these facilities are in place, scheduled for 2010. the existing interim lift station will be used.

Trunk Projects

Project ID	Diam. (in.)	Length (ft.)	Phase	Estimated Construction Cost (\$)	Estimated Capital Cost (\$)
SDA-1	18-24	15,890	2006-2011	6.744.806	8.431,000
SDA-2	15-42	12,510	2011-2020	4,316.550	5,396.000

Two trunk projects are remaining for this trunk shed, as shown in the table below.

Attachments

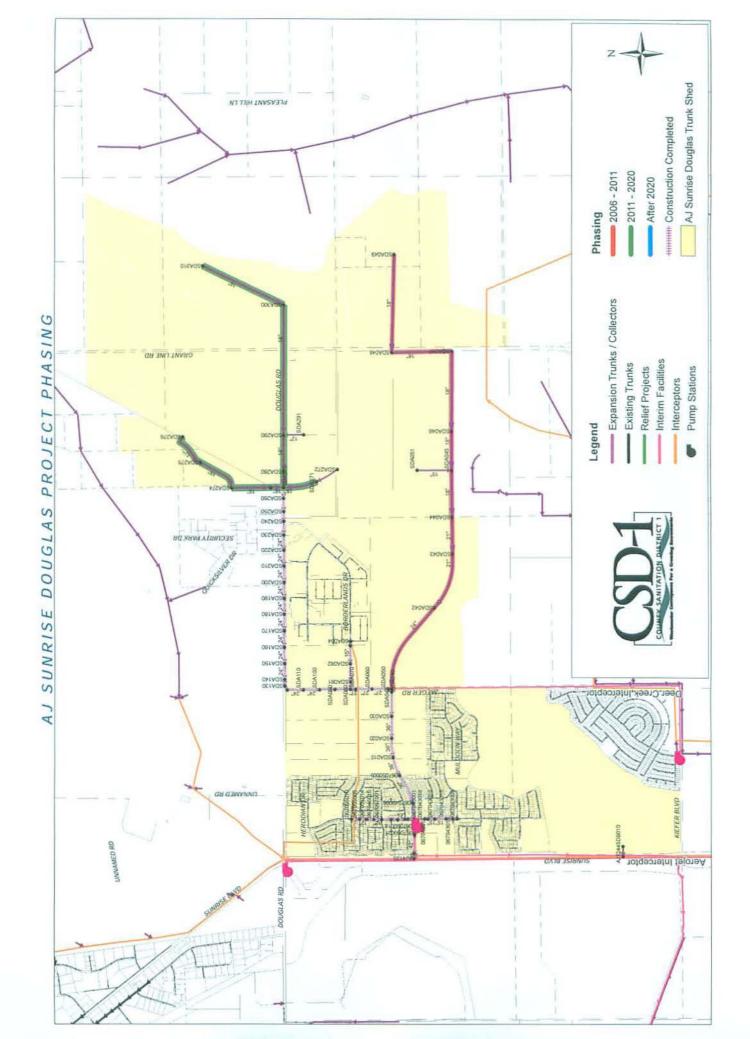
- Trunk shed map showing proposed trunk sewers. sizes. model manhole ID numbers, and sewersheds.
- Project map showing trunk projects and interim facilities (if needed).
- Trunk shed ESD projections by sewershed.
- Sewershed load manholes.
- Trunk project cost estimates.

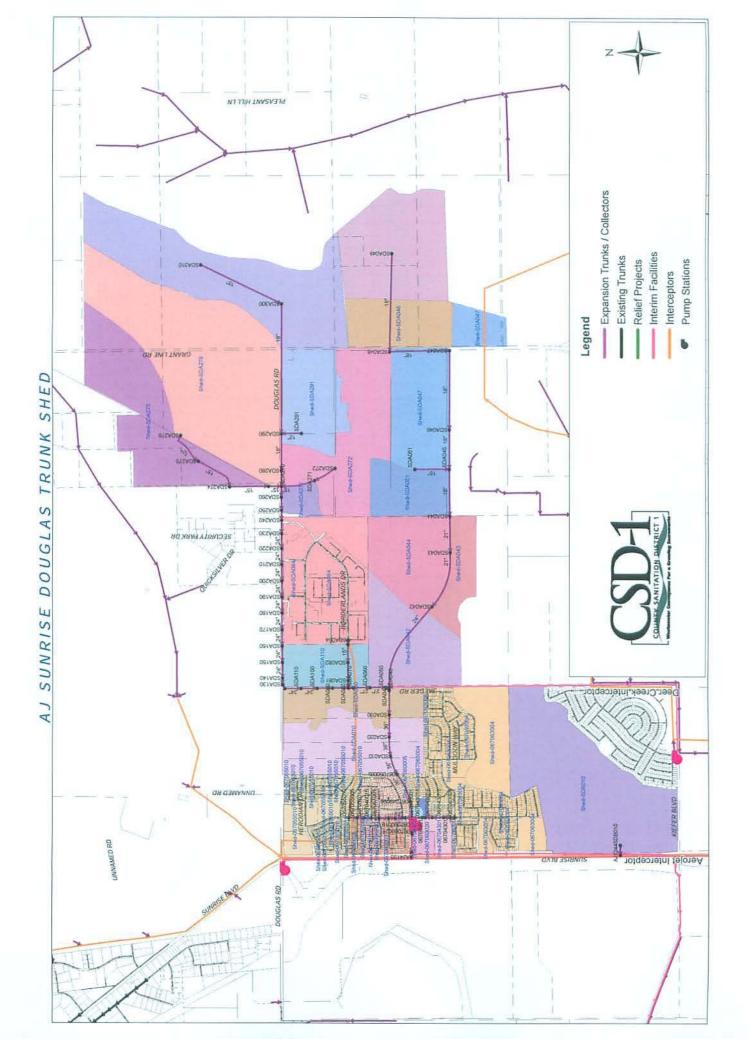
				2005		1	Buildout	
Sewershed	Load Manhole	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)	% Buildout	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)
Shed-067043014	067043014	0.0	0	-	0	21.2	318	15.0
Shed-067043017	067043017	0.0	0	-	0	3.6	21	5.9
Shed-067043018	067043018	0.0	0	-	0	3.1	18	5.9
Shed-067046015	067046015	1.0	5	5.1	7	12.2	73	6.0
Shed-067055005	067055005	0.9	7	7.7	11	7.9	64	8.1
Shed-067055010	067055010	26.0	191	7.3	25	111.1	769	6.9
Shed-067057001	067057001	0.6	3	4.9	3	18.5	120	6.5
Shed-067057014	067057014	0.3	2	6.1	29	1.1	7	6.4
Shed-067060003	067060003	5.0	31	6.3	28	16.2	109	6.7
Shed-067060004	067060004	0.2	1	5.4	14	1.2	7	5.6
Shed-067060005	067060005	3.9	20	5.1	18	20.4	111	5.5
Shed-067060016	067060016	0.0	0	-	0	0.2	1	5.8
Shed-067060020	067060020	0.0	0	-	0	11.8	71	6.0
Shed-067063004	067063004	33.0	210	6.4	16	213.0	1341	6.3
Shed-SDA010	SDA010	0.0	0	-	0	176.3	1173	6.7
Shed-SDA030	SDA030	0.0	0		0	99.2	890	9.0
Shed-SDA042	SDA042	0.0	0	-	0	166.2	998	6.0
Shed-SDA043	SDA043	0.0	0	-	0	69.7	418	6.0
Shed-SDA044	SDA044	0.0	0	-	0	144.6	868	6.0
Shed-SDA047	SDA047	0.0	0	-	0	200.8	1205	6.0
Shed-SDA048	SDA048	0.0	0	-	0	113.3	680	6.0
Shed-SDA049	SDA049	0.0	0	-	0	238.9	1434	6.0
Shed-SDA051	SDA051	0.0	0	-	0	88.6	531	6.0
Shed-SDA084	SDA084	0.0	0	-	0	225.0	1351	6.0
Shed-SDA110	SDA110	0.0	0	-	0	78.6	472	6.0
Shed-SDA271	SDA271	0.0	0	-	0	26.4	159	6.0
Shed-SDA272	SDA272	0.0	0	-	0	226.0	1356	6.0
Shed-SDA275	SDA275	0.0	0	~	0	263.6	1600	6.1
Shed-SDA276	SDA276	0.0	0	-	0	519.5	3134	6.0
Shed-SDA291	SDA291	0.0	0	-	0	134.3	806	6.0
Shed-SDA310	SDA310	0.0	0	-	0	370.6	2247	6.1
Shed-SDB010	SDB010	0.0	0	-	0	0.0	0	-
Total		70.9	470	6.6	2	3583.0	22352	6.2

AJ Sunrise Douglas Sewershed Load Manholes and Land Use Projections

AJ Sunrise Douglas Trunk Sewer Data and Model Results Buildout 10-Year Design Storm

Link ID	US Manhole	DS Manhole	Link Type	Diameter (in)	Length (ft)	US Rim Elev. (Fi)	US invert (ft)	OS Rim Elev. (ft)	DS Invert (R)	Slope, %	Full Capacity (mgd)	Peak Flow (mgd)	% Full Capacity	DS d/D
0670430011	067043001	067043012	Pipe	18 0	205.0	168 480	141 580	168 600	139 390	1 083	7 01	20115	29	10
067043012 2 067043014 1	067043012 067043014	067060018 067043015	Pipe	18 0	15.0	168 600	139 390	169 120	139 120	1 600	9 12	2 0812	23	10
067043015 1	087043015	067043015	Pipe Pipe	150	354 0	165 320	143 820	165 770	143 520	0 150	162	1 1242	60 70	08
067043016 1	067043016	067043017	Pipe	150	212 0	166 200	142 900	167 000	142 560	0 151	162	1 1228	69	08
057043017.1	067043017	067043018	Pipe	150	135 0	167 000	142 530	187 500	142 330	0.148	161	1 1374	71	06
067043018 1	067043018	067043001	Pipe	15.0	319 5	167 500	142,260	168 480	141 870	0 128	1 50	1 1502	<u></u>	04
0870480151	067046015	087057001	Ріре	120	256 0	169 500	154 500	169 550	154.000	0 195	1 02	0 6234	61	06
057049006 1 057050009 1	067049005	087080017 087049008	Pipe	380	895.0 952.5	169 400	140 430 141 470	169 240	139 640	0 114	14 54	13 1853	91	08
087055005 1	087055005	067057014	Ppe	120	228.0	170 000	155 500	169 800	155 050	0 197	102	0 5668		65
067055010 1	087055010	067055005	Pipe	120	248.0	170 280	156 180	170.000	155,550	0 254	110	0 5256	45	05
067057001 1	087057001	067060003	Раре	12.0	300 0	169 550	153.950	169 200	153 350	0 200	103	0 7064	69	0.0
067057014 1	087057014	067046015	Ppe	12.0	228 0	169 600	155 000	169.500	154 550	0 197	1 02	0 5715	56	0.5
067060003 1	067060003	067060004	Ppe	120	211 0	169 200	153 300	159 040	152 890	0 194	1 02	0 7811		06
067060004 1 067060005 1	067080004 067080005	067080005	Ppe Ppe	12 0	236 0 86 0	169 040	152 840	168 330	152 380 152 120	0 195	102	0 7861 0 8677	77 70	06
067080016 1	067060016	067043001	Pipe	120	203.3	168 300	152 120	168 480	143 060	4 447	4 06	0 60//	18	03
067060017 1	067060017	067060018	Pipe	360	17.0	169 240	139 640	169 120	139 120	3 059	75.48	13 1855	17	07
087060018 1	067060018	067060019	Pipe	42.0	882 0	169 120	139 120	164 000	138 238	0 100	20 59	15 0924	73	05
0670600191	067050019	AJ4135	Pipe	42.0	168 B	164.000	138.238	160 500	138 069	0.100	20.60	15 0923	73	04
067060020.1	067060020	067060021	Pipe	80	70 0	166.600	150,400	167 100	147 740	3 800	1 52	0 0505	3	02
0670600211	067060021	067043012	Pipe	80	225.0	167 100 164 930	147 640	168 600	142 500	2 284	1.18	0 0507	4	02
SDA010 1	067063004 8DA010	067043014 67050009	Pipe	38.0	547.0	164 930	142 470	165 320	143 830	0 143 D 165	158	13 1910	<u>60</u> 75	06
SOA020 1	SDA020	5DA010	Pipe	36.0	617.0	176 700	143 490	172 300	142 570	0 149	1606	12 4537	75	08
SDA030 1	5DA030	5DA020	Pipe	360	648.0	178 700	144 560	176.700	143.590	D 150	15 70	12 4565	75	0.6
SDA040 1	5DA040	SOA030	Pipe	36.0	865.0	178 400	145 970	176.700	144 660	0 151	18 79	11 9355	71	06
SDA0411	SDA041	SDA040	Pipe	27 0	141.0	179 600	146 920	178.400	146.720	0.142	7 55	4 2742	57	0.5
SDAD42 1	5DA042	5DA041	Pipe	24.0	2057 7	164,000	153 230	179.800	147,910	0 18D	6 21	4.2764	69	0.5
SDA043 1 SDA044 1	SDA043 SDA044	SDA042 SDA043	Pipe	21.0	1817 7 1144 D	187.000	157.770	184,000	153 230	0 250	512	3 5993	70	07
SDA045 1	SDA045	SDA044	Рире	18 0	1460.0	193.000	160 630	167.000 167.230	157 770	0 250	5 13 6 14	3 3105 2 7090	85	0.6
SDA046 1	SDA046	SDA045	Pype	180	1230.0	219.550	185 150	193.000	172 850	1 000	6 80	2 3364	34	0.3
SDA0471	SDA047	SDA046	Pipe	18.0	2600.0	229.550	211.250	219.550	185.200	1 002	6.80	2 3365	34	0.4
SDA048 1	80A040	SDA047	Pipe	18 0	1830.0	238.960	213.260	229 550	211.350	0 104	2.20	1 4050	68	0.4
SDA049.1	SDA049	SDA048	Pipe	180	2850.0	250.040	218.940	236.960	213 260	0 199	3.03	1 0220	34	0.6
SDA050.2 SDA051.1	8DA050 SDA051	SDA040 SDA045	Pipe	27.0	125.0	179.200	148.470	178 400	148.720	1.400	2371	7 6738	32	0.5
SDA060 1	50A050	80A050	Pipe	27.0	493.0	177,800	155.580	179 200	146 570	1.422	1 82 23 90	7 6736	21 32	04
SDA070 1	50A070	SDA000	Pipe	27 0	500 0	177 500	161 380	177 800	155 630	1,150	21.49	7 8736	36	04
SDA080.1	SDA080	SDA070	Pipe	27.0	146 D	179 200	163 110	177.500	181 430	1,151	21.50	7 6736	30	04
SDA0011	SOADEI	SDA060	Pipe	15.0	191.0	180 300	185 610	179.200	184.160	0,759	3.64	0.9662	27	04
SOA082,1	SDA082	SDA061	Pipe	150	557 0	183 300	186 890	180 300	165.660	0.221	196	0 9663	49	0.4
SDA003.1	SDA083	S0A082	Pipe	15.0	447 0	182 900	167 920	183.300	166.940	0 219	196	0 9009	49	0.5
SDA064 1 SDA090 1	SDA064 SDA090	SDA083 SDA080	Pipe	150 27.0	109 0	183 000	168 210	182 900	167 970 163 160	0 220	198	0 9660 6 7901	49 76	0.5
SDA100 1	80A100	5DA090	Pipe	27 0	473 0	182 700	165 110	179 900	164 160	0 201	6 96	6 7903	76	0.5
SDA110.1	5DA110	SOA100	Pipe	24.0	500 0	185 400	166 360	182 700	165 360	0 200	0.55	6 7904	100	08
SDA120.1	SDA120	SDA110	Pipe	240	5610	184 970	167 410	165 400	166 410	0 175	618	0 4689	100	08
SDA130 1	8DA130	SDA120	Pipe	24.0	109 0	184 250	167 730	164 970	167 510	0 202	6 58	6 4693	99	09
SDA140 1	6DA140	S0A130	Pipe	24.0	2250	185 620	168 300	164 250	167 830	0 209	6 69	6 4697	07	80
SDA150 1 SDA160 1	SDA150 SDA160	SDA140 SDA150	Pipe	24.0	500 0	188 990	169 400	165.620	169 450	0 210	671	6 4913 6 4978	97 97	0.8
SDA1701	SDA100	SOA160	Pipe Pipe	240	500 0	193.760	171.650	192.740	170 550	0 220	687	6 5066	95	08
SDA180 1	SDA180	SDA170	Pipe	240	500.0	195.480	172 700	193,760	171 650	0 210	671	6 5091	97	0.8
SDA190 1	SDA190	SDA160	Рири	240	500 0	200 510	173.800	195 480	172 750	0 210	671	6 5096	97	0.6
SDA200 1	SDA200	SDA 190	Pipe	24.0	500 0	200 510	174 900	200 510	173 850	0 210	871	6 5114	97	0.5
SDA210 1	50A210	5DA200	Pipe	24 0	500 0	203 010	176 000	200 510	174 950	0 210	671	6 5139	07	0.8
SDA220 1 SDA230 1	50A220 50A230	SDA210 SDA220	Pipe Pipe	24.0	500 0	200 660 201 430	177 100	203 010 200 660	178 050	0 210	671	0 5150	97 100	08
SOA2401	50A240	SDA230	Pipe	240	434 0	201 430	179 100	200 660	178 190	0 210	670	6 5213	97	08
SDA250 1	SDA250	SDA240	Pipe	240	300.0	202 790	179 780	202.790	179 100	0 227	697	6 5278		08
SDA260 1	SDA260	SDA250	Рфе	24.0	445 0	204 330	180.460	202,790	179 830	0 142	5 51	6 5362	100	0.8
SDA270 1	SDA270	SDA260	Ppe	24.0	500 0	208 220	181 560	204 330	160 510	0 210	671	6 5495	96	09
50A2711	50A271	50A270	<u>Pype</u>	150	1047 5	204 000	183 890	208 220	182 310	0 151	162	1 0597	65	0.9
SDA272 1 SDA273 1	50A272 50A273	80A271 80A270	Pge Pge	120	743 3 400 0	200 000 205 860	185 370	204 000	183 890 182 310	2 107	103	0 9685	94 55	07
5DA2741	50A274	SDA273	Pipe	150	1213 3	205 880	203 610	205 860	190 790	1 057	4 30	3 3500		0.9
SDA2751	SDA275	SDA274	Pipe	150	1338.3	230 000	212,210	221 000	203.610	0.643	335	3 3531	100	07
SDA276 1	SDA276	SDA275	Pipe	12.0	1102.0	237 540	229 340	230.000	212.460	1 532	2 85	2 2347	78	10
SDA260 1	SDA280	SDA270	Pipe	16.0	500 0	206 470	184 780	208 220	182 060	0 540	4 99	2 1811	43	09
SDA290 1	SDA290	SDA760	Pipe	18.0	1134.9	215 380	190 190	206 470	184 810	D 474	4 68	2 1736	48	05
SDA291 1	SDA291	5DA290	Pipe	120	616.7	215 380	191 930	215 380	190 690	0 201	1 03	0 5781	58	04
SDA300 1 SDA310 1	SDA300 SDA310	SDA290 SDA300	Pipe Pipe	18 0 15 0	2870 D 2800 D	250 000 260 030	229 230 240 430	215 360 250 000	191 010 229 230	0 400	8 13 2 64	1 6010	20 81	03
			C (1-10)		40000	200 0.30		¥30 000	118630	0.000				


TRUN	SEWER SYSTEM PROJECT DESCRIPTION
PROJECT ID: LOCATION:	SDA-1 TRUNK SHEDAJ Sunrise Douglas South of Douglas Rd. between Jaeger Rd. and east of Grant Line Rd.
BRIEF PROJECT DESCRIPTION:	9970 feet of 18-inch pipe, 2960 feet of 21-inch pipe, and 2960 feet of 24-inch pipe.
MODEL REFERENCE: LOCATION OF CAPACITY DEFICIENCY: REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW:	SDA049 to SDA041 N/A Expansion for future development 1.0 mgd (upstream) to 4.3 mgd (downstream). 0% 100%
SPECIAL CONSIDERATIONS:	This project requires the Aerojet Interceptor.
ALTERNATIVES:	


MAJOR ITEMS	DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST	COST
Baseline Pipe Construction Cost						
SDA049 to SDA048	18	>24	2850	\$	310	\$ 883,500
SDA048 to SDA047	18	20-24	1830	\$	290	\$ 530,700
SDA047 to SDA045	18	>24	3830	\$	310	\$ 1,187,300
SDA045 to SDA044	18	16-20	1460	\$	270	\$ 394,200
SDA044 to SDA042	21	>24	2960	\$	340	\$ 1,006,400
SDA042 to SDA041	24	>24	2960	\$	380	\$ 1,124,800
Structures						
Trunk junction structure			1	\$	12,000	\$ 12,000
Subtotal						\$ 5,138,900
Mobilization and Demobilization					5%	\$ 256,945
Construction Cost Subtotal						\$ 5,395,845
Contingencies for Unknown Subsurface Conditions					25%	\$ 1,348,961
Construction Cost Total						\$ 6,744,806
Engineering, Administration, and Legal Costs					25%	\$ 1,686,202
Capital Improvement Cost Total						\$ 8,431,008
				rounde	d	\$ 8,431,000

TRUNI	K SEWER SYSTEM PROJECT DESCRIPTION
PROJECT ID:	SDA-2 TRUNK SHEDAJ Sunrise Douglas North of Douglas Rd. between Security Park Dr. and Grant Line Rd. South of Douglas Rd. between Mather East Rd. and Grant Line Rd. Along Jaeger Rd. between Douglas Rd. and Pericles Rd. and Sunrise Blvd. at Chrysanthy Blvd. Connects to the Aerojet Interceptor at MH AJ4135.
BRIEF PROJECT DESCRIPTION	1100 feet of 12-inch pipe, 6800 feet of 15-inch pipe, 4300 feet of 18-inch pipe, 140 feet of 27-inch pipe, and 170 feet of 42-inch pipe.
MODEL REFERENCE: LOCATION OF CAPACITY DEFICIENCY: REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW:	0%
SPECIAL CONSIDERATIONS: ASSUMPTIONS: ALTERNATIVES:	This project requires SDA-1 and the Aerojet Interceptor.

MAJOR ITEMS	DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST	COST
Baseline Pipe Construction Cost						
SDA310 to SDA300	15	20-24	2800	\$	250	\$ 700,000
SDA300 to SDA270	18	20-24	4300	\$	290	\$ 1,247,000
SDA276 to SDA275	12	<16	1100	\$	190	\$ 209,000
SDA275 to SDA270	15	16-20	2950	\$	240	\$ 708,000
SDA271 to SDA270	15	16-20	1050	\$	240	\$ 252,000
SDA041 to SDA040	27	>24	140	\$	420	\$ 58,800
MH 067060019 to AJ4135	42	>24	170	\$	600	\$ 102,000
Structures						
Trunk junction structure			1	\$	12,000	\$ 12,000
Subtotal						\$ 3,288,800
Mobilization and Demobilization					5%	\$ 164,440
Construction Cost Subtotal						\$ 3,453,240
Contingencies for Unknown Subsurface Conditions					25%	\$ 863,310
Construction Cost Total						\$ 4,316,550
Engineering, Administration, and Legal Costs					25%	\$ 1,079,138
Capital Improvement Cost Total						\$ 5,395,688
				round	əd	\$ 5,396,000

TRUNI	K SEWER SYSTEM PROJECT DESCRIPTION
PROJECT ID: LOCATION:	SDPS TRUNK SHEDAJ Sunrise Douglas Along Sunrise Blvd. between Douglas Rd. and Chrysanthy Blvd. Along Chrysanthy Blvd. east of Sunrise Blvd.
BRIEF PROJECT DESCRIPTION	4520 feet of 6-inch force main and a 0.2 mgd pump station.
MODEL REFERENCE: LOCATION OF CAPACITY DEFICIENCY: REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW: SPECIAL CONSIDERATIONS: ASSUMPTIONS:	SDCFM1 to MH 067060022 N/A Expansion for future development 5.3 mgd. 0% 100% This facility will remain interim until the Aerojet Interceptor is constructed.
ALTERNATIVES:	
MAJOR ITEMS	DIA. (in) DEPTH (feet) LENGTH UNIT COST COST
Baseline Pipe Construction Cost SDCFM1 to MH 067060022	6 Force Main 4520
Structures, Pits, and Pump Stations 0.2 mgd pump station	1

Appendix F:

Permanent Shed Shift – AJ Sunrise Douglas Trunk Shed & LC Upper Laguna Creek Trunk Shed

Board of Directors Representing:

County of Sacramento City of Citrus Heights City of Elk Grove City of Folsom City of Rancho Cordova City of Sacramento

Mary K. Snyder District Engineer

Christoph Dobson Collection System Manager

Wendell H. Kido District Manager

Marcia Maurer Chief Financial Officer

10545 Armstrong Avenue Mather, California 95655

Tel 916.876.6000 Fax 916.876.6160 www.sacsewer.com SK: ms

SRCSD Development Services cc:

zoller.021309.ltr

Sincerely,

Salam Khan, P.E. Sacramento Area Sewer District **Development Services**

1771 Tribute Road, Suite E Sacramento, CA 95815-4487

Shed Shift Request for 'SunCreek Specific Plan' Subject: Approval

Dear Mr. Zoller:

Craig Zoller MacKay & Somps

Sacramento Area Sewer District (formerly CSD-1) staff reviewed the last submittal of the Shed Shift Request for the 'SunCreek Specific Plan' and finds it sufficiently addresses previous comments, and is considered approved. Any significant change in the proposed and/or assumed land use presented in this document, which impacts the sewer design, may require a revision to this study.

A sewer study associated with this project may be submitted for review and/or approval. If you have any questions regarding these comments, please call Amandeep Singh at (916) 876-6296 or myself at (916) 876-6094.

February 13, 2008 E225.000

SERVING YOU 24/7

SEWER DISTRICT

SACRAMENTO AREA

PERMANENT

CSD-1 Master Plan <u>Permanent</u> Shed Shift Request Form

Expansion Area Relief Area <u>Note:</u> (CSD-1 Master Plan does not have cost estimates or plan & profiles)

*Originator: Mackay & Somps For Sun (yeek Owners Date: 7-7-2008

Requested change: Shift portion of AJ Sunrise Douglas Trunk Shed (sheds: SDA049, SDA048, SDA 047 & SDA051) to LC Upper Laguna Creek Trunk Shed. Shifted Sheds will outfall to Laguna Creek Interceptor Section 5 (LCI-5) instead of SDA-1 Trunk.

Describe related facilities: (Pump station, force main, trunks, etc.)

The affected facilities are the SDA-1 Trunk, Laguna Creek Interceptor and the Aerojet Interceptor. All Facilities proposed with the Sun Creek development have been sized to accommodate the requested Shed shift.

Reason for change: The ultimate location of the Laguna Creek Interceptor will be within Chrysanthy BLvd which will eliminate the need for the SDA-1 Trunk east of the "Preserve" development. SASD # SRCSD participated in the decision to locate LCI-5 within Chrysanthy Blvd.

List of Trunk Sheds Impacted:

AJ Sunrise Douglas: SDA 049, SDA 048, SDA 047, SDA 051

Summary of Total Cost Impact to District, Total change in PWWF, Acreage, ESDs: AJ Sunrise Douglas Trunk Shed cost are reduced by \$6,005,000°; PWWF is reduced by 2.91 mgd, area is reduced by 641.5 acres and ESD's are reduced by 3,850. LC Laguna Creek Trunk Shed cost are reduced by \$4,599,000; PWWF is increased by 3.99 mgd, area is increased by 686.4 acres and the ESD's served is increased by 5,949.

* Originator completes this side of the form.

PERMANENT

This side of the form is for DEPARTMENTAL USE ONLY:

Note: Attach modeling results before forwarding to sections 2,3, and 4.

		Initials	Recommend Approval (√)	<i>Recommend</i> Denial (√)
1	Collection Systems Capacity Management & Master Planning			
2	CSD-1 District Design & Rehabilitation Engineering			
3	Major Conveyance Engineering			
4	Development Services			

Reason for recommending denial:
Other comments:

This box to be completed by Section 4: (Development Services)

Change	□ approved	□ denied	BY:	Date:

CSD-1 SEWERAGE FACILITIES EXPANSION MASTER PLAN 2006 UPDATE

(REVISED) LC UPPER LAGUNA CREEK TRUNK SHED

Area Description

The LC Upper Laguna Creek Trunk Shed is located east of Sunrise Boulevard and west of the Kiefer Land fill. The majority of the shed is located west of Grant Line Road. The trunk shed includes the SunCreek Specific Plan area, the Arboretum (Weagell/Lewis) development, and is expected to start developing in 2009 through 2020. Areas east of Grant Line Road are anticipated to start developing in 2012.

Trunk System Facilities

The SunCreek Specific Plan area and the Arboretum would be served by two major trunk sewers (Trunks LCK and LCJ), which would flow from east to west. The area south of Jackson Road and east of Grant Line Road would be served by trunks extending south on Sunrise Boulevard (Trunk LCY) and east on Jackson Road (Trunk LCZ). Most of the trunk sewers in this shed would connect to Section 5 of the Laguna Creek Interceptor; Trunk LCY would connect to the upper end of Section \$ of the Interceptor.

The Laguna Creek Interceptor Section 5 is anticipated to be on line in 2009 and constructed with the first phase of the SunCreek Specific Plan area development. Since the lower Sections of the Interceptor are not anticipated to in place when Section 5 is operational, interim trunk facilities would be required to serve the SunCreek Specific Plan area and the Arboretum. The interim solution would be to pump wastewater north on Sunrise Boulevard to the upstream end of the Mather Interceptor.

Project	Diam.	Length	Phase	Estimated	Estimated Capital
ID	(in.)	(ft.)		Construction	Cost (\$)
				Cost (\$)	
LĊJ	15-18	3,710	2011-2020	1,678,793	2,098,000
LCK	12-21	16,940	2009-2020	7,491,900	9,365,000
LCY	15-24	8,150	After 2020	4,908,750	6,136,000
LCZ	15-24	7,950	After 2020	5,119,931	6,400,000

Trunk Projects

Attachments

- Trunk shed map showing proposed trunk sewers, sizes, model manhole ID numbers, and sewer sheds.
- Project map showing trunk projects and interim facilities (if needed).
- Trunk shed ESD projections by sewer shed.
- Sewer shed load manholes.
- Trunk project cost estimates.

Revised LC Upper Laguna Creek Severshed Load Manholes and Land Use Projections

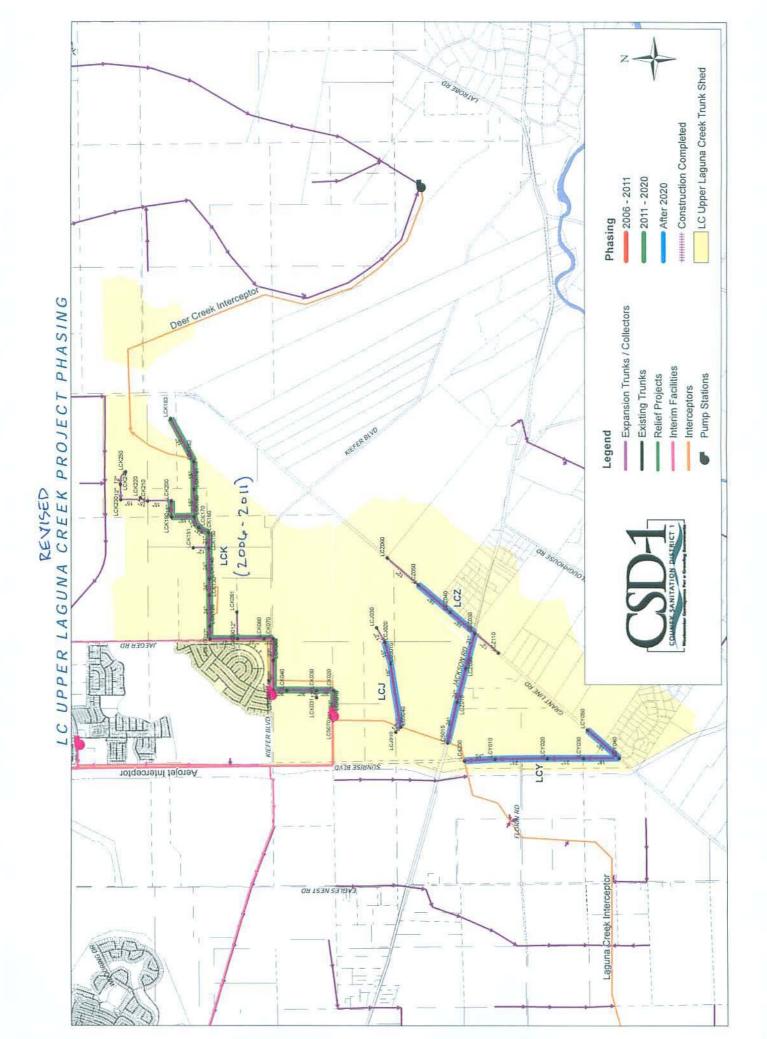
			20	2003			TURNING	
Sewershed	Load Manhole	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)	% Buildout	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)
Shed-067067017	67067017	0.0	0		0	197.7	1186	9
Shed-LCJ010	LCJ010	0.0	0		0	366.2	2197	9
Shed-LCJ020	LCJ020	0.0	0		0	120	720	9
Shed-LCJ030	LCJ030	0.0	0		0	210.8	1265	9
Shed-LCJ910	LCJ910	0.0	0		0	191.1	1147	9
Shed-LCK010	LCK010	0.0	0		0	36.6	220	9
Shed-LCK020	LCK020	0.0	0		0	165.2	1190	7.2
Shed-LCK030	LCK030	0.0	0		0	73.4	551	7,5
Shed-LCK031	LCK031	0.0	0		0	144	862	9
Shed-LCK040	LCK040	0.0	0		0	126.8	761	9
Shed-LCK050	LCK050	0.0	0		0	1.1	43	9
Shed-LCK060	LCK060	0.0	0		0	313,4	1880	9
Shed-LCK070	LCK070	0.0	0		0	229.6	1630	7
Shed-LCK080	LCK080	0.0	0		0	81.3	675	8.3
Shed-LCK081	LCK081	0.0	0		0	208.5	1444	6.9
Shed-LCK090	LCK0B0	0.0	0		0	20	419	9
Shed-LCK091	LCK091	0.0	0		0	87.4	177	8.8
Shed-LCK092	LCK092	0.0	0		0	219.1	1315	9
Shed-LCK093	LCK093	0.0	0		0	202.6	1684	8.3
Shed-LCK100	LCK100	0.0	0		0	15.2	91.6	9
Shed-LCK110	LCK110	0.0	0		0	14.8	89	9
Shed-LCK120	LCK120	0.0	0		0	217.1	1419	6.5
Shed-LCK130	LCK130	0.0	0		0	234.6	1407	9
Shed-LGK140	LCK140	0.0	0		0	76.3	456	6
Shed-LCK150	LCK150	0.0	0		0	113.3	680	6
Shed-LCK151	LCK151	0.0	0		0	196.9	1180	g
Shed-LCK160	LCK160	0.0	0		0	238.9	1434	9
Shed-LCK170	LCK170	0.0	0		0	54.8	329	9
Shed-LCK180	LCK180	0.0	0		0	50.7	304	9
Shed-LCK181	LGK181	0.0	0		0	63.9	383	9
Shed-LCK182	LCK182	0.0	0		0	59Z	460	9
Shed-LCK183	LCK183	0.0	0		0	241.4	1448	9
Shed-LGK190	LCK190	0.0	0		0	46.4	278	9
Shed-LCK200	LCK200	0.0	0		0	17.7	106	9
Shed-LCK220	LCK220	0.0	0		0	26	155	9
Shed-LCK230	LCK230	0.0	0		0	153.7	920	9
Shed-LCK250	LCK250	0.0	0		0	153,7	920	9
Shed-LCY010	LCY010	0.0	0		0	243.8	1463	9
Shed-LCY030	LCY030	0.0	0		0	234.5	1407	6
Shed-LCY040	LCY040	0.0	0		0	191.9	1151	8
Shed-LCY050	LCY050	0.0	0		0	234.8	1409	9
Shed-LCZ020	LCZ020	0.0	0		0	89.4	537	9
Shed-LCZ030	LCZ030	0.0	0		0	175.2	1051	9
Shed-LCZ050	LCZ050	0.0	0		0	221.5	1329	9
Shed-LCZ060	LCZ060	0.0	0		0	137.8	827	6
Shed-LCZ110	LCZ110	0.0	0		0	232.8	1397	6
						0.0000	10.000	

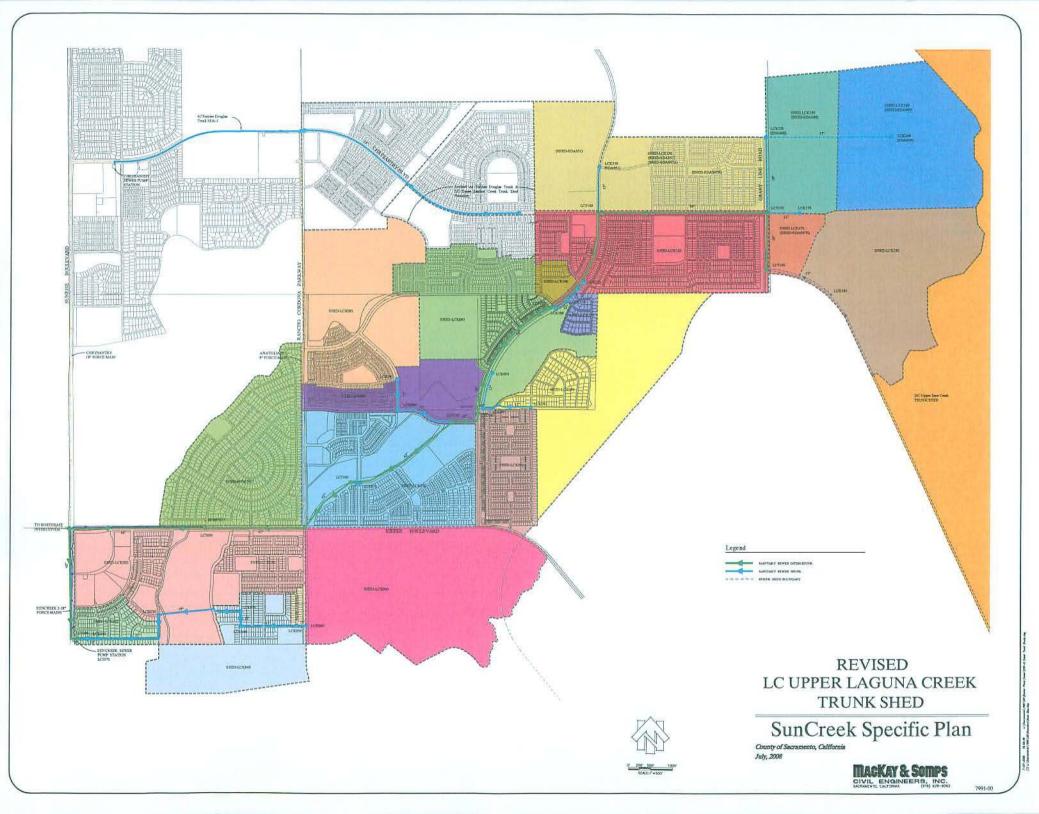
Denotes revised data

Revised LC Upper Laguna Creek Trunk Sewer Data and Model Results Buildout 10-Year Design Storm

0													1																																			Π	Π
D/p SO	0.7	0.6	0.6	0.5	0.5	0.7	0.7	0.8	0.4	0.7	0.4	0.7	0.8	0.7	0.8	0.3	0.7	0.7	0.7	0.4	0.6	0.5	0.6	0.6	0.6	0.4	0.5	0.5	0.5	0.6	0.4	0.6	0.4	0.4	0.4	0.6	0,4	0.4	0.6	0.7	0.6	9.0	0.4	0.4	0.6	0.7	0.7	0.7	0.8
% Full Capacity	91	73	60	73	71	92	92	96	57	81	13	82	96	89	96	19	88	85	88	31	65	56	62	64	63	45	39	52	37	64	0±	28	37	33	44	32	46	79	79	73	72	58	33	73	92	89	89	54	92
Peak Flow (mod)	0.9300	2.9880	1.4198	0.9055	0.8220	3.4100	3.2500	2.4300	0.6174	2.0500	1.6800	1.4600	1.2100	1.5700	1.0800	2.6800	1.5500	1.0300	1.2000	1.2500	1.1500	1.0800	1.1000	1,6300	1.1200	0.2700	3.0935	4.6356	1.3633	1.1300	1.2467	1.0513	0.9762	0.8764	0,7686	0.6591	0.6598	3.8141	2.8029	2.8128	1.8223	1.0057	3.6290	3.6296	3.2564	1.5320	1,5324	0.5904	0.9921
Full Capacity (mgd)	1.03	4.07	2.37	1.24	1.15	3.69	3.55	2.54	4.09	2.54	13.20	1.60	1.26	1.60	1.12	14.27	1.60	1.22	1.36	4.08	1.61	1.91	1.60	2.54	1.60	0.61	8.00	3.43	3.72	1,60	4,78	3.74	2.64	3,00	4,75	2,06	4,19	4.80	3.54	3.84	2.54	1.74	11.09	4,94	3.54	1.73	1.73	1,09	1.08
Slope, %	0.200	0.360	0.320	0.289	0.247	0.130	0.120	0.140	0.225	0.140	10.000	0,180	0.300	0.180	0.240	11.700	0.180	0.280	0.350	3.150	0.600	0.700	0.180	0.140	0.180	0.600	0.608	0.561	0.790	0.180	0,181	0.800	0.400	0,514	0.475	0.801	3,299	0.107	0.120	0.140	0.140	0.174	0.572	0.114	0.120	0.171	0.172	0.222	0.022
DS Invert (ft)	120.200	97.001	107.182	110.479	95.079	113.100	113.900	116.500	112,100	119.300	120.100	133.000	131.600	140.800	143.500	143.500	147.100	147,800	147,300	160.500	166,900	169,000	181,500	217.000	220.300	217.100	151.400	155,800	163.300	215.900	155.400	157.200	162.800	166.800	468,600	170,000	474,800	90.249	92.001	94.701	97.051	99.400	105.000	115.299	117.251	119.551	121.850	125.200	119.551
DS Rim Elev. (ft)	137,600	116,995	127.001	129.987	116.995	142.000	144.000	136.000	126,000	140.000	140.000	153.000	147.000	167.400	161.900	172.900	172.900	171.300	172.900	183.300	183,300	182.300	196.400	231.000	239.500	231.000	160.000	166.000	188,000	235.000	166.000	166.000	174.000	178.000	180.000	180,000	184,000	114.009	112.992	108.990	110.991	112.992	114,993	139.993	139.993	150.000	139,993	152.001	150.000
US Invert (ft)	120.300	106.932	110.230	112.497	95.322	113,800	116.200	119.200	413,090	119.800	132.900	133.400	132.000	143.200	145,200	147.000	147.500	150,600	150.300	166,800	168.900	172.800	183.400	220.100	225.500	221.600	154.900	163,300	171.700	219.250	157,200	162.800	166.800	168.600	170,000	174,800	187.400	91.749	94.701	96.800	99.150	102.001	115,299	117.001	119.049	121.850	124,951	129.199	122.851
US Rim Elev. (ft)	137.500	127.001	129.987	131.988	116.995	144.000	136.000	140.000	124,000	140.000	153.000	156.000	147.100	161.900	162.900	172.900	171.300	170.500	168.900	183.300	182.300	183.700	202.000	239,500	245.500	243.000	166.000	188.000	180.000	228.000	166.000	174,000	178.000	180.000	480.000	184,000	206.000	112.992	108.990	110.991	112.992	110.007	139.993	139.993	150.000	139.993	152.001	150.000	139.993
Length (ft)	30.0	2759.2	951.4	698.8	98.4	540.0	1940.0	1900.0	440.0	340.0	1280.0	210.0	130.0	1320.0	720.0	30.0	200.0	1000.0	860.0	200.0	330.0	540.0	1060.0	1730.0	2850.0	750.0	575.0	1320.0	1063.0	1862.0	883.0	200.0	1000.0	350.0	800.0	612.0	682.0	1400.9	2250.7	1499.3	1499.3	1499.3	1801.2	1499.3	1499.3	1348.4	1801.2	1801.2	1499.3
Diameter (in)	12	18	15	12	12	21	21	18	42	18	15	15	12	15	12	15	15	12	12	12	12	12	15	18	15	8	24	\$	\$	15	45	45	45	45	45	12	12	24	21	21	18	15	24	24	21	15	15	12	12
Link Type	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe	Pipe
DS Manhole	LC5090	LC5040	LCJ010	LCJ2020	LC5040	LC5080	LCK010	LCK020	LCK030	LCK030	LCK040	LCK050	LC5100	LC5110	LCK080	LC5120	LCK090	LCK091	LCK090	LC5130	LCK100	LCK110	LC5140	LC5150	LCK150	LC5150	LCK170	LCK180	LCK181	LC5160	LCK180	LCK190	LCK200	LCK210	LCK220	LCK230	LCK240	LC4230	LCY010	LCY020	LCY030	LCY040	LC5015	LCZ010	LCZ020	LCZ030	LCZ040	LCZ050	LCZ030
US Manhole	67067015	LCJ010	LCJ020	LCJ030	LCJ910	LCK010	LCK020	LCK030	LCK031	LCK040	LCK050	LCK060	LCK070	LCK080	LCK081	LCK090	LCK091	LCK092	LCK093	LCK100	LCK110	LCK120	LCK130	LCK150	LCK160	LCK170	LCK180	LCK181	LCK182	LCK183	LCK190	LCK200	LCK210	LCK220	LCK230	LCK240	LCK250	LCY010	LCY020	LCY030	LCY040	LCY050	LCZ010	LCZ020	LCZ030	LCZ040	LCZ050	LCZ060	LCZ110
Link ID	67067015.3	LCJ010.1	LCJ020.1	LCJ030.1	LCJ910.1	LCK010.1	LCK020.1	LCK030.1	LCK031.1	LCK040.1	LCK050.1	LCK060.1	LCK070.1	LCK080.1	LCK081.1	LCK090.1	LCK091.1	LCK092.1	LCK093.1	LCK100.1	LCK110.1	LCK120.1	LCK130.1	LCK150.1	LCK160.1	LCK170.1	LCK180.1	LCK181.1	LCK182.1	LCK183.1	LCK180.1	LCK200.1	LCK210.1	LCK220.4	LCK230.1	LCK240,1	LCK250.1	LCY010,1	LCY020.1	LCY030.1	LCY040.1	LCY050.1	LCZ010.1	LCZ020.1	LCZ030.1	LCZ040.1	LCZ050.1	LCZ060.1	LCZ110.1

Denotes revised data and results


	SEWER SY	STEM PR	OJECT DESCRI	PTION				
PROJECT ID: l	-CJ		TRUNK SHED.	LC Upp	ber Lagu	na Creek		
LOCATION:	North of Jackson Rd., south of Kiefer Rd., east of Sunrise Blvd., and west of Grant							
l	ine Rd. Co	innects to	Laguna Creek In	terceptor a	t MH LC	5040.		
BRIEF PROJECT DESCRIPTION: 9	950 feet of 1	5-inch pip	e and 2760 feet	of 18-inch p	oipe.			
				•	•			
MODEL REFERENCE:	-CJ020 to L	C5040						
	-03020 10 L N/A	00040						
	• •							
	•		evelopment					
	• • •	stream) to	3.0 mgd (downs	tream).				
)%							
PERCENT FOR FUTURE FLOW	100%							
SPECIAL CONSIDERATIONS:	This project	requires th	he Laguna Creek	Intercento	r			
ASSUMPTIONS:	ma project	ioquies li	ne Laguna Greek	merceptor				
ALTERNATIVES:								
				LENGTH				
MAJOR ITEMS		DIA. (IN)	DEPTH (feet)	(feet)	UNIT	COST		COST
Baseline Pipe Construction Cost								
LCJ020 to LCJ010		15	16-20	950	\$	240		\$228,000
LCJ010 to LC5040		18	20-24	2760	\$	290		\$800,400
Goetechnical Factors								
Cobble construction factor (undeveloped)			20% of baseline	pipe cost			\$	205,680
Structures								
Interceptor junction structure				1	\$	45,000	\$	45,000
Subtotal							\$	1,279,080
Mobilization and Demobilization						5%	\$	63,954
Construction Cost Subtotal							\$	1,343,034
Contingencies for Unknown Subsurface Cor	nditions					25%	\$	335,759
Construction Cost Total							\$	1,678,793
Engineering, Administration, and Legal Cost	s					25%	\$	419,698
Capital Improvement Cost Total							\$	2,098,49
					round	he	\$	2,098,000


	VER SYSTEM F	ROJECT DESCR							
PROJECT ID:	LCK			LC Upper La					
LOCATION:	West of Grar	nt Line Rd. north of	Kiefer Blvd and	east of Jaeger Rd	. North of				
	Chrysanthy E	Blvd.and parallel to	Americanos Blv	d Parallel and so	uth of Kiefer				
	Blvd. Connec	ts to Laguna Cree	k Interceptor at I	MH's 5080, 5100, S	5110, 5120,				
	5130, 5140, 5	5150, and 5160.							
BRIEF PROJECT DESCRIPTION:	3780 feet of 12-inch pipe, 8610 feet of 15-inch pipe, 2070 feet of 18-inch pipe and 2480 feet of 21-inch pipe.								
MODEL REFERENCE:		C5160, LCK160 to (092 to LC5120, Lo			1				
LOCATION OF CAPACITY DEFICIENCY:	N/A								
REASON FOR PROJECT:	Expansion fo	r future developme	ent						
DESIGN FLOW:	•	stream) to 3.4 mgd							
PERCENT FOR EXISTING FLOW:	0%	,	、						
PERCENT FOR FUTURE FLOW:	100%								
SPECIAL CONSIDERATIONS:	This project r	equires the Lagun	a Creek Intercep	tor.					
ALTERNATIVES									
MAJOR ITEMS	DIA. (in)	DEPTH (feet)	Length (feet)	UNIT COST	COST				
Baseline Pipe Construction Cost									
LCK183 to LC5160	15	16-20	1860	\$240	\$446,400				
LCK160 to LCK150	15	20-24	2850	\$250	\$712,500				
LCK150 to LC5150	18	20-24	1730	\$290	\$501,700				
LCK130 to LC5140	15	20-24	1060	\$250	\$265,000				
LCK120 to LC5130	13	16-20	1000	\$210	\$223,000				
LCK092 to LCK090	12	20-24	1000	\$220	•				
	12	20-24			\$220,000				
LCK093 to LCK090			860	\$220	\$189,200				
LCK090 to LC5120	15	24-28	30	\$260	\$7,800				
LCK081 to LCK080	12	16-20	720	\$210	\$151,200				
LCK080 to LC5110	15	20-24	1320	\$250	\$330,000				
LCK070 to LC5100	12	16-20	130	\$210	\$27,300				
LCK060 to LCK040	15	20-24	1490	\$250	\$372,500				
LCK040 to LCK020	18	20-24	340	\$290	\$98,600				
LCK020 to LC5080 Subtotal Baseline Pipe Construction Cost	21	24-28	2480	\$340	\$843,200				
·					\$4,390,100				
Geotechnical Factors Cobble construction factor (undeveloped)	20% of b	aseline pipe cost			\$878,000				
Surface Restoration									
Creek Restoration			200	\$400	\$80,000				
Structures									
Interceptor junction structure			8	\$45,000	\$360,000				
Subtotal					\$5,708,100				
Mobilization and Demobilization				5%	\$285,400				
Construction Cost Subtotal				_	\$5,993,500				
Contingencies for unknown subsurface conditions				25%	\$1,498,400				
Construction Cost Total				C	\$7,491,900				
Engineering, Administration and Legal Costs				25%	\$1,873,000				
Capital Improvement Cost Total			[rounded	\$9,365,000				

TRUN	K SEWER SYSTEM PR	OJECT DESCRI	PTION						
PROJECT ID:	LCY	TRUNK SHED							
LOCATION:	Along Grant Line Rd. and Jackson Rd. Con								
BRIEF PROJECT DESCRIPTION:	1500 feet of 15-inch p 1400 feet of 24-inch p		18-inch pipe	, 3750	feet of 21-in	ch pipe, and			
MODEL REFERENCE:	LCY050 to LC4230								
LOCATION OF CAPACITY DEFICIENCY	N/A								
REASON FOR PROJECT:	Expansion for future development								
DESIGN FLOW:	1.0 mgd (upstream) to 3.8 mgd (downstream)								
PERCENT FOR EXISTING FLOW:	0%								
PERCENT FOR FUTURE FLOW:	100%								
SPECIAL CONSIDERATIONS:									
ALTERNATIVES:									
MAJOR ITEMS	DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNI	г соѕт	COST			
Baseline Pipe Construction Cost									
LCY050 to LCY040	15	<16	1500	\$	220	\$330,000			
LCY040 to LCY030	18	<16	1500	\$	250	\$375,000			
LCY030 to LCY020	21	<16	1500	\$	280	\$420,000			
LCY020 to LCY010	21	16-20	2250	\$	300	\$675,000			

21	<16	1500	\$	280		\$420,000
21	16-20	2250	\$	300		\$675,000
24	20-24	1400	\$	350		\$490,000
20%	of baseline pipe	e cost			\$	458,000
5% o	f baseline pipe	costs				\$114,500
15% c	of baseline pipe	costs				\$343,500
	15	8150	\$	4		\$489,000
		1	\$	45,000	\$	45,000
					\$	3,740,000
				5%	\$	187,000
					\$	3,927,000
				25%	\$	981,750
				[\$	4,908,750
				25%	\$	1,227,188
				•	\$	6,135,938
			round	ted	\$	6,136,000
	21 24 20% 5% o	2116-202420-2420% of baseline pipe5% of baseline pipe15% of baseline pipe	2116-2022502420-24140020% of baseline pipe costs5% of baseline pipe costs15% of baseline pipe costs158150	2116-202250\$2420-241400\$20% of baseline pipe costs5% of baseline pipe costs5% of baseline pipe costs158150\$1\$	21 16-20 2250 \$ 300 24 20-24 1400 \$ 350 20% of baseline pipe costs 5% of baseline pipe costs 5% of baseline pipe costs 15 8150 \$ 4 1 \$ 45,000 5% 25% 25%	21 16-20 2250 \$ 300 24 20-24 1400 \$ 350 20% of baseline pipe costs \$ \$ \$ 5% of baseline pipe costs \$ \$ \$ 15 8150 \$ 4 1 \$ 45,000 \$ 5% of baseline pipe costs 1 \$ 45,000 \$ 15 8150 \$ 4 \$ \$ 1 \$ 45,000 \$ \$ \$ 5% \$ \$ \$ \$ \$ \$ 25% \$ \$ \$ \$ \$ \$ 25% \$ \$ \$ \$ \$ \$ \$ 25% \$ \$

		STEMPRO	OJECT DESCRI			. .			
PROJECT ID:	LCZ	_	TRUNK SHED.		-				
LOCATION:	Along Jacks	on Rd. bel	ween Grant Line	Rd. and Su	Inrise B	lvd.			
BRIEF PROJECT DESCRIPTION:	3150 feet of	15-inch pi	pe, 1500 feet of 2	21-inch pipe	e, and 3	300 feet c	of 24	-inch pipe.	
MODEL REFERENCE:	LCZ050 to L	.C5015							
LOCATION OF CAPACITY DEFICIENCY:	N/A								
REASON FOR PROJECT:	Expansion f	or future de	evelopment						
DESIGN FLOW:	1.5 mgd (up	stream) to	3.6 mgd (downs	tream)					
PERCENT FOR EXISTING FLOW:	0%								
PERCENT FOR FUTURE FLOW:	100%								
SPECIAL CONSIDERATIONS: ASSUMPTIONS:	This project requires the Laguna Creek Interceptor.								
ALTERNATIVES:									
MAJOR ITEMS		DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT	COST		COST	
Baseline Pipe Construction Cost						.		.	
LCZ050 to LCZ040		15	20-24	1800	\$	250		\$450,000	
LCZ040 to LCZ030		15	>24	1350	\$	270		\$364,500	
LCZ030 to LCZ020		21	20-24	1500	\$	320		\$480,000	
LCZ020 to LCZ010		24	20-24	1500	\$	350		\$525,000	
LCZ010 to LC5015		24	16-20	1800	\$	330		\$594,000	
Geotechnical Factors									
Cobble construction factor (undeveloped)		20%	of baseline pipe	cost			\$	482,700	
Traffic and Productivity Factors									
Increased Traffic Contol		5% c	of baseline pipe c	osts				\$120,675	
Congested traffic or utility corridor factor		15%	of baseline pipe of	costs				\$362,025	
Surface Restoration									
Pavement Restoration			15	7950	\$	4		\$477,000	
Structures									
Interceptor sewer junction structure				1	\$	45,000	\$	45,000	
Subtotal							\$	3,900,900	
Mobilization and Demobilization						5%	\$	195,045	
Construction Cost Subtotal							\$	4,095,945	
Contingencies for Unknown Subsurface Co	nditions					25%	\$	1,023,986	
Construction Cost Total							\$	5,119,931	
Engineering, Administration, and Legal Cos	its					25%	\$	1,279,983	
Capital Improvement Cost Total							\$	6,399,914	

CSD-1 SEWERAGE FACILITIES EXPANSION MASTER PLAN 2006 UPDATE

(REVISED) AJ SUNRISE DOUGLAS TRUNK SHED

Area Description

The AJ Sunrise Douglas Truck is located east of Sunrise Boulevard, north of Kiefer Boulevard, and west of the Deer Creek watershed. The majority of the shed is south of Douglas Road, but a portion of the shed is located north of Douglas Road along Grant Line Road. The trunk shed includes all but the southeastern corner of the Sunridge Specific Plan area. The Sunridge area has begun developing and will continue to develop during the 2006-2011 period. Areas east of Grant Line Road are not anticipated to start developing until the 2011-2020. period.

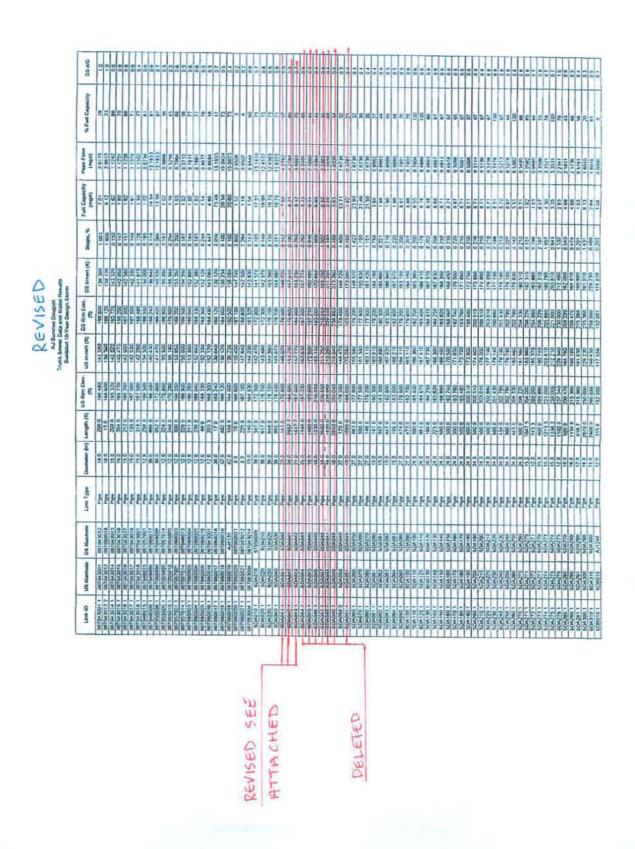
Trunk System Facilities

The trunk shed would be served by two major trunk sewers (Trunks SDA-1 and SDA-2) which would flow from east to west. Both trunk sewers would ultimately connect to the Aerojet Interceptor in Sunrise Boulevard. Portions of the trunk sewers, including an interim lift station and force main to the Northeast Interceptor have been constructed.

Because the Aerojet Interceptor is not scheduled for construction until after 2020, interim facilities are required. An interim regional lift station is planned, which will convey wastewater north along Sunrise Blvd. to the Mather Interceptor. Until this facilities is in place, scheduled for 2010, the existing interim lift station will be used.

Project	Diam.	Length	Phase	Estimated	Estimated Capital
ID	(in.)	(ft.)		Construction	Cost (\$)
				Cost (\$)	
SDA-1	12-18	4,780	2006-2011	1,620,1550	2,426,000
SDA-2	15-42	12,510	2011-2020	4,316,550	5,396,000

Trunk Projects

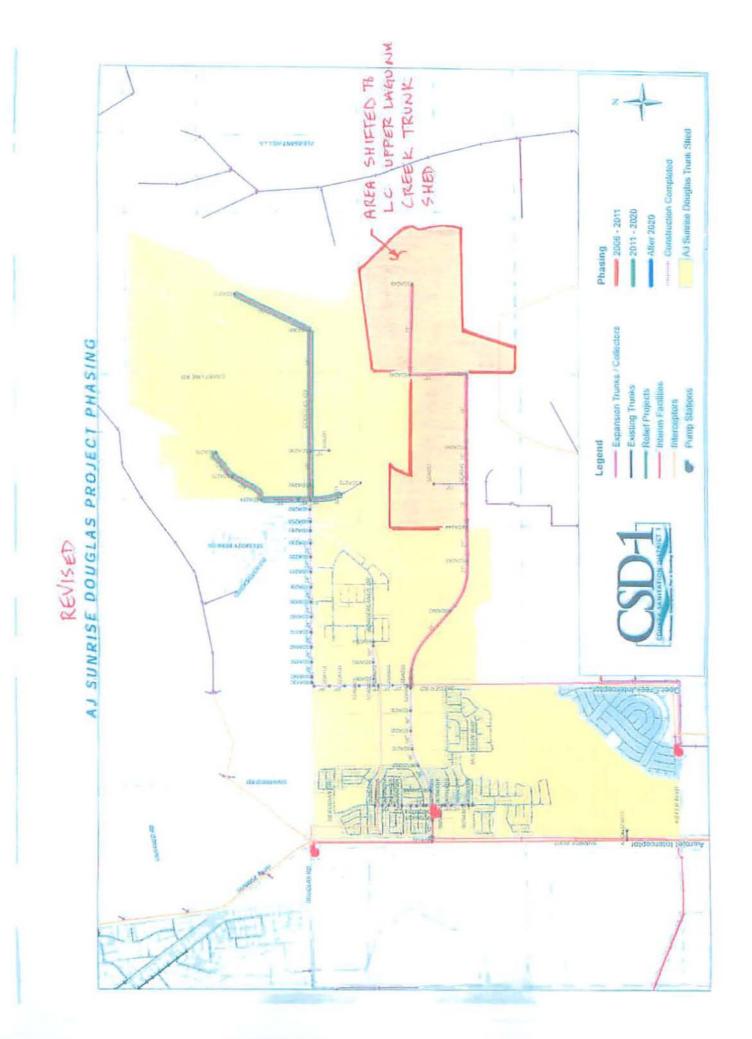

Attachments

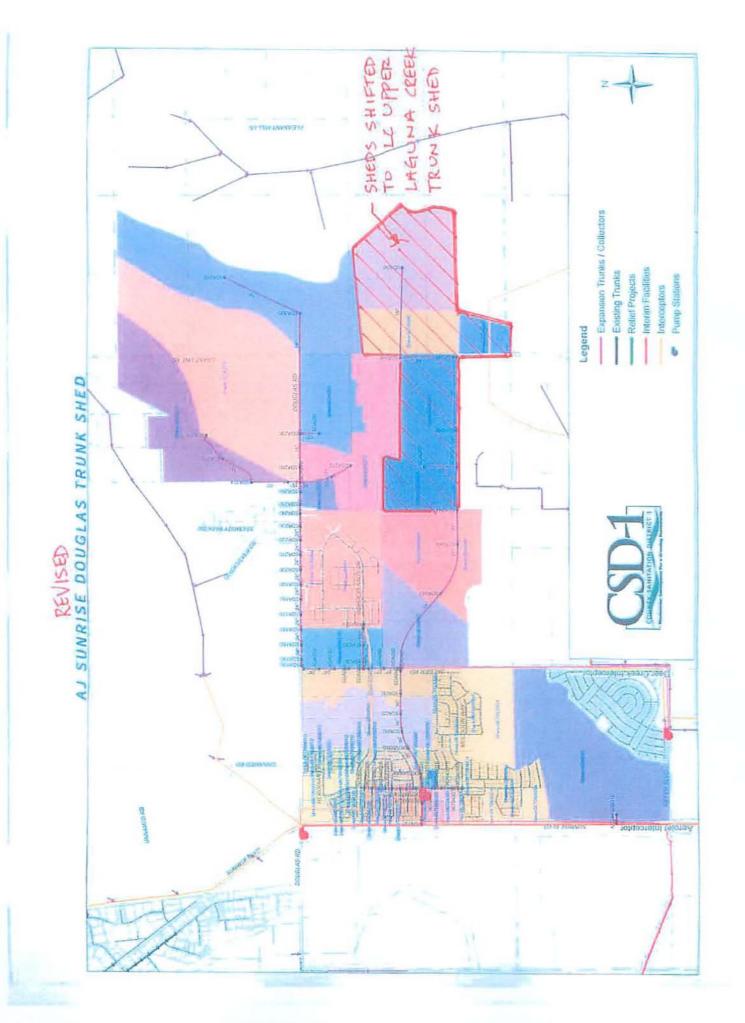
- Trunk shed map showing proposed trunk sewers, sizes, model manhole ID numbers, and sewer sheds.
- Project map showing trunk projects and interim facilities (if needed).
- Trunk shed ESD projections by sewer shed.
- Sewer shed load manholes.
- Trunk project cost estimates.

				2005			Buildout	
Sewershed	Load Manhole	Contributing Area (ac)	ESDs	ESD/A (ESD/ac)	% Buildout	Contributing Area (ac)	ESDs	ESD/A (ESD/ad
Shed-067043014	067043014	0.0	0		0	212	318	15.0
Shed-067043017	067043017	0.0	0		0	36	21	5.9
Shed-067043018	067043018	00	0	-	0	31	18	5.9
Shed-067046015	067046015	1.0	5	5.1	7	12.2	73	6.0
Shed-067055005	067055005	09	7	7.7	11	79	64	8.1
Shed-067055010	067055010	26.0	191	7.3	25	111 1	769	6.9
Shed-067057001	067057001	0.6	3	4.9	3	18.5	120	6.5
Shed-067057014	067057014	03	2	61	29	11	7	5.4
Shed-067060003	067060003	50	31	6.3	28	16.2	109	6.7
Shed-067060004	067060004	02	1	5.4	14	12	7	5.6
Shed-067060005	067060005	3.9	20	5.1	18	20.4	111	5.5
Shed-067060016	067060016	00	0		0	02	1	58
Shed-067060020	067060020	0.0	D		0	11.8	71	6.0
Shed-067063004	067063004	33.0	210	6.4	16	213.0	1341	6.3
Shed-SDA010	SDA010	0.0	0	-	0	176.3	1173	6.7
Shed-SDA030	SDA030	0.0	0		0	99.2	090	9.0
Shed-SDA042	SDA042	0.0	0		D	166.2	998	6.0
Shed-SDA043	SDA043	0.0	0	-	0	69.7	418	6.0
Shed-SDA044	SDA044	00	0		0	144.6	868	6.0
Shed-SDA047	SDA047	0.0	0		0	200.8	1205	6.0
Shed-SDA048	SDA048	0.0	0		0	113.3	680	6.0
-Shed-SDA049	SDA049	0.0	0	-	0	238.9	1434	6.0
Shed-SDA061	SDA051	0.0	0		0	88.6	531	6.0
Shed-SDA084	SDA084	0.0	0		0	225.0	1351	60
Shed-SDA110	SDA110	0.0	0		0	78.6	472	6.0
Shed-SDA271	SDA271	0.0	0		0	26.4	159	6.0
Shed-SDA272	SDA272	0.0	D		0	226.0	1356	6.0
Shed-SDA275	SDA275	0.0	0		0	263.6	1600	61
Shed-SDA276	SDA276	00	0		0	519.5	3134	6.0
Shed-SDA291	SDA291	0.0	0		0	134 3	806	6.0
Shed-SDA310	SDA310	00	0		0	370.6	2247	6.1
Shed-SDB010	SDB010	0.0	0	4	0	00	0	
Total		70.9	470	6.6	2	-3583-0-	22352-	6.2

AJ Sunrise Douglas Sewershed Load Manholes and Land Use Projections

P 30xxxxd Federa VulseCAD Projects/Pxdexit - mplCSD-1, Meter, Phrog Upd-te, Bryon D. Appendie B - Expension Projects/U Summe Drugtes/U Summe D

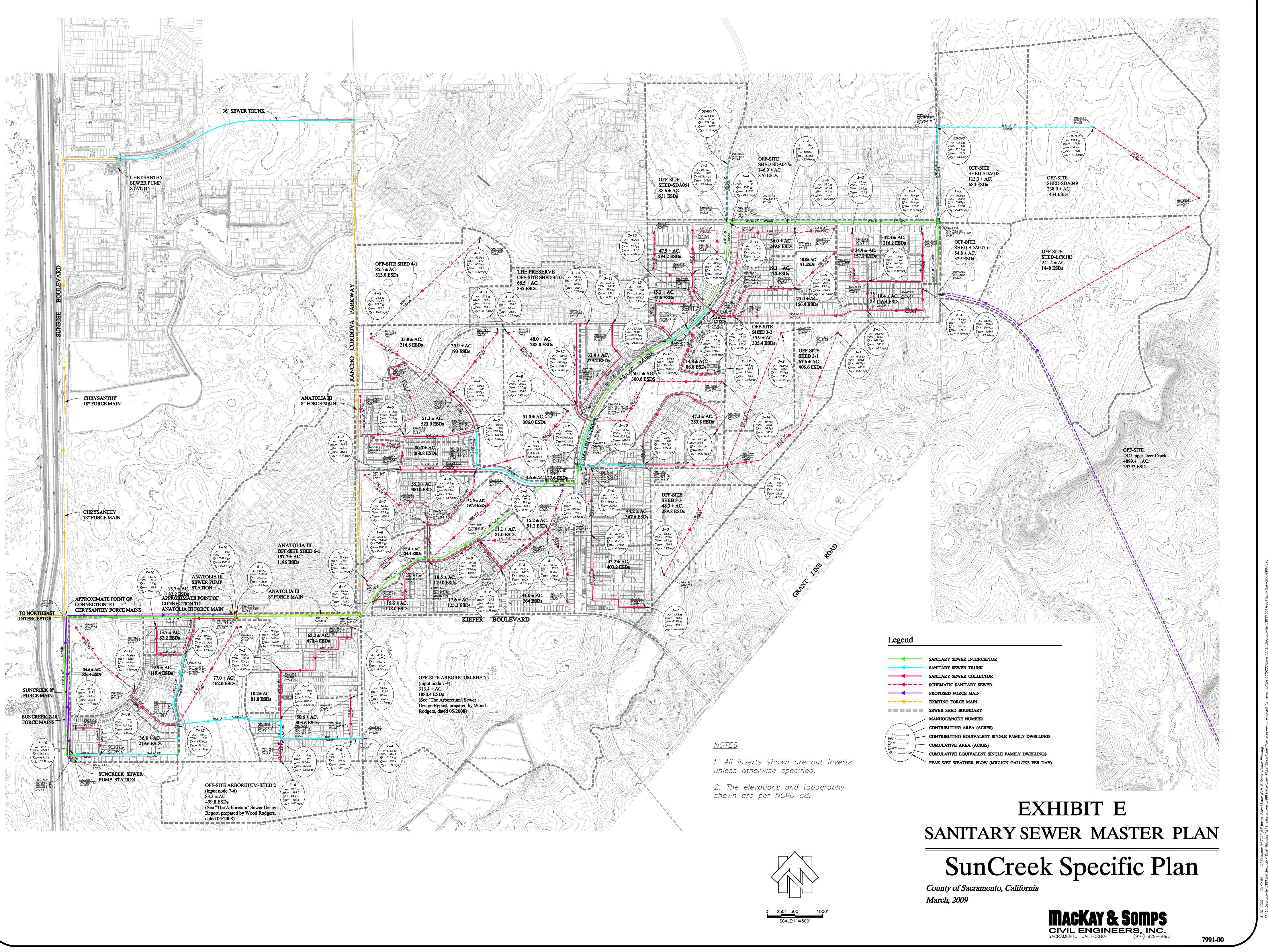

Revised AJ Sunrise Douglas Trunk Sewor Data and Model Results Buildout 10-Year Design Storm

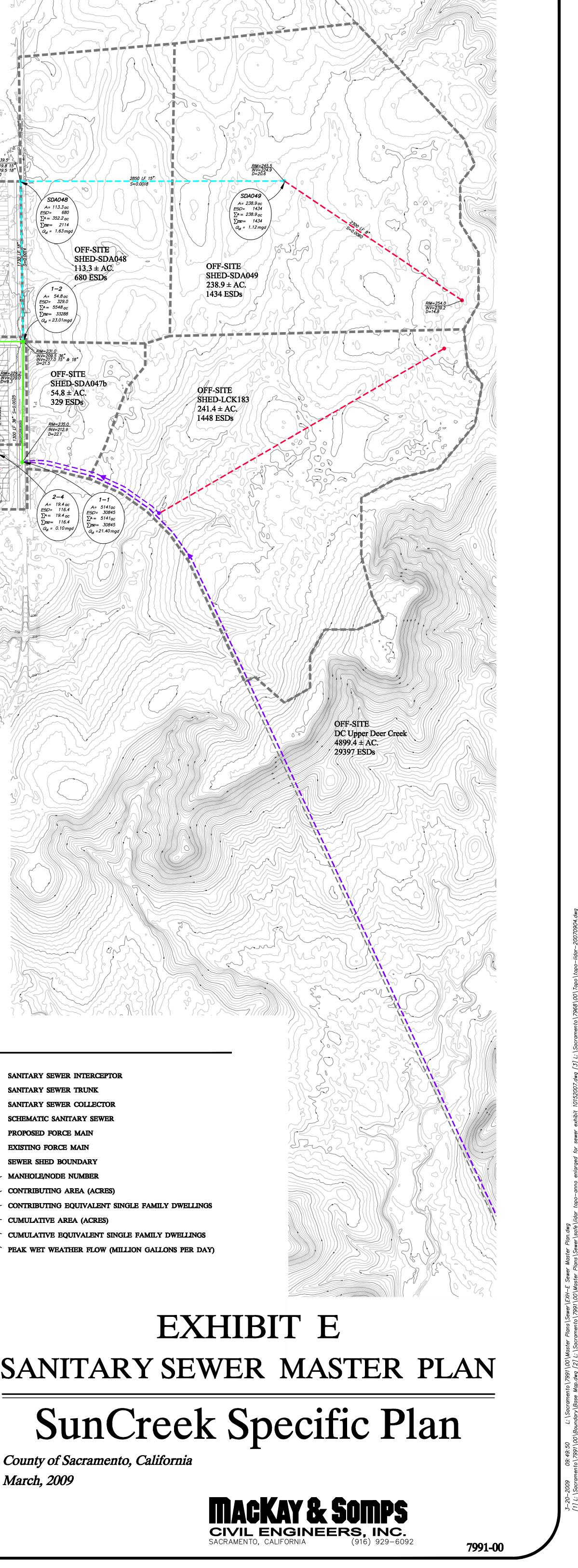

Link ID	US Manhole	DS Manhole	Link Type	Diameter (in)	Length (ft)	US Rim Elev. (fl)	US Invert (ft)	DS Rim Elev. (ft)	DS Invert (ft)	Slope, %	Full Capacity (mgd)	Peak Flow (mgd)	% Full Capacity	DS d/D
SDA041.1	SDA041	SDA040	Рире	18	140.0	179.800	147.670	178.400	147.470	0.140	2.54	1.760	69	0.6
SDA042.1	SDA042	SDA041	Pipe	18	2820.0	184.000	151,720	179,800	147.770	0,140	2.54	1,760	69	0.6
SDA043.1	SDA043	SDA042	Pipe	12	1820.0	187.000	156.590	184.000	152.220	0.240	1.03	1.010	98	0.7

	Revi	sed							
TRUNK SEWI	ER SYSTEM P	ROJECT DESCRI	PTION						
PROJECT ID:	SDA-1		TRUNK SHED	AJ Sunrise D	ouglas				
LOCATION:	South of Dog	as Rd. between Ja	aeger Rd. and 6,	440 feet of Grant I	Line Road.				
BRIEF PROJECT DESCRIPTION:	1820 feet of 1	2-inch pipe and 2	960 feet of 18-ind	ch pipe.					
MODEL REFERENCE:	SDA042 to SDA 041								
LOCATION OF CAPACITY DEFICIENCY REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW:	N/A Expansion for future development 1.0 mgd (upstream) to 2.4 mgd (downstream) 0% 100%								
SPECIAL CONSIDERATIONS:	This project n	equires the Areoje	t Interceptor.						
ALTERNATIVES			<u></u>	<u> </u>	— <u></u>				
MAJOR ITEMS	DIA. (in)	DEPTH (feet)	Length (feet)	UNIT COST	COST				
Baseline Pipe Construction Cost									
SDA043 to SDA 042	12	16-20	1820	\$200	\$364,000				
SDA042 to SDA041	18	20-24	2960	\$290	\$858,400				
Subtotal Baseline Pipe Construction Cost					\$1,222,400				
Geotechnical Factors									
Cobble construction factor (undeveloped)	20% of b	aseline pipe cost			\$244,500				
Structures Trunk junction structure			1	\$12,000	\$12,000				
Cubledel					\$1,478,90				
Subtotal Mobilization and Demobilization				5%	\$73,90				
Construction Cost Subtotal				-	\$1,552,80				
Contingencies for unknown subsurface conditions				25%	\$388,20				
Construction Cost Total				C	\$1,941,00				
Engineering, Administration and Legal Costs				25%	\$485,30				
				rounded	\$2,426,00				

TRUNK	SEWER SYSTEM PR	OJECT DESCRI	PTION			-	
PROJECT ID:	SDA-2 TRUNK SHEDAJ Sunrise Douglas North of Douglas Rd. between Security Park Dr. and Grant Line Rd. South of Douglas Rd. between Mather East Rd. and Grant Line Rd. Along Jaeger Rd. between Douglas Rd. and Pericles Rd. and Sunrise Btvd. at Chrysanthy Btvd. Connects to the Aerojet Interceptor at MH AJ4135.						
BRIEF PROJECT DESCRIPTION:	1100 feet of 12-inch pi feet of 27-inch pice, a			, 4300	feet of 18-i	nch	pipe, 140
MODEL REFERENCE: LOCATION OF CAPACITY DEFICIENCY: REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW: SPECIAL CONSIDERATIONS: ASSUMPTIONS:	SDA310 to SDA 270, and MH 067060019 to N/A Expansion for future d 1.1 mgd (upstream) to 0% 100% This project requires \$	o AJ4135. levelopment o 15.1 mgd (dowr	istream).		A270, SDA	.041	to SD A040
ALTERNATIVES:							
MAJOR ITEMS	DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNI	т соѕт		COST
Baseline Pipe Construction Cost							
SDA310 to SDA300	15	20-24	2800	S	250	-	700,000
SDA300 to SDA270	16	20-24	4300	\$	290	-	1,247,000
SDA276 to SDA275	12	<16	1100	\$	190	•	209,000
SDA275 to SDA270	15	16-20	2950	S	240		708,000
SDA271 to SDA270	15	16-20	1050	\$	240	-	252,000
SDA041 to SDA040	27	>24	140	\$	420		58,800
MH 067060019 to AJ4135	42	>24	170	\$	600	S	102,000
Structures							
Trunk junction structure			1	S	12,000	\$	12,000
Subtotal						\$	3,288,800
Mobilization and Demobilization					5%	\$	164,440
Construction Cost Subtotal						\$	3,453,240
Contingencies for Unknown Subsurface C	londitions				25%	\$	863,310
Construction Cost Total						\$	4,318,550
Engineering, Administration, and Legal Co	osis				25%	\$	1,079,138
						_	
Capital Improvement Cost Total						\$	5,395,688

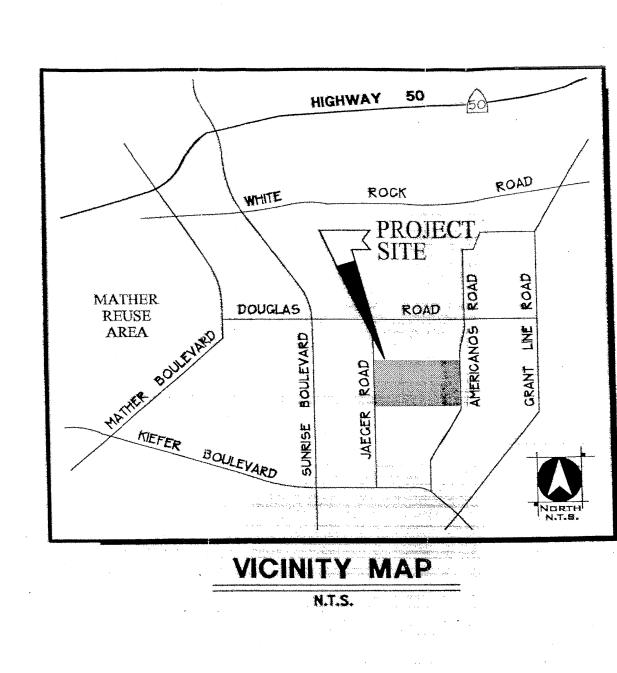
TRUN	SEWER SYSTEM PRO	JECT DESCRIP	TION					
PROJECT ID:	SDPS TRUNK SHEDAJ Sunrise Douglas Along Sunrise Blvd. between Douglas Rd. and Chrysanthy Blvd. Along Chrysanthy Blvd. east of Sunrise Blvd.							
BRIEF PROJECT DESCRIPTION;	4520 feet of 6-inch for	ce main and a 0.2	2 mgd pump	station.				
MODEL REFERENCE: LOCATION OF CAPACITY DEFICIENCY: REASON FOR PROJECT: DESIGN FLOW: PERCENT FOR EXISTING FLOW: PERCENT FOR FUTURE FLOW: SPECIAL CONSIDERATIONS: ASSUMPTIONS:	SDCFM1 to MH 06706 N/A Expansion for future d 5.3 mgd. 0% 100% This facility will remain	evelopment	Aerojet Inter	ceptor is construct	ed.			
ALTERNATIVES:								
MAJOR ITEMS	DIA. (in)	DEPTH (feet)	LENGTH (feet)	UNIT COST	COST			
Baseline Pipe Construction Cost SDCFM1 to MH 067060022	6	Force Main	4520					
Structures, Pits, and Pump Stations 0.2 mgd pump station			1					





I

Appendix G:


SunCreek Specific Plan – Sanitary Sewer Master Plan Exhibit E

Appendix H:

The Preserve at SunRidge – Sewer Study Exhibit (Wood-Rodgers 2006)

1) <u>INV=181.33 8" OUT(S)</u> D=7.6'	108
32) <u>INV=178.85 8" IN(N)</u> INV=178.80 8" IN(E) INV=178.75 8" OUT(W) D=9.4"	(109)
$\frac{D=9.4}{D=7.3^{\circ}}$	(110)
$\frac{INV=179.42 \ 8^{*}IN(N)}{INV=179.37 \ 8^{*}IN(E)}$ $INV=179.32 \ 8^{*}OUT(W)$ $D=9.3^{*}$	(11)
85) <u>INV=181.84 8" OUT(S)</u> D=7.8'	(112
86) <u>INV=180.97 8" IN(N)</u> INV=180.92 8" IN(E) INV=180.87 8" OUT(W) D=8.2'	(113
87) <u>INV=181.51 8" OUT(W)</u> D=7.7'	114
88) <u>INV=182.66 8"OUT(S)</u> D=7.4*	(115
89) <u>INV=181.29 8" IN(N)</u> INV=181.29 8" IN(S) INV=181.19 8" OUT(E) D=8.2"	11
90 <u>INV=182,14 8"OUT(S)</u> D=7.2"	Œ
91 <u>INV=180.79 8"IN(N)</u> INV=180.74 8"IN(W) INV=180.69 8"OUT(E)	(11
$\begin{array}{c} D=8.4'\\ \hline \hline 92 \\ D=8.0' \end{array}$	(11
93 <u>INV=180.50 8"IN(N)</u> INV=180.45 8"IN(E) INV=180.40 8"OUT(W) D=8.8"	(12
94) <u>INV=182.39 8"OUT(S)</u> D=7.8'	(1)
95) <u>INV=181.04 8"IN(N,S)</u> INV=180.99 8"IN(E) INV=180.94 8"OUT(W) D=8.7'	(12
(96) <u>INV=182.92</u> 8" OUT(S) D=7.6'	
98 <u>INV=181.57 8"IN(N)</u> INV=181.52 8"IN(E) INV=181.47 8"OUT(W) D=8.3"	(1)
(99) $\frac{INV=183.46}{D=7.5^{\circ}}$. (1
$(100) \frac{INV=182.11 \ 8^*IN(N)}{INV=182.01 \ 8^{''}OUT(W)}$ $D=8.4^{*}$	- (1
(101) <u>INV=181.87 8"OUT(E)</u> D=8.3'	(1
(102) <u>INV=182.15 8"OUT(S)</u> D=7.0'	- (1
(103) <u>INV=180.12 8"IN(N)</u> INV=180.07 8"IN(W) INV=180.02 8"OUT(E) D=8.5"	- (1
(104) <u>INV=181.12 8"OUT(S)</u> D=7.4'	- (1
(105) <u>INV=178.38 8" IN(N)</u> INV=178.33 8" IN(E) INV=178.28 8" OUT(W) D=9.5'	- (1
(106) <u>INV=181.25 8"OUT(S)</u> D=7.6'	- (1
(107) <u>INV=178.92 8"IN(N)</u> INV=178.92 8"IN(SE) INV=178.82 8"OUT(W) D=9.3'	- (1
U= 3 .2	(

en tra de la companya	
B) INV=179.14 8"IN(S) INV=179.04 8"OUT(NW) D=9.5"	• • • • •
) <u>INV=166.86 8°OUT(N)</u> D=7.7'	
0 INV=165.63 8"IN(S) INV=165.58 8"IN(E) INV=165.53 8"OUT(W)	
D=8.3	
1) <u>INV=166.63 8"OUT(W)</u> D=7.4'	
$\frac{100}{D=7.4} = \frac{100}{1000} = \frac{100}{100} = \frac{100}{100} = 100$	
$13 \frac{INV=165.59 \ 8"IN(S)}{INV=165.49 \ 8"OUT(E)}$ D=8.4'	
14 <u>INV=166.91 8"OUT(N)</u> D=7.2'	(134) <u>IN</u> IN
15) <u>INV=165.06 8"IN(S)</u> INV=165.01 8"IN(W) INV=164.96 8"OUT(E) D=8.5'	
16) <u>INV=166.39 8"OUT(N)</u>	(135) <u>IN</u> (136) <u>IN</u>
↔ INY=164.54 8"IN(S)	(136) IN D
1) INV=164.49 8"IN(W) INV=164.44 8"OUT(E) D=8.6"	
18) <u>INV=165.85</u> 8"OUT(N) D=7.4"	
$19 \frac{INV=164.02 \ 8"IN(S)}{INV=163.97 \ 8"IN(W)}$ $INV=163.92 \ 8"OUT(E)$ $D=8.6"$	24
120) <u>INV=165.39 8" OUT(N)</u> D=7.9'	* 57
121) <u>INV=164.52 8" IN(S)</u> INV=164.47 8" IN(E) INV=164.42 8" OUT(W) D=9.9'	172
122 <u>INV=165.92 8"OUT(N)</u> D=7.6'	745
123 <u>INV=165.06 8"IN(S)</u> INV=165.01 8"IN(E) INV=164.96 8"OUT(W) D=10.3'	// * ¹⁷⁶³ 1763
$\begin{array}{r} \hline 124 \\ \hline 1124 \\ \hline 1124$	×175.4 7 174.5 7 2 3
$(125) \frac{1NV=166.14 \ 8" IN(S)}{1NV=166.04 \ 8" OUT(W)}$ D=10.6'	* 176.3
$126 \frac{INV=167.00 \ 8^{*} OUT(N)}{D=7.2'}$	
(127) <u>INV=168.78 8"OUT(E)</u> D=8.1'	×
(128) <u>INV=166.85 8"OUT(N)</u> D=7.3'	× 178
$(129) \frac{INV=165.99 \ 8" IN(S)}{INV=165.94 \ 8" IN(W)} \\ INV=165.89 \ 8" OUT(E) \\ D=10.9'$	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
(130) <u>INV=166.31 8" OUT(N)</u> D=7.5'	
$ \begin{array}{c} \hline 131 \\ \hline 131 \\ \hline 181 $	1757 ×
(132) <u>INV=167.42</u> 8" OUT(N) D=7.8'	and a second
$(133) \frac{INV=166.56 \ 8" IN(S)}{INV=166.51 \ 8" IN(E)}$ $INV=166.46 \ 8" OUT(W)$	× 178.3
$134 \frac{100}{D=7.0^{\circ}} = 10.5^{\circ}$	
	(79 <u>.4</u>

$\begin{array}{c} \hline 134 \\ \hline 134 \\ \hline 1000 \\ \hline 1000$ (135) <u>INV=167.96 8"OUT(N)</u> D=7.6'

Carlo Carlo

WETLAND PRESERVE

82.5

NV=171.30 8"OUT(S)

INV=168.87 8" IN(N) INV=168.82 8" OUT(S)

dan 200 rate 1753 beter 5174 Bern

×173.7 ×172.4

> INV=166.39 8"IN(N)

INV=166.29 8" OUT(E) D=8.2'

D=8.9'

180.6

×130.2 >

the second second 1 HOL

<u>×INV=169.34 8'IN(N)</u> INV=169.29 8"OUT(S) D=8.8"

RD-15

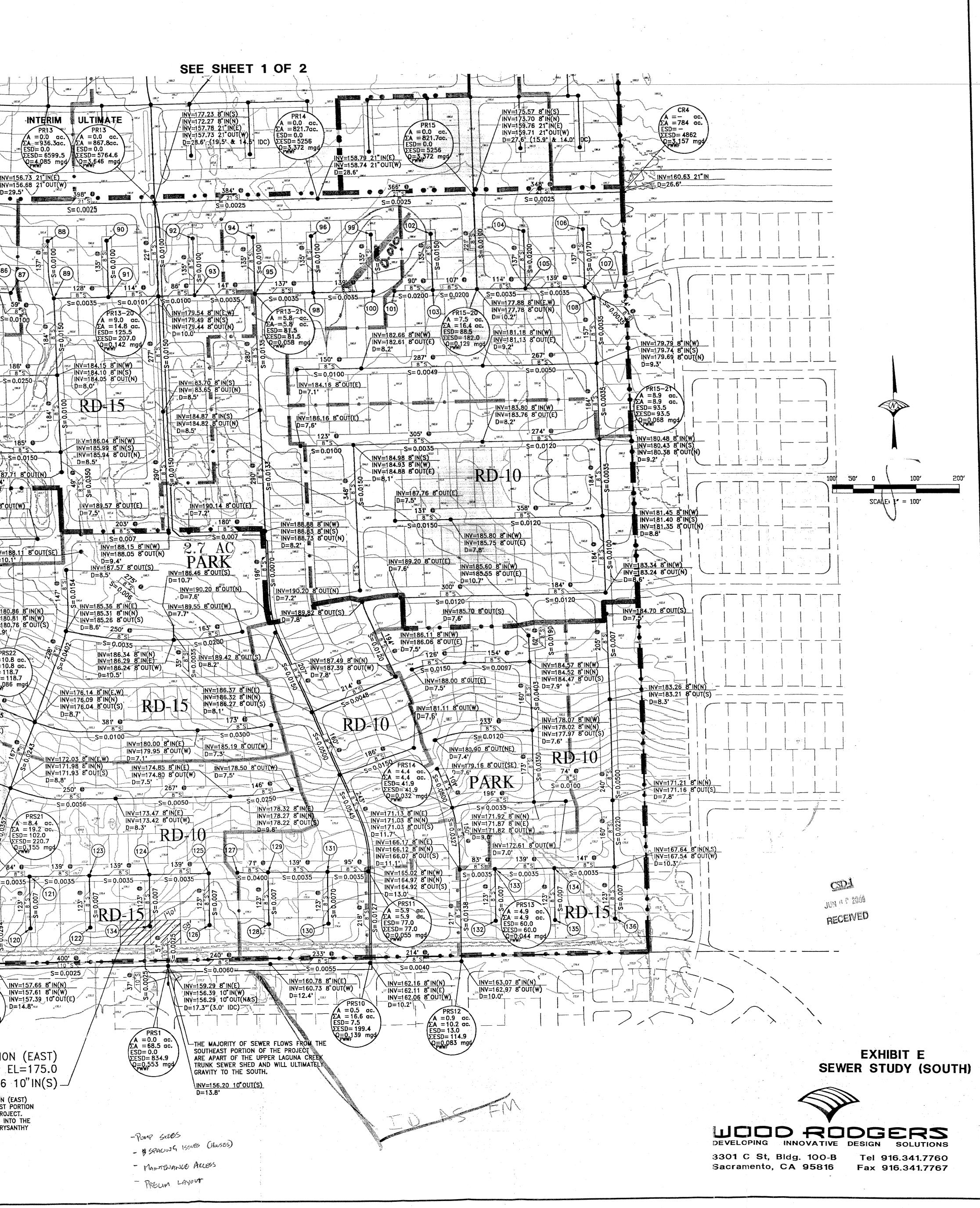
(136) <u>INV=168.50 8"OUT(N)</u> D=7.5'

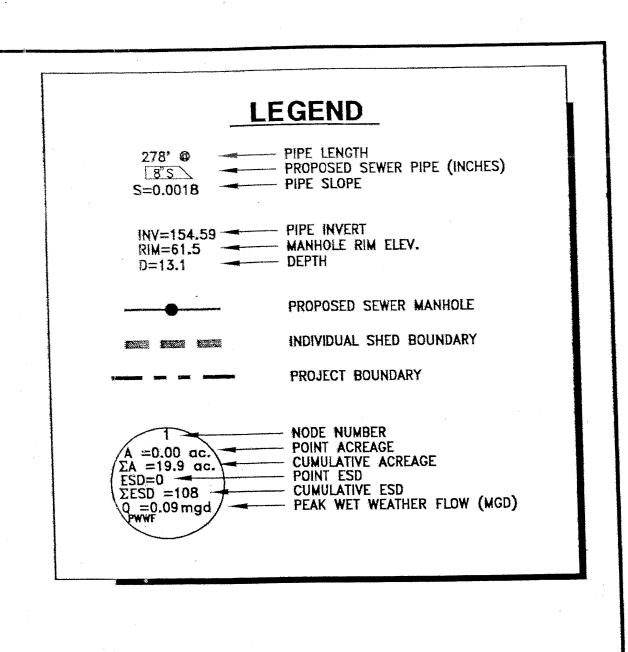
EXHIBIT E

CITY OF RANCHO CORDOVA CALIFORNIA

SHEET 2 OF 2

JUNE, 2006


x1825 x1845 x185 x185 x185		STANGE	180× × × × × × × × × × × × × × × × × × ×	INTERIM PR12 A =0.0 qc.
x182.4 x182.4 x182.4 x182.4 x182.4 x182.4 x182.5	INV=154.79 21"IN(E)	100	$\begin{array}{c c} \text{INTERIM} & \text{ULTMATE} \\ \hline PR11 \\ A = 0.0 & \text{ac.} \\ \Sigma A = 943.4 \text{ac.} \\ ESD = 0.0 \\ \Sigma ESD = 6684 \\ \hline \Sigma ESD = 5849.1 \\ \hline \end{array}$	ESD= 6599.5 0=4.085 mgd
180.5 x180.6 x180.7 x181.7 x18	$\begin{array}{c} INV = 154.74 \ 21" \ OUT(W) \\ D = 30.6' \\ A = 0.0 \ ac. \\ \Sigma A = 943.4ac. \\ ESD = 0.0 \\ ESD = 0.0 \end{array} \xrightarrow{x = 343.4ac.} ESD = 0.0 \\ ESD = 5849.1 \\ ESD = 0.0 \\ E$	S=0.0025	Q=4,130 mgd/** Q=3,691 mg	PR12 *A = 0.0 ac. ESD= 0.0 ***********************************
ins way into a solution of the	ESD= 6684 EESD= 6684 0=4,130 mgd WWF ULTIMATE 1915 ULTIMATE 1975	INV=170.22 S IN(5)	S=0.002	
COMMUNITY PAI 28.1 AC	× * * * * * * * * * * * * * * * * * * *	$NV=178.36 \ 8' IN(S)$ $NV=178.31 \ 8' OUT(N)$ D=10.3' $A = 71 \ 4C$	96° 0 36° 00000 0000000000000000000000000	85 600000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000
x1857 1863 x1857 x1857 x1857 x18 x1857 x1857 x18	x 198.5 x 198.5 x 198.5 x 198.5 x 198.5	NV=178.75 8"IN(E)	$\begin{array}{c} 8^{-1} \\ 8^{-1$	150° C 8°51 S=0.0100 s 51
x 785.5 x 7	198.5 x x 191.8 x 191.8	INV=178.70 8" IN(S) INV=178.65 8" OU1(N) D= 12.0' x ¹⁰⁶¹ x ¹⁰⁶² x ¹⁰⁶²	x ^{196,7} x ^{196,7} x ^{197,7} x ^{197,7} D=7.7' <u>INV=188</u> D=7.9' 197,1 <u>INV=189.00</u> D=7.5'	<u>BO 8" OUT(E)</u> <u>S" OUT(W)</u>
1823 X X X X X X X X X X X X X X X X X X X	x 108.5 x 109.5 x 1	INV=184.38 8" IN(E) INV=184.33 8" IN(S) INV=184.28 8" OUT(N)	S = 0.0129	$D = 10^{x^{192}}$
	x186.3 x186.3 x186.3 x186.3 x186.5		x ¹⁹⁴² x ¹⁹⁴² x ¹⁹⁴³ x ¹⁹⁴³ D=7.5' 208' 0 8"S	7.3' ₩) x ¹²² 150' Φ 8'S
	<u>INV=162.11</u> 8"OUT D=26.9'	INV=185.07 8"IN(E) INV=184.97 8"OUT(N) D=8.1"	S=0.0100 x1044 1055	S=0.0120 =187.20 8" IN(E) =187.15 8" OUT(W) INV=187.71 5' D=7.4'
x182.6 ERVE x175.3 x183.6	x104 101.3 10.	.46 8" IN(E) .41 8" OUT(W) x 577 	INV=184.51 8* IN(E) INV=184.46 8" OUT(W) D=8.6' 400' @	INV=189 04 8" OUT D=7.6' 262' @ 8'S
$\frac{1754}{1754} = \frac{1784}{1754} = \frac{1000}{1756} = \frac{1000}{1756$	S= 0.0150 S= 0.0150 S= 0.0150	D-10 INV=181.46 8" OUT(W)	D=7.8'	S=0.0173 S=0.0173 S=0.0173 D=10.1 ³ D=10.1 ³ S=0.0173 D=10.1 ³ D=10.1 ³ S=0.0173 D=10.1 ³ D=10.1 ³
x1775 x1	$D = 7.5^{\circ} \times \frac{1007}{318^{\circ}}$ $\frac{D = 7.5^{\circ} \times \frac{1007}{318^{\circ}}}{318^{\circ}}$ $\frac{318^{\circ}}{5}$ $\frac{8^{\circ}}{5}$ $\frac{1007}{5}$ $S = 0.0150$ $\frac{1007}{5}$	$D = 7.4'$ $158' \oplus $ $8''S' \times 5 = 0.0200$ $M = 3$	$D = 8.4^{*}$ $100^{*} \odot$ $B^{*}S$ $S = 0.007$ $S = 0$ $INY = 182.42$ $B^{*} OUT(E)$	67 8" OUT (E) = 0 0 1'
$\frac{1774}{x^{1772}} = \frac{1774}{x^{1774}} = \frac{1774}{x^{1774}} = \frac{1774}{x^{1774}} = \frac{1774}{x^{1774}} = \frac{1774}{18V=172.58} = \frac{178}{8' IN(N)} = \frac{1774}{18V} = \frac{1774}{18V=172.53} = \frac{178}{8' OUT(S)} = \frac{1774}{18V} = \frac$	∞ 8 → 1NV=175.75 8" OUT(W) ↓ × ⁷²⁺ D=7.6 [*] 5 ↓ 100 - 7.6 [*] 5	D=7.4'	$D=6.7'$ $INV=176.99 \ B''IN(N)$ $INV=176.94 \ B''IN(W)$ $INV=176.89 \ B''OUT(D=9.2')$ $223' \ D=9.2'$	
	8"S 24 5=0.0120 x ¹⁷⁷³ x ¹⁷⁷³ y ¹⁷⁷³ y ¹⁷⁷⁴ y ¹⁷⁷⁵ y ¹	181.5 185.4 185.4 185.4 185.4 185.4 185.4 185.4	S= 0.0150 INV=180.29 8"OUT(I	0 = 0.086 214 214 3 = 0.0035
INV=171.78 8" IN(E) INV=171.73 8" IN(N) INV=171.73 8" IN(N) INV=171.68 8" OUT(S) INV=171.73 8" IN(N) INV=171.74 100 OUT(S) INV=171.75 100 OUT(S)	$\frac{1}{100} \times \frac{1727}{1724} \times \frac{1723}{1725} \times \frac{1725}{1725} \times \frac{1725}{1725} \times \frac{1725}{1725} \times $		D=7.5' 131' @ 8 "S S=0.0150 INV=171.67 8"IN	Le (172.32 8 m(m) 1NV=172.67 8" OUT(E) D=9.0" 35. 0 8 m 6 4 m 6
$D^{*} - 15$	$\begin{array}{c c} $	IN(N) OUT(W) 98' @	D=8.0" PARK 170' © 5=0.0050 © 205' © 174.6 8"S	S = 0.0035 S = 0.0035 $INV = 171.55 \ 8'' IN(NW)$ $INV = 171.45 \ 8'' OUT(S)$ D = 8.8'' PRS31
D=8.8'	$ \begin{array}{c} $	V=172.91 8" OUT(E) =7.3' INV=171.49 8" IN(N) INV=171.44 8" IN(W) INV=171.39 8" OUT(E)	S=0.0129 INV=168.74 8"IN(W) INV=168.69 8"IN(N) INV=168.64 8"OUT(S) D=9.4' × ¹⁷⁵ D=9.4' × ¹⁷⁵ D=0.4' (C) D=0.4' (C) (C) (C) (C) (C) (C) (C) (C)	$ \begin{array}{c} A = 6.6 & ac. \\ \Sigma A = 6.6 & ac. \\ ESD = 78.3 \\ \Sigma ESD = 78.3 \\ 0 = 0.057 \ mgd \end{array} $
x1724 x723 INV=164.91 8" IN(E) INV=164.86 8" IN(N)	89' 0 105' 0 105' S= 0.0070 S= 0.0100	$= 137' \bullet 134' $	134' @ 93' @ 17 8"S 7 8"S -S=0.0035 S=0.0035	NV=164.13 8" IN(E) NV=164.08 8" IN(N) INV=164.03 8" OUT(S) D=9.8' 1722 INV=163.59 8" IN(W)
	00/ x ¹⁷² ⊕ 00/	x 77.2 TR3 (114) x 77.2 TR3 (116) x 77.2 x 77.2		INV=163.54 8" IN(N) INV=163.49 8" OUT(S) D=9.4' 7707 112 120 120 120 120 120 120 120 120 120
305' @ 'I'' 8"S S=0.0069 (*'INV=164.25 8"IN(N) PRS41 IINV=161.10 8"IN(N)	360° € 8″S PRS40 S=0.0035 INV=159.74	8"IN(W)		(m4) (ma) 214' @ 8"S 5=0.0035 PRS20 IN IN IN IN IN IN IN IN IN IN
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A = 2.5 dc. (NV=159.69)	8° OUT(E) 169.9 x169.5 x169.9 x169.7 x169.7	$D_{ac} = 13.2'$	$ \begin{array}{c} \text{=} 0.4 & \text{ac.} \\ \text{=} 32.1 & \text{ac.} \\ \text{=} 6.0 \\ \text{=} 405.8 \\ \text{,} 275 & \text{mgd} \end{array} \begin{array}{c} \text{(A = 0.6 & \text{ac.} \\ \Sigma \text{A = 51.9 & ac.} \\ \text{ESD = 9.0 \\ \Sigma \text{ESD = 635.5 \\ 0 = 0.425 & \text{mgd} \end{array} } \begin{array}{c} \text{(N)} \\ \text{D = 0.425 & \text{mgd}} \end{array} $


PROPOSED LIFT STATION (EAST) GROUND EL=175.0 INV 156.16 10"IN(S)_/ PROPOSED LIFT STATION (EAST) TO SERVE THE SOUTHEAST PORTION OF THE PRESERVE PROJECT. THE FORCEMAIN DUMPS INTO THE TRUNK SYSTEM ON CHRYSANTHY BLVD.

.

SEWER STUDY (SOUTH)

satir i i i i i i

