Minimum Standards for Wetland Delineations

Melissa France

Project Manager, California North Branch Sacramento District Regulatory Program Workshop

22 January 2016

US Army Corps of Engineers BUILDING STRONG_®

Delineation Report Minimum Standards

http://www.spk.usace.army.mil/Missions/Regulatory/Jurisdiction/WetlandDelineatio

ns.aspx

MINIMUM STANDARDS FOR ACCEPTANCE OF AQUATIC RESOURCES DELINEATION REPORTS

U.S. ARMY CORPS OF ENGINEERS

BUILDING STRONG. January 2016

The U.S. Army Corps of Engineers, through its Regulatory Program, regulates certain activities in waters of the United States. Waters of the U.S. are defined under 3S CFR Part 320. In order for the Corps to determine the amount and extent of waters of the United States at a site, aquatic resources must first be defineated in accordance with established regulatory standards, guidance and protocol, such as the 1987 Corps of Engineers Wetlands Defineation Manual and appropriate regional supplements. Before making any permit decision, the Corps is responsible for conducting or vertifying the defineation and determining which of the aquatic resources have the potential to fail under foreiral jurisdiction.

Due to limited staffing and resources, the Corps' Sacramento District recommends permit applicants employ the services of individuals experienced in delinearing aquatic resources. Permit applicants are further encouraged early in the project planning stages to submit the delineation, along with a request for a preliminary or approved jurisdictional determination, and engage in a pre-application consultation with their local balanct function. Larly consultation may heip identify potential concerns and result in a quicker permit decision.

The Desinch has established minimum standards for defineation reports to insure consistency and accuracy in the defineation of aquatic resources, which will minimize potential defays. The standards are based on years of experience conducting and wintying defineations, as well as the best practices of environmental consultance. Defineations submitted for verification must follow the standards, unless determined to not be practical in a case-bycase basis. Situations where adherence to the standards may not be practical include activities with small permanent or temporary impacts to aquatic resources (under 0 to 0 acre), applicants with limited financial resources, and emergencies. The Dethict with notify the requestor for delineation submittats that do not contain sufficient information to accurately identify the limits of waters of the U.S.

Aquatic resources delineation reports submitted to the District must include the following:

A cover letter requesting a jurisdictional determination. The letter must specify whether a preliminary or approved jurisdiction determination is requested.

A signed statement from the property owner(s) allowing Corps personnel to enter the property and to collect samples during normal business hours. If the property is land-locked, the owner or proponent must obtain permission from the adjacent property owner(s) to provide access for Corps personnel.

A statement that the delineation has been conducted in accordance with the 1907 Corps of Engineers Wetlands Defineation Manual and appropriate regional supplement(s). The regional supplement(s) used must be identified. For ordinary high water mark (OHWM) delineations, a statement indentifying the use of the OHWM field guide must be included.

Page 2 of 4

Directions to the survey area.

Contact information for the applicant(s), property owner(s), and agent(s).

Anarative describing all aqualic resources at the site and an explanation for the mapped boundaries, especially for resources containing complex transition zones. If the site contains resources that meet one or two wetland criteria or do not exhibit a clear OHVM, describe the rationate for not defineding these features. Learnples include erosonal features, upland sweles, and other upland areas that appear 'Ver' on satellite or areal imagery.

The total acreage of the survey area.

Date(s) held work was completed.

A table Isling all aquatic resources. The table will include the name of each aquatic resource, its Cowardin type, acreage, and location (latitude/longitude). For linear features, the table must show both acreage and linear feet.

A description of existing field conditions. The field condition description may include current land use, flood/drought conditions, impairing practices, modifications to the site, and any characteristics considered altypicat.

A decussion of the hydrology at the site, including all known surface or subsurface sources, drainage gradients, surface water connections to the nearest traditional navigable waterway or interstate water, and any potential influence for mammate water sources, such as imgation. The decussion should also identify the nearest "blue-line" waterway or other feature found on the most incent USGS map.

If remote sensing was used in the delineation, provide an explanation of how it was used and include the name, date and source of the loots used and copies of applicatile maps/photographs.

A discussion of plant communities and habital types present at the site and a list of the scientific name, common name, and welland indicator status of all plants.

Soil descriptions, soil map(s), and a discussion of hydric soils or soils with hydric inclusions at the site.

Any observed or documented interstate or foreign commerce associated with aquatic resources found on the site, specifically recreation or other use by interstate or foreign travelers, sale of fish or shelftsh in interstate or foreign commerce, and use by industries operating in interstate or foreign commerce.

U.S. ARMY CORPS OF ENGINEERS, SACRAMENTO DISTRICT, 1325 J ST., SACRAMENTO, CA 95014

BUILDING STRONG_®

How To ...

Navigate Our Website

Useful Links

Regulatory FAQs

Public Notices

Jurisdiction

Aquatic Resources Delineation

General Permits

Nationwide Permits

Letters of Permission

Individual Permits

Mitigation

Endangered Species

Cultural Resources

Tribal Consultation

Environmental Impact Statements

Clean Water Act Section 404 Exemptions

Section 214 of WRDA

Six County Aquatic Resources

The Regulatory Mission

The Department of the Army's Regulatory Program is one of the oldest in the federal government. Initially, it served a simple purpose: to protect and maintain the navigable capacity of the nation's waters. Changing public needs, evolving policy, court decisions and new statutory mandates have changed several aspects of the program including its breadth, complexity and authority.

The U.S. Army Corps of Engineers, through the Regulatory Program, administers and enforces Section 10 of the Rivers and Harbors Act of 1899 (RHA) and Section 404 of the Clean Water Act (CWA). Under RHA Section 10, a permit is required for work or structures in, over or under navigable waters of the United States. Under CWA Section 404, a permit is required for the discharge of dredged or fill material Into waters of the United States. Many waterbodies and wetlands in the nation are waters of the United United United States. Many waterbodies and wetlands in the nation are waters of the United United United States.

The Regulatory Program is committed to protecting the Nation's aquatic resources, while allowing reasonable development through fair, flexible and balanced permit decisions. The Corps evaluates permit applications for essentially all construction activities that occur in the Nation's waters, including wetlands

We value your input!

Please take our customer survey

Our Commitment to Public Service

Public Service is a Public Trust. We, as Corps Regulators, Must Earn This Trust, and to Keep This Trust,

U.S.ARMY

Minimum Standards

- New as of January 2016
- Necessary due to limited staff and resources
- Designed to improve quality and consistency of delineations
- Who, what, when, where and why.

What are the minimum standards?

- A cover letter requesting a jurisdictional determination
- A signed statement from property owners allowing Corps personnel to enter the property and collect samples

What are the minimum standards?

The delineation must be done in accordance with the 1987 Corps of Engineers Wetland Delineation Manual

 Western Mountain Data Ferm (corc) National Wetland Flant List (NWPL) for the Western Mountains, Valleys and Coast 		US Stray Cope of Englisher Watawa States Sales		
Understanding Wetlands and Duick References		Watlands Research Program Technical Report V-67-1 (on-line edition	ita)	
Recognizing Wellands EPA Wellands Ste USO3 Wellands Carlar Oxificants Wellands Oxificants Wellands Uson Wellands Ulah Wellands Ulah Wellands Ulah Wellands Minimum Standards for Acceptance Wellah Consultants TMPT Welland Consultants TMPT Welland Consultants Field Cata Sheet (tampata) Wellam And Regional Juned clored Celeminations Checklet Fiora and Fled Guide References Supporting all Regional Supplements Factivet PN for Welland Delineations in Colorado First Map and Dowing Standards for the South Pacific Division Regulatory Program		Corps of Engineers Wetlands Delineation Manual Ty Hydronest Records		
BUILDING STRONG	Ver Carlos Alexandre Normani Alexandre Normani Alexandre Normani Alexandre Normani Alexandre	Amage 152 - Field Pagel		Ĩ

What are the minimum standards?

- Directions to survey area
- Total acres of survey area
- Date field work was completed
- Contact information for the applicant(s), property owner(s), and agent(s)

- Describe all aquatic resources on site and an explanation for the mapped boundaries
- A table listing all aquatic resources

Aquatic Resource Name	Aquatic Resources C	uatic Resources Classification	Aquatic Resourc e Size (acre) Require d for all resourc es	Aquatic Resource Size (linear feet) Required for only stream channels
	Cowardin	Location (lat/long)		
Total				

Table 1. Aquatic Resources within the Survey Area

BUILDING STRONG_®

- A description of existing field conditions
- A discussion of the hydrology at the site
- A discussion of plant communities and habitat types present at the site
- Soil descriptions, soil map(s), and a discussion of hydric soils or soils with hydric inclusions at the site
- Completed data forms including all essential information to make a decision.

 If remote sensing was used in the delineation, provide an explanation of how it was used and include the name, date and source of the tools used and copies of applicable maps/photographs

 A completed copy of the Aquatic Resources Excel spreadsheet must be submitted. The current version of the spreadsheet can be found at the following website:

https://orm.usace.army.mil

Alabera (Neme (150 char) is sequenced, mare contain anique values and mare nonvestand to	n C	D L	1 5 11	US Army Corps of Engineers.			
Waters/Name provided within the NWP Impact and				Applications	Documents		
Niligation tala when sho				Property OBV2	Thia	Last Updated #	EM
ers_Karre State	Cowardin_Code H	H3M_Code Moas_Type /	nount Units Waters_Type	DR05 Reports Countryly Performance Weepsters	CRM2 District PCC Ltd including Alt Uple of Capacity for	07-060-15	Downs
				RD TS Regulatory Community of Practice SharePoint Link	Uplead Process Background (Revised History/2015)	(\$~10,00-15	Ber
				Regulatory Information East Longe (2014) Computations Effects Analysis (Prostologie)	DISINE & Consolitioned Uplant Templates with Viridation	(D-30X)-15	llown
				Energency Permits	CR0/2 Previous Announcements	(B) C(CT 15	liwr
				CI06 Repairs	AR and , D Undirations # Sept 2015	OR SEP 16	Down
					(Invitrigent C-340 Access	TO WHE	liwra
				Announcements	Performance Measures Displained 10182014	IN OCT 14	literia
				1 Dec 1916, ODM and welffeld a south a see brack the local Decame 197	CRW2SCPV12_FW52CP	NAME IN	Dwn
				 Toes after service was incomed to provide a new rich that find a data resource pro- convert equality with the AP page. OND-Resource and CHM Poter name Makes were motified to upper consideril field back and other services dramper. The process in 	CRU2 Mandalony Fields Irana: 34 Au: 14	22 8042 11	Downe
				manage data valtan. CRM, urbanctional Determinations and Permit Decisions was fixed to connectly explore one measurges to enable debugging.	CRM2SCPV18_Summaryof Disrigos	Z5-MAR-14	Down .
				27 Key 2016 Cheve Middle and and Middle 1970 Alexandron and Annale	CHM Map Leyena	01-118-14	Der
				and works on the Applied presented and the Alfa & Other Hard and Ved Wald hard being mind workshow and the Applied Reventioned Table INTOW Applied Revention and new available to Geographic Authority = Yes an Na for Reparate Ups. The change to and new available to Geographic Authority = Yes an Na for Reparate Ups. The change to	Available Reports in ORME Special wat - 00052013	06-001-12	Unt
				In the Course of Art Shear Wide - A Arts and a 11-Mer.	Connecting to CRM with AccCRS (v7)	36.004	linera
				9 Nov 2015. The label of definition on (PRD Aquait, Resource (AR) has been changed to "Demonstrate Data", "Box Rev D Grammer," 2005 a strategy of the second strategy of the	Fund Tracking User Durce	(BLAPHUTS	Down
				Judiciational Description on 200 finalize to end use had AS Type in restand only to profiniting and no 40 received 40s. The answer to the Beographic Authority address in	Windows / - Web JAV (and Skindla	12-118-15	Data

- A site location map on a 7.5-minute USGS quadrangle. The map must provide the name of the USGS quadrangle, Section, Township, Range, the UTM or latitude and longitude
- A map of all delineated aquatic resources ("Aquatic Resouces Delineation Map") in accordance with the *Final Map and Drawing Standards for the South Pacific Division Regulatory Program* (Mapping Standards) and showing the following:
 - All aquatic resources delineated must be clearly shown on the map
 - At least one set of paired data points, documented in data forms, for each aquatic resource or complex. The paired data points must be located close to the delineated boundary
 - A reference block that identifies the site or project name, individual(s) who conducted the delineation, date of the map, and date(s) of any revisions

- A description of the methods used to survey the aquatic resource boundaries
- Digital data for the site, aquatic resource boundaries, and data point locations must be provided in a geographic information system (GIS) format, with ESRI Shape-files being the preferred format

A little extra help

- National Wetland Inventory (NWI)
 Light Detection and Ranging (LiDAR)
- Satellite, aerial, and ground photographsFloodplain maps

Questions?

Map and Drawing Standards for the South Pacific Division Regulatory Program

Melissa France

Project Manager, California North Branch Sacramento District Regulatory Program Workshop

22 January 2016

US Army Corps of Engineers BUILDING STRONG®

http://www.spk.usace.army.mil/Missions/Regulatory.aspx

HOME > MISSIONS > REGULATORY

How To...

Navigate Our Website

Useful Links

Regulatory FAQs Public Notices Jurisdiction Aquatic Resources Delineation

The Regulatory Mission

The Department of the Army's Regulatory Program is one of the oldest in the federal government. Initially, it served a simple purpose: to protect and maintain the navigable capacity of the nation's waters. Changing public needs, evolving policy, court decisions and new statutory mandates have changed several aspects of the program including its breadth, complexity and authority.

The U.S. Army Corps of Engineers, through the Regulatory Program, administers and enforces Section 10 of the Rivers and Harbors Act of 1899 (RHA) and Section 404 of the Clean Water Act (CWA). Under RHA Section 10, a permit is required for work or structures in, over or under navigable waters of the United States. Under CWA Section 404, a permit is required for the discharge of dredged or fill material into waters of the United States. Many waterbodies and wetlands in the nation are waters of the United States and are subject to the Corps' regulatory authority.

-

BUILDING STRONG_®

How To ...

Navigate Our Website

Useful Links

Regulatory FAQs

Public Notices

Jurisdiction

Aquatic Resources Delineation

General Permits

Nationwide Permits

Letters of Permission

Individual Permits

Mitigation

Endangered Species

Cultural Resources

Tribal Consultation

Environmental Impact Statements

Clean Water Act Section 404 Exemptions

Section 214 of WRDA

Six County Aquatic Resources

The Regulatory Mission

The Department of the Army's Regulatory Program is one of the oldest in the federal government. Initially, it served a simple purpose: to protect and maintain the navigable capacity of the nation's waters. Changing public needs, evolving policy, court decisions and new statutory mandates have changed several aspects of the program including its breadth, complexity and authority.

The U.S. Army Corps of Engineers, through the Regulatory Program, administers and enforces Section 10 of the Rivers and Harbors Act of 1899 (RHA) and Section 404 of the Clean Water Act (CWA). Under RHA Section 10, a permit is required for work or structures in, over or under navigable waters of the ited States. Under CWA Section 404, a permit is required for the discharge of dredged or fill material ted States. Many waterbodies and wetlands in the nation are waters of the United

ct to the Corps' regulatory authority.

a regulatory mogram is committed to protecting the Nation's aquatic resources, while allowing revisionable development through fair, flexible and balanced permit decisions. The Corps evaluates permit applications for essentially all construction activities that occur in the Nation's waters, including wetlands

We value your input!

Please take our customer survey

Our Commitment to Public Service

Public Service is a Public Trust. We, as Corps Regulators, Must Earn This Trust, and to Keep This Trust,

U.S.ARMY

Final Map and Drawing Standards for the South Pacific Division Regulatory Program

BUILDING STRONG®

Accessibility

Link Disclaimer Sile Map

BUILDING STRONG®

.

August 06, 2012 Public Notice

BUILDING STRONG_®

Applicability

- Standards apply to all submittals to Regulatory Divisions within the Districts of the Corps' South Pacific Division
 - Delineation maps
 - Proposed projects (impact maps)
 - Mitigation plan and long-term preservation maps
 - As-built plans (post-construction drawings)
 - Mitigation monitoring report maps

Applicability

Standards can be modified or waived at Corps' discretion

- Small or temporary impacts
- Applicant has limited financial resources
- Emergencies
- Restorations with limited funding
- Reauthorizations or maintenance, repair, rehabilitation, where original authorization included adequate drawings

Compensatory Mitigation Plan drawings/maps

Must adhere to the Standards even if Standards are waived for the overall project

Why are there standards for maps and drawings?

- Improve the quality and consistency
- Simplify the review process by project managers
- Good maps = clear story = faster review times and fewer requests for additional information

Map and Drawing Standards Organization

General Standards section

- ► The broadest of the map and drawing requirements
- Specifies format and required elements for ALL maps submitted
- Additional sections focused on specific types of maps or plans
 - e.g., for proposed projects, delineations, impacts maps, mitigation maps, etc...
 - Specify format and required elements for specific map types

Format of submittal

- Both paper and electronic versions are required
- PDF is the preferred electronic document format
- Electronic document requirement may be waived for applicants without software access
- Shapefiles
 - GIS files submitted should be in the preferred format is ESRI shapefile. Metadata needs to include at a minimum, datum(s) used, coordinate system, projection, and cartographer contact information
- Please submit electronic files on CD/DVD, or via links to a secure FTP site. No flash drives!!

Submission of both a location (vicinity) map AND plan view map is a minimum requirement

Location Maps

- At least one must use a USGS 7.5-minute quadrangle sheet as its basemap
- Quadrangle name identified
- Project study boundary clearly outlined and annotated
- Should include recognizable landmarks
- Include adjacent local roadways
- North arrow

Submission of both a location (vicinity) map AND plan view map is a minimum requirement

Plan View Maps

- At least two control points on opposite corners, with latitude and longitude clearly annotated
- Date prepared/revised
- Name and organization of the map preparer
- Bar scale and scale text
- North arrow

Submission of both a location (vicinity) map AND plan view map is a minimum requirement

Plan View Maps

- Legend for all relevant features on the map this means wetlands and other waters of the U.S., the project boundary, project construction footprint, impacts to waters of the U.S., etc.
 - Legend should include acres or square feet in parentheses for EVERY relevant feature or class of features!
- If elevations are shown, the vertical datum being used must be indicated on the map
- Locations of any cross-sectional views must be annotated clearly (e.g. A-A')

BUILDING STRONG_®

 $\textbf{BUILDING STRONG}_{\texttt{R}}$

Basemaps used in Plan View Maps

- Topography is required, and should be shown on at least one map
- Aerial photography (if used)
 - Date stamped
 - Orthorectified
 - Source identified
 - Choose imagery with maximum visibility of aquatic resources (e.g. wet season)

Specific Standards

Cross-Sectional Views

- Must have a bar scale and scale text, for both the horizontal and vertical dimensions
- Vertical datum must be indicated
- If there are tidal areas within survey area, identify the location and elevation of both the Mean High Water and the High Tide Line
- Cross-Sectional Views are required for:
 - Proposed Projects / Construction Drawings
 - Mitigation Plans / Long Term Preservation Maps
 - As-Builts / Post-Construction Drawings
- Cross-Sectional Views for Delineation Maps are required at PM's discretion

Proposed Projects

- All proposed impacts, structures, and limits of work within and adjacent to wetlands and potential waters of the U.S. must be shown
- Clearly annotate all impacts of work as either permanent or temporary

- Post-Construction Drawings (As-Builts)
 - Should be the same size and spatial alignment as the authorized grading plans
 - Any deviations from fills and structures authorized as part of an approved pre-construction map must be indicated.

Delineation Maps

- Survey area boundary should be clearly symbolized, and should include all potential waters of the U.S.
- Location and extent of all areas meeting the three wetland criteria, and/or having an Ordinary High Water Mark, must be shown on the map, even if area is a potential "Preamble Water" (e.g., upland ditch)
- Each type of boundary (e.g., OHWM, wetland, high tide line) must be clearly symbolized and differentiated
- Each line or polygon representing a potential water of the U.S. must be labeled with a unique name

Delineation Maps

- Show locations of all data points, labeled according to their corresponding data sheets
- A wetland boundary should be based on at least one set of paired data points; one data point within the proposed wetland boundary, and one immediately outside of it.

Delineation Maps

- Identify the Ordinary High Water Mark (OHWM)
 - Show representative widths between the OHWMs on opposing banks using a transect line labeled with the width in feet
 - An average width may be acceptable for uniform channel reaches
 - Cross section may be required by the PM. If required, indicate the OHWM elevation
- If there are tidal areas within the survey area, identify location and elevation of Mean High Water and High Tide Line on all maps and cross sections

Mitigation Plans and Long-Term Preservation Maps

- Mitigation boundaries must be clearly differentiated based on mitigation type
 - Establishment
 - Re-establishment
 - Rehabilitation
 - Enhancement
 - Preservation
- Current Map and Drawing Standards ask that boundaries be differentiated using different kinds of dotted and dashed lines.

Mitigation Plans and Long-Term Preservation Maps

- Updated Standards will require mitigation areas to be differentiated by using different hatched fill symbols, rather than by different border line types
- All mitigation sites and Long-Term Preservation boundaries must be clearly labeled with a unique name
- Locations of mitigation sites must be shown relative to other landscape features and habitat types (e.g., riparian corridor, wetland complex, etc.)

BUILDING STRONG_®

Legend

- Project/Preserve Boundary (X.XX Acres)
- Topography (10-foot Contour Interval)
- Map Reference Point

Pre-project Delineation Waters Type

Open Water (X.XX acres)

- Vernal Pool (X.XX acres)
- Wetland (X.XX acres)

Proposed Mitigation

Mitigation Type

- Open Water Enhancement (X.XX Acres)
- Vernal Pool Establishment (X.XX acres)
- Wetland Establishment (X.XX acres)
- Wetland Re-establishment (X.XX acres)
- Wetland Rehabilitation (X.XX acres)

BUILDING STRONG®

Mitigation Monitoring Report Maps

- Ground photographs included in reports must be accompanied by a map of photo points
- Each photo point must be annotated with a number and an arrow indicating the compass direction in which it was taken
- The photo itself should have a legend indicating photo number, the compass direction in which it was taken, the photo's geographic coordinates, and a brief explanation of the photo's relevance

- Mitigation Monitoring Report Maps
 - Each discrete mitigation site must be shown on the map
 - Each site should be annotated or symbolized to indicate the mitigation type and the target habitat type
 - Any sampling presented in the monitoring report should be shown on the map

Questions?

BUILDING STRONG®

Common Wetland Delineation Pitfalls

Kaitlyn Pascus

Project Manager

Sacramento District Regulatory Program Workshop

22 January 2016

US Army Corps of Engineers BUILDING STRONG_®

Preliminary Data Gathering

Soil Survey Reports

Preliminary Data Gathering

SEPA

15 Area Carp of Pageners

Draft Environmental Impact Statement on the Special Area Management Plan for the Hackensack Meadowlands District, NJ

June 1995

in partnership with:

National Oceanic and Atmospheric Administration New Jensey Department of Environmental Protection Hackensack Meadowlands Development Commission

Existing environmental impact statements

Preliminary Data Gathering

- USGS Topographic, soil survey reports, and NWI Maps
- Light Detection and Ranging (LiDAR)- Remote sensing method that uses light in the form of a pulsed laser to measure ranges and generate precise, 3D information about the shape of the Earth's surface
 - Limited due to cost and knowledge
- <u>Google Earth</u>: Historical Imagery to show various years of aerial photographs (typically 1993-2015)
 - Past land use
 - ► Trends
 - Changes
 - Provides a date

Data Sources on the Web

- USGS maps, photos, data: <u>http://ask.usgs.gov/</u>
- NWI maps:

Page.htm

- http://www.fws.gov/wetlands/Data/Mapper.ht ml
- Soil survey reports and data:

http://websoilsurvey.nrcs.usda.gov/app/Hom

BUILDING STRONG

Data Points

- Lack of data points is common
 - How many do I need? "One pair per aquatic resource or complex"
- Why does a feature suddenly stop? Explain.
- Chose an appropriate location on the map for the data points and appropriate aerial map

Project/Site:	City/County:	City/County:		
Applicant/Owner:		State:	Sampling Point:	
Investigator(s):	Section, Town	iship, Range:		
Landform (hillslope, terrace, etc.):	Local relief (c	oncave, convex, none):	Slope (%):	
Subregion (LRR):	Lat	Long:	Datum:	
Soil Map Unit Name:		NWI cla	ssification:	
Are climatic / hydrologic conditions on the site	typical for this time of year? Yes	No (If no, explain	in Remarks.)	
Are Vegetation, Soil, or Hydrold	ogy significantly disturbed?	Are "Normal Circumstanc	es" present? Yes No	
Are Vegetation Soil, or Hydrold	ogy naturally problematic?	(If needed, explain any ar	nswers in Remarks.)	
SUMMARY OF FINDINGS - Attach	site map showing sampling	point locations, transe	ects, important features, etc.	

Ш

OHWM Discussion

- Again, why does a feature suddenly stop? Explain.
- Discussion and rationale for the mapped OHWM is often missing from report - include it!

BUILDING STRONG®

Aquatic Resources Excel Spreadsheet

- A completed copy of the Aquatic Resources Excel spreadsheet must be submitted. The current version of the spreadsheet can be found at the following website: <u>https://orm.usace.army.mil/</u>
 - (Required per the January 2016 Minimum Standards for Acceptance of Aquatic Resources Delineation Report)
- Ongoing Trend: PM discretion with low number of AR
- Filling this out (correctly..) will speed things up!

🕼 🗄 🏷 🖑 🔶 =			Copy of O	RM_Upload_Sheet_AqReso	urces_onlyness (7).xlsx [F	Read-Only] - Excel
FILE HOME INSERT PAGE LAYOUT	FORMULAS DATA REVIE	N VIEW ACROB	AT			
Arial - 10	• A* A* = = *	🛱 Wrap Text	General -		Normal 4 No	rmal 5 Norm
Paste ▼ Format Painter	<u>≫</u> - A - ≡ ≡ = € €	🖽 Merge & Center 寸	\$ - % > .00	Conditional Format as	Normal Bac	d Good
Clipboard 🕞 Font	Alignment		Number 🕞			Styles
$K1 \bullet : X \checkmark Jx$						
A	B C	D	E F	G	H I	
1 Waters_Name C	cowardin_Code HGM_Code	Measurement_Type A	mount Units	Waters_Type Latitu	ide Longitude	Local_Waterway
2 North Diversion Gates_MC-0.00 R	RIVERINE	Area	1 SQ_FT	DELINEATE	39.7982 -122.26	31 North Main
3 North Diversion Measurement_MC-0.21 R	RIVERINE	Area	700 SQ_FT	DELINEATE	39.7982 -122.26	23 North Main
4 Beckham Cross Check_MC-1.89 R	RIVERINE	Area	900 SQ_FT	DELINEATE	39.7983 -122.25	65 North Main
5 L101 Heading_MC-3.27R R	RIVERINE	Area	405 SQ_FT	DELINEATE	39.7977 -122.25	19 North Main
5 L102 Heading_MC-3.68L R	RIVERINE	Area	100 SQ_FT	DELINEATE	39.7973 -122.25	05 North Main
7 L102 Cross Check_MC-3.69 R	RIVERINE	Area	900 SQ_FT	DELINEATE	39.7974 -122.25	05 North Main
B Eldridge Cross Check_MC-4.23 R	RIVERINE	Area	900 SQ_FT	DELINEATE	39.797 -122.24	87 North Main
9 Romano Cross Check_MC-5.81 R	RIVERINE	Area	900 SQ_FT	DELINEATE	39.7957 -122.24	36 North Main
0 Cavier Cross Check MC-6.80 R	RIVERINE	Area	50 SQ FT	DELINEATE	39.795 -122.24	04 North Main
1 Sanders Cross Check MC-7.08 R	RIVERINE	Area	900 SQ FT	DELINEATE	39.795 -122.23	94 North Main
2 Bent Board Cross Check MC-8.47 R	RIVERINE	Area	900 SQ FT	DELINEATE	39.7949 -122.23	44 North Main
3 Washing Machine Cross Check MC-9.34 R	RIVERINE	Area	950 SQ_FT	DELINEATE	39,7949 -122,23	313 North Main
4 L100 Heading MC-11.62L R	RIVERINE	Area	500 SQ FT	DELINEATE	39.7905 -122.22	258 North Main
5 Lichtsteiner Spill MC-11 62R R	RIVERINE	Area	1 SQ_FT	DELINEATE	39 7903 -122 22	59 North Main
6 110 Heading MC-11 62 R	RIVERINE	Area	520 SQ_FT	DELINEATE	39 7905 -122 22	04 North Main
7 113 Heading_MC-13 18 R	RIVERINE	Area	283 SO FT	DELINEATE	39 7908 -122 22	204 100
8 L113 Cross Check MC-13.4 R	RIVERINE	Area	320 SQ_FT	DELINEATE	39 7909 -122 21	96 100
9 L 120 Heading MC-14 44L	RIVERINE	Area	390 SO FT	DELINEATE	39 7909 -122 21	57 100
10 L 120 Cross Check MC-14 45	RIVERINE	Area	900 SO FT	DELINEATE	39 7909 -122 21	59 100
11 L 140 Heading MC-20 07L		Area	220 SO ET	DELINEATE	39 7862 -122 20	14 1 100
12 140 Cross Check MC 20.08			900 SO ET	DELINEATE	39,7862 122.20	17 1 100
13 L 114 Heading L 120 2 821		Area	183 SO ET	DELINEATE	39.7034 122.20	65 L 100
M L114 Cross Check L120 2.88		Area	800 SO ET	DELINEATE	30 7022 122.20	63 L 100
A LTH4 CIOSS CHECK_LT20-2.00 R	RIVERINE	Area	000 SQ_FT	DELINEATE	39.1932 -122.20	103 L 100
.0						
.0						
20						
:9						
2						
13						
:4						
15						
16						
17						
8						
19						
.0						
.1						
.2						
.3						
AqResources Validation	Rules Ref_Help Format	÷				

	INSERT PAGE L	AYOUT FORMULAS DATA REVIEW VIEW ACROBAT							
Cut	Any	• 10 • $A^{*} A^{*} \equiv \equiv 0 $ Wrap Text General •	Normal 4 Normal 5 Normal 6 Normal 7						
te	B I U -	□ - △ - A - 三 三 三 伝 症 III Merge & Center - \$ - % > 1 50 - 50 Conditional Fou	rmat as Normal Bad Good Neutral						
Clipboard	ter i	opt 5 Alignment 5 Number 5	able - Styles						
cipboard			ayıta						
28 * :	$\land \checkmark Jx$	Aquatic Bed, Tidal, Riverine							
	В	C	D						
DELINEATE		Delineation only							
TNW		TNWs, including territorial seas							
TNWW		Wetlands adjacent to TNWs							
RPW		Relatively Permanent Waters (RPWs) that flow directly or indirectly into TNWs							
RPWWD		Wetlands directly abutting RPWs that flow directly or indirectly into TNWs							
RPWWN		Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs							
NRPW		Non-RPWs that flow directly or indirectly into TNWs							
NRPWW		Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs							
ISOLATE		Isolated (interstate or intrastate) waters, including isolated wetlands							
		Uplands							
		Houtary consisting of both KE vvs and hon-KE vvs							
HGM Code	Name	Description							
DEPRESS	Depressional	Depressional is characterized by a water source consisting of return flow from groundwater and interflow w	vith primarily vertical hydrodynamics.						
ESTUARINEF	Estuarine Fringed	The water source of the estuarine fringe consists of overbank flow from estuaries, with bidirectional and ho	rizontal hydrodynamics being dominant.						
LACUSTRINF	Lacustrine Fringe	A Lacustrine fringe has a dominant water source of lake overbank flow, and the dominant hydrodynamics	are bidirectional and horizontal.						
MINSOILFLT	Mineral Soil Flats	Mineral soil flats have a water source of precipitation, and vertical hydrodynamics are dominant.							
		mineral boli lato have a water boarce of precipitation, and vertical hydrodynamico are dominant.							
ORGSOILFLT	Organic Soil Flats	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical.							
ORGSOILFLT RIVERINE	Organic Soil Flats Riverine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are	e predominantly unidirectional and horizontal.						
orgsoilflt Riverine Slope	Organic Soil Flats Riverine Slope	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics.						
ORGSOILFLT RIVERINE SLOPE	Organic Soil Flats Riverine Slope	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics.						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code	Organic Soil Flats Riverine Slope Category Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deenwater tidal habitats and adjacent tidal wetlands that are usually semiencloses	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUABINE						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1	Organic Soil Flats Riverine Slope Category Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal. Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB-ESTUARINE, SUBTIDAL, AQUATIC BED						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1 E1AB E1AB	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Iy unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3 E1AB4	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC						
ORGSOILFLT RIVERINE SLOPE E E1 E1AB E1AB1 E1AB3 E1AB4 E1AB5	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name 8d by E-ESTUARINE, SUBTIDAL E1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3 E1AB4 E1AB5 E1AB5 E1AB6 E1AD6	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Sufface, Aquatic Bed, Subtidal, Estuarine Unknown Sufface, Aquatic Bed, Subtidal, Estuarine Over Mirko D, Mirko E, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE, SUBTIDAL E1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, COT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, COT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3 E1AB4 E1AB5 E1AB6 E10PU	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Surface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Deals Detarg, Characterized Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E10W-ESTUARINE, SUBTIDAL, OPEN WATER E10W-ESTUARINE, SUBTIDAL, OPEN WATER						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3 E1AB4 E1AB5 E1AB5 E1AB6 E1OW E1RB	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Unknown Surface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Bodrock Dack Bottom, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E10W-ESTUARINE, SUBTIDAL, AOUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, AOUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AOUA BED, DINK SUB E1AB6-ESTUARINE, SUBTIDAL, AOUA BED, EDDOF E1AB6-ESTUARINE, SUBTIDAL, AOUA BED, SUBTIDAL, AOUA B						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1AB1 E1AB1 E1AB3 E1AB4 E1AB5 E1AB6 E1AB6 E10W E1RB E1RB1 E1RB1 E122	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Bubble Rock Bottom, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE, SUBTIDAL E1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AOUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, BEDROK E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, BEDROK						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3 E1AB4 E1AB5 E1AB5 E1AB6 E1OW E1RB E1RB1 E1RB1 E1RE2 E12E	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Surface, Aquatic Bed, Subtidal, Estuarine Unknown Surface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rooted Vascular, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rooted Vascular, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rooted Vascular, Subtidal, Estuarine Rooted Vascular, Subtidal, Estuarine Rooted Vascular, Aguatic Bed, Subtidal, Estuarine Rooted Vascular, Aguatic Bed, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rooted Vascular, Subtidal,	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal. Ily unidirectional and horizontal. Name Sd by E-ESTUARINE, SUBTIDAL E1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB-ESTUARINE, SUBTIDAL, AQUA BED, PLOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, PLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, OPEN WATER E1RB-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, BEDROK E1RB2-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE E1RB2-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3 E1AB4 E1AB5 E1AB4 E1AB5 E1AB6 E1OW E1RB E1RB1 E1RB1 E1RF2 E1RF2	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Unknown Sutface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Rubble, Rock Sottor, Subtidal, Estuarine Rubble, Rock Sottor, Subtidal, Estuarine Rubble, Rock Sottom, Subtidal, Estuarine Rubble, Rock Sottor, Subtidal, Estuarine Rubbl	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal. Ily unidirectional and horizontal. Name sd by E-ESTUARINE, SUBTIDAL E1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, CONT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, OPEN WATER E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE E1RF-ESTUARINE, SUBTIDAL, REEF E1RF-ESTUARINE, SUBTIDAL, REEF E1RF-ESTUARINE, SUBTIDAL, REEF						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB1 E1AB1 E1AB3 E1AB4 E1AB5 E1AB6 E10W E1RB E1RB1 E1RB2 E1RF2 E1RF2 E1RF2 E1RF2 E1RF2	Organic Soil Flats Riverine Slope Category Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Unknown Sufface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Mollusc, Reef, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal. Ily unidirectional and horizontal. Ily unidirectional and horizontal. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, OPEN WATER E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE E1RF-ESTUARINE, SUBTIDAL, REEF E1RF2-ESTUARINE, SUBTIDAL, REEF, MOLLUSC E1RF2-ESTUARINE, SUBTIDAL, REEF, WORM						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3 E1AB4 E1AB5 E1AB6 E1OW E1RB E1RB4 E1RB1 E1RB2 E1RF2 E1RF3 E1UB	Organic Soil Flats Riverine Slope Category Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Sudrace, Aquatic Bed, Subtidal, Estuarine Unknown Sufrace, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Mollusc, Reef, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, BEDROK E1RB2-ESTUARINE, SUBTIDAL, REEF E1RF2-ESTUARINE, SUBTIDAL, REEF, MOLLUSC E1RF3-ESTUARINE, SUBTIDAL, REEF, WORM E1UB-ESTUARINE, SUBTIDAL, UNCONSOLIDATED BOTTM						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB3 E1AB4 E1AB3 E1AB4 E1AB5 E1AB6 E1AB6 E1AB6 E1CW E1RB E1RF1 E1RF2 E1RF2 E1UB1 E1UB1	Organic Soil Flats Riverine Slope Category Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Surface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Mollusc, Reef, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Cobble-Gravel, Unconsolidated Bottom, Subtidal, Estuarine	e predominantly unidirectional and horizontal. Ily unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ALGAL E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, BEDROK E1RF2-ESTUARINE, SUBTIDAL, REEF E1RF2-ESTUARINE, SUBTIDAL, REEF, MOLLUSC E1RF3-ESTUARINE, SUBTIDAL, REEF, WORM E1UB1-ESTUARINE, SUBTIDAL, UNCONSOL BOTOM, COB						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB3 E1AB4 E1AB5 E1AB4 E1AB5 E1AB6 E1AB6 E1OW E1RB E1RB1 E1RB1 E1RF2 E1RF3 E1UB1 E1UB2	Organic Soil Flats Riverine Slope Category Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Sufface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Roble, Rock Bottom, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Mollusc, Reef, Subtidal, Estuarine Subtidal, Estuarine More Subtidal, Estuarine Subtidal, Estuarine More, Reef, Subtidal, Estuarine Subtidal, Estuarine More, Reef, Subtidal, Estuarine Subtidal, Estuarine More, Reef, Subtidal, Estuarine More, Reef, Subtidal, Estuarine More, Subtidal, Estuarine More, Reef, Subtidal, Estuarine More, Reef, Subtidal, Estuarine More, Reef, Subtidal, Estuarine More, Subtidal, Estuarine M	e predominantly unidirectional and horizontal. ly unidirectional and horizontal. ly unidirectional and horizontal. ly unidirectional and horizontal. Name sd by E-ESTUARINE, SUBTIDAL E1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, COT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, COT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E1RB-ESTUARINE, SUBTIDAL, OPEN WATER E1RB-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE E1RF2-ESTUARINE, SUBTIDAL, REEF E1RF2-ESTUARINE, SUBTIDAL, REEF, MOLLUSC E1RF3-ESTUARINE, SUBTIDAL, REEF, WORM E1UB-ESTUARINE, SUBTIDAL, NCONSOL DOTM, COB E1UB2-ESTUARINE, SUBTIDAL, UNCONSOL BOTOM, COB E1UB2-ESTUARINE, SUBTIDAL, UNCONSOL BOTM, SAND						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB E1AB1 E1AB1 E1AB3 E1AB4 E1AB5 E1AB4 E1AB5 E1AB4 E1AB5 E1AB4 E1AB5 E1AB5 E1AB4 E1AB5 E1AB4 E1RF2 E1RF2 E1RF3 E1UB1 E1UB1 E1UB3	Organic Soil Flats Riverine Slope Category Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Unknown Sutrace, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Worn, Subtidal, Estuarine Worn, Subtidal, Estuarine Worn, Reef, Subtidal, Estuarine Worn, Subtidal, Estuarine Worn, Reef, Subtidal, Estuar	e predominantly unidirectional and horizontal. ly unidirectional and horizontal. ly unidirectional and horizontal. ly unidirectional and horizontal. ly unidirectional and horizontal. Name sd by E-ESTUARINE, SUBTIDAL E14B3-ESTUARINE, SUBTIDAL, AQUATIC BED E14B1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E14B3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E14B4-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E14B5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E14B6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E14B6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, OPEN WATER E1RB1-ESTUARINE, SUBTIDAL, OPEN WATER E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE E1RF-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE E1RF2-ESTUARINE, SUBTIDAL, REEF, MOLLUSC E1RF3-ESTUARINE, SUBTIDAL, NCONSOL BOTM, COB E1UB2-ESTUARINE, SUBTIDAL, UNCONSOL BOT, SAND E1UB3-ESTUARINE, SUBTIDAL, UNCONSOL BOT, MUD						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB1 E1AB1 E1AB3 E1AB4 E1AB5 E1AB6 E1OW E1RB E1RB1 E1RB2 E1RF E1RF2 E1RF3 E1UB1 E1UB1 E1UB2 E1UB3 E1UB4	Organic Soil Flats Riverine Slope Category Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Floating Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Unknown Sufface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Gobble-Gravel, Unconsolidated Bottom, Subtidal, Estuarine Cobble-Gravel, Consolidated Bottom, Subtidal, Estuarine Cobble-Gravel, Consolidated Bottom, Subtidal, Estuarine Cobble-Gravel, Consolidated Bottom, Subtidal	e predominantly unidirectional and horizontal. ly unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE, SUBTIDAL E1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, OPEN WATER E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE E1RF2-ESTUARINE, SUBTIDAL, REEF E1RF2-ESTUARINE, SUBTIDAL, REEF, MOLLUSC E1RF3-ESTUARINE, SUBTIDAL, REEF, WORM E1UB2-ESTUARINE, SUBTIDAL, NCONSOL BOTM, COB E1UB2-ESTUARINE, SUBTIDAL, UNCONSOL BOT, SAND E1UB3-ESTUARINE, SUBTIDAL, UNCONSOL BOT, MUD E1UB4-ESTUARINE, SUBTIDAL, UNCONSOL BOT, MUD						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB1 E1AB3 E1AB4 E1AB5 E1AB6 E1OW E1RB E1RB4 E1RB1 E1RB2 E1RF E1RF2 E1RF2 E1RF2 E1RF2 E1RF3 E1UB1 E1UB1 E1UB2 E1UB4 (→ Aql	Organic Soil Flats Riverine Slope Category Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Algal, Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Unknown Surface, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Mollusc, Reef, Subtidal, Estuarine Mollusc, Reef, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Cobble-Gravel, Unconsolidated Bottom, Subtidal, Estuarine Sund Sund Ratio Ref_Help	e predominantly unidirectional and horizontal. ly unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE E1-ESTUARINE, SUBTIDAL E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, OPEN WATER E1RB-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM, BEDROK E1RB2-ESTUARINE, SUBTIDAL, REEF E1RF-ESTUARINE, SUBTIDAL, REEF, MOLLUSC E1RF3-ESTUARINE, SUBTIDAL, REEF, WORM E1UB-ESTUARINE, SUBTIDAL, UNCONSOL BOTM, COB E1UB3-ESTUARINE, SUBTIDAL, UNCONSOL BOT, MUD E1UB4-ESTUARINE, SUBTIDAL, UNCONSOL BOT, MUD E1UB4-ESTUARINE, SUBTIDAL, UNCONSOL BOT, ORG						
ORGSOILFLT RIVERINE SLOPE Cowardin_Code E E1 E1AB1 E1AB3 E1AB1 E1AB3 E1AB4 E1AB5 E1AB6 E1OW E1RB E1RB1 E1RB2 E1RF E1RF E1RF2 E1RF3 E1UB1 E1UB1 E1UB3 E1UB4 () Aq	Organic Soil Flats Riverine Slope Category Estuarine	Organic soil flats have precipitation as the water source, and its dominant hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamic is vertical. Riverine is characterized by a water source of overbank flow from a channel, and hydrodynamics which are The Slope wetland class is characterized by a water source of return flow from groundwater, with principal Description Estuarine - Consists of deepwater tidal habitats and adjacent tidal wetlands that are usually semiencloses Subtidal, Estuarine Aquatic Bed, Estuarine Aquatic Bed, Subtidal, Estuarine Rooted Vascular, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Unknown Submergent, Aquatic Bed, Subtidal, Estuarine Open Water, Subtidal, Estuarine (used on older maps) Rock Bottom, Subtidal, Estuarine Bedrock, Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Rubble, Rock Bottom, Subtidal, Estuarine Worm, Reef, Subtidal, Estuarine Unconsolidated Bottom, Subtidal, Estuarine Cobble-Gravel, Unconsolidated Bottom, Subtidal, Estuarine Consolidated Bottom, Subtidal, Estuarine Consolidated Bottom, Subtidal, Estuarine Copanie: Inconsolidated Bottom, Subtidal, Estuarine	e predominantly unidirectional and horizontal. ly unidirectional and horizontal hydrodynamics. Name sd by E-ESTUARINE, SUBTIDAL E1-ESTUARINE, SUBTIDAL, AQUATIC BED E1AB1-ESTUARINE, SUBTIDAL, AQUATIC BED, ALGAL E1AB3-ESTUARINE, SUBTIDAL, AQUA BED, ROOT VASC E1AB4-ESTUARINE, SUBTIDAL, AQUA BED, FLOT VASC E1AB5-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUB E1AB6-ESTUARINE, SUBTIDAL, AQUA BED, UNK SUR E10W-ESTUARINE, SUBTIDAL, OPEN WATER E1RB1-ESTUARINE, SUBTIDAL, ROCK BOTTOM E1RB2-ESTUARINE, SUBTIDAL, ROCK BOTTOM, RUBBLE E1RF2-ESTUARINE, SUBTIDAL, REEF, MOLLUSC E1RF3-ESTUARINE, SUBTIDAL, REEF, WORM E1UB-ESTUARINE, SUBTIDAL, NCONSOL DOTM, COB E1UB2-ESTUARINE, SUBTIDAL, UNCONSOL BOT, SAND E1UB3-ESTUARINE, SUBTIDAL, UNCONSOL BOT, MUD E1UB4-ESTUARINE, SUBTIDAL, UNCONSOL BOT, MUD E1UB4-ESTUARINE, SUBTIDAL, UNCONSOL BOT, ORG						

Difficult Wetland Situations in the Arid West

(Sept 2008, Regional Supplement to USACE Delineation Manual)

- Lacking one factor:
 - Problematic Hydrophytic Vegetation (grazing, managed plant communities, riparian areas, sparse and patchy vegetation, etc.)
 - Problematic Hydric Soils
 - Wetlands that Periodically Lack Indicators of Wetland Hydrology
- Disturbance, normal seasonal or annual variability, or permanent changes
- Essentially, lacking one of the three criteria does not exclude the Aquatic Resource from being a wetland

BUILDING STRONG_®

Continued...

Weather and Site Condition Considerations:

- What time of year are you visiting the site?
- Consider recent rain events. Did it rain immediately before your site visit and how much has it rained?
- Has long-term precipitation been normal?
- Is the site irrigated?

Evaluating Normal Rain Fall

WETS tables

- USDA National Water and Climate Center (http://www.wcc.nrcs.usda.gov/climate/navigate_wets.html)
- Analyze monthly precipitation data from >8,000 National Weather Service stations
- Based on a standard 30 years of rainfall data
- Provide monthly and annual thresholds for:
 Below normal rainfall (lowest 3 years in 10)
 Above normal rainfall (highest 3 years in 10)

onmental Laboratory

ERDC/EL TR-WRAP-00-1

US Army Corps of Engineers. Engineer Research and Development Center

Wetlands Regulatory Assistance Program

Accessing and Using Meteorological Data to Evaluate Wetland Hydrology

Steven W. Sprecher and Andrew G. Warne

April 2000

https://efotg.sc.egov.usda.gov/efotg_locator.aspx?map=US

WETS Table - Windows Internet Explorer

http://agacis.rcc-acis.org/06057/wets/results

<u>File Edit View Favorites Tools H</u>elp

USDA F

WETS Station : BOWMAN DAM, CA1018 Creation Date: 01/1								
Latitude: 3927 Longitude: 12039 Elevation: 05385								
State FIPS/County(FIPS): 06057 County Name: Nevada								
	1 :	Cemperat	ure	Precipitation				
	I.	(Degrees	F.)	(Inches)				
						hance		
	i				will	have	# of	
				I			days	
Month	avg	avg	l avg	avg	less	more	w/.1	
	daily	daily			than	than	or	
					۱ 		111016	
January	45.0	26.4	35.7	12.04	5.20	14.67	9	
February	45.8	25.9	35.9	11.04	5.80	13.49	9	
March	47.5	27.8	37.7	10.34	5.48	1 12.63	11	the second s
May	62 3	1 38 2	50 3	4.49	1 2.54	Three	mér	the prior to date of data collectic
June	72.1	45.8	59.0	1.22	0.41	1.47		in sphor to date of data concelle
July	79.4	51.8	65.6	0.37	0.00	0.29	i o	
August	79.6	52.3	66.0	0.57	1 0.00	0.59	1	
September	73.9	47.9	60.9	1.56	0.23	1.88	2	
October	64.3	40.6	52.5	4.22	1.25	1 5.04	1 5	
December	45 5	267	41.3 36.1	9.04	4.12	1 11.04	1 8	
	i		i		i	i		
Annual	I		I		54.06	78.03		
	1		1					
Average	1 60.0	37.2	48.6				-	
Average				67.97		·	- Contractor	
	I					i		
							100	
CROWING SE	ASON DAT	79						
GROWING SE.	ASON DAIL					-	h.	
							10.0	
		1		1	ſemperatu	re	100.	
Brob	ability		E or big		For hig	her	1.1.1	The second se
	abiiicy						120	
		i i		Beginni	ng and En	ding Dat	TRE	
i i i			Growing Season Length					
50 1	percent	· .						
70	percent	* i		i i		i 🔤	100	
		1		1		I.	152	
Minor Pitfalls

- Missing the Date and full legend on your map
- Not Showing a clearly defined study area boundary on the map
- Not putting the acreage of your study area boundary
- Not using unique Aquatic Resource feature names

Update & Preliminary vs Approved Jurisdictional Determinations

James Robb

Wetland Specialist

Sacramento District Regulatory Program Workshop

22 January 2016

US Army Corps of Engineers BUILDING STRONG®

 Definition of Waters of the U.S.
regulation published 29 June 2015 (80
Fed. Reg. 37054-37127)
Stayed

HUND RECORDS THUNKST

FEDERAL REGISTER

Vol. 80	Monday,
No. 124	June 29, 2015

Part II

Department of Defense Department of the Army, Corps of Engineers 33 CEB Part 328

Environmental Protection Agency

40 CFR Parts 110, 112, 116, et al. Clean Water Rule: Definition of "Waters of the United States"; Final Rule

 Minimum Standards for the Acceptance of Aquatic Resources Delineation Reports, update effective January 2016

http://1.usa.gov/1V68IYa

Connectivity literature review published January 2015

 Guide to OHWM Delineation for Non-Perennial Streams in the Western Mountains Valleys and Coast

Proposed annual update to the National Wetland Plant List September 2015

 SPD Irrigated Wetlands Delineation Procedures (12510-SPD)

 Formerly irrigated lands hydrology study, in progress

PJD vs. AJD

Preliminary Jurisdictional Determination	Approved Jurisdictional Determination
Not appealable (instead request an AJD)	Appealable
No set expiration date	Expires after 5 years
Cannot use to disclaim jurisdiction over an aquatic resource	Required to disclaim jurisdiction over an aquatic resource
Not posted on the web	Posted on the web
Sufficient for permitting	Sufficient for permitting

I have a non-tidal irrigation ditch excavated on dry land in my study area. Can I just leave it off the map and do a PJD?

No, if it's an aquatic resource it needs to be on the map. If it's a preamble excluded water then the Corps will need to do an AJD to disclaim jurisdiction.

Does the Corps have to coordinate all Approved JDs with EPA?

No, the Corps is only required to coordinate isolated & significant nexus calls with EPA. Other non-jurisdictional findings (i.e., preamble excluded waters) do not required EPA coordination but do require an AJD.

What about puddles? The stayed rule talks about these in the same context as the 1986 preamble excluded waters. Do I have to map those? No, puddles are not aquatic resources since they do not have an OHWM nor are they wet long enough to meet the definition of wetland.

I requested a PJD but the Corps decided to do an AJD. Can they do that?

Yes, the type of jurisdictional determination the Corps verifies is their decision to make

How long is EPA's review of an Approved JD?

15 days for a significant nexus determination, 21 days for isolated

Can the Corps issue an Approved JD when I asked for a Preliminary JD?

Yes, when jurisdiction is contested or when the Corps determines that it does not have jurisdiction over an aquatic resource (Regulatory Guidance Letter 08-02)

Where can I find jurisdictional determinations on the web?

The Sacramento District publishes all of its approved jurisdictional determinations at http://www.spk.usace.army.mil/Missions/Regulatory/Jurisdiction.aspx

