

Lower San Joaquin Feasibility Study – Environmental Impact Report/ Supplemental Environmental Impacts Statement

San Joaquin County, California

Geotechnical Addendum

January 2016

(Revision: 16 November 2017)

This page left intentionally blank

TABLE OF CONTENTS

LIS	ST OF	TABLES	iv
LIS	ST OF	FIGURES	iv
EN	ICLOS	URES	vi
ΑE	BREV	VIATIONS	vi
1.	INTI	RODUCTION	1
	1.1	Purpose and Scope	1
	1.2	Project Description	1
	1.3	Reach Identification	
2.		CONDITIONS	
	2.1	Sources of Data	
4	2.2	Geology, Geomorphology, and Seismicity	
	2.2.1	Geologic Setting	5
	2.2.2	Geomorphology	6
	2.2.3	Seismic Setting.	2
2	2.3	Levees	4
	2.3.1	Construction History	4
	2.3.2	Past performance	5
2	2.4	Hydraulic Loading Conditions	8
3.	WIT	HOUT PROJECT CONDITIONS2	20
2	3.1	Potential Failure Modes	20
	3.1.1	Overtopping2	20
	3.1.2	Erosion2	20
	3.1.3	Seepage	20
	3.1.4	Slope Stability2	21
	3.1.5	Seismic	22
3	3.2	Geotechnical Reach Description	22
	3.2.1	RD-17 Basin	
	3.2.2	RD-4042	24
	3.2.3		
	3.2.4		
	3.2.5		
	3.2.6	Delta Brookside Study Area	46

3	.2.7	Delta Lincoln Village Study Area	. 27
3.3	S	eepage and Stability Methodology	. 28
3	.3.1	Steady State Seepage Analysis	. 28
3	.3.2	Steady State Slope Stability Analysis	29
3	.3.3	Material Properties	30
3	.3.4	Representative Cross Sections	. 32
3.4	S	eepage and Stability Analysis Results	35
3	.4.1	South Stockton – Lower San Joaquin River East Bank RD-17	35
_	.4.2 Bank (Central Stockton – RD-404 French Camp Slough/Stockton Diverting Canal, Left Calaveras River	. 39
_	.4.3 /illage	North Stockton – Right Bank Calaveras River, Delta Brookside, Delta Lincoln e 42	
3.5	P	robabilistic Analysis Methodology	45
3	.5.1.	Underseepage	46
3	.5.2	Through-Seepage	47
3	.5.3	Landside Slope Stability	48
3	.5.4	Judgment	49
3	.5.5	Combined Curves.	50
3.6	P	erformance Curves	50
3	.6.1	RD-17 – Lower San Joaquin River, East Bank	51
3	.6.2	French Camp Slough, North and South Bank	55
3	.6.3	Stockton Diverting Canal, Left Bank	57
3	.6.4	Calaveras River, North and South Bank	59
3	.6.5	Delta Front Brookside / Delta Lincoln Village	63
3.7	S	eismic Performance and Liquefaction Analysis	65
3	.7.1	Site Specific Seismic and Liquefaction Analysis	65
3	.7.2	Liquefaction And Ground Deformation	68
4. V	VITH	PROJECT CONDITIONS DESCRIPTION	69
4.1	T	ypical Levee Improvement Measures	69
4	.1.1	Cutoff Walls	69
4	.1.2	Seepage Berms	70
4	. 1 3	Slone flattening	70

4.1.4	Stability Berms	70
4.1.5	Floodwall/Retaining Wall	70
4.1.6	Embankment Fill/Levee Raise	71
4.1.7	Bank Protection	71
4.1.8	Anticipated Borrow Source	71
4.2	Other Structural Measures	72
4.2.1	Closure Structures/Gates	72
4.2.2	Channel Improvements/Weirs	73
4.3 I	Levee Improvement Measures	73
4.3.1	Methodology	73
4.3.2	Criteria	75
4.3.3	Mitigation Measure Templates	80
4.3.4	Selection of Template Options for Mitigation Measures	87
4.4 V	With Project Performance Curves	88
5. CONC	CLUSIONS	89
6. REFE	RENCES	91
	LIST OF TABLES	
	South Stockton Basin Analyses Water Surface Elevations (RD-17)	18
	Canal, Left Bank of Calaveras River)	19
	North Stockton Basin Analyses Water Surface Elevations (Right Bank of Calaveras	
	ta Brookside Community and Delta Lincoln Village)	
	Hydraulic Conductivities	
	Shear Strength of Soils	
	Index Point Locations (¹ 200-yr. WSE not given)	
	Vertical and Horizontal Hydraulic Conductivity	
	Through-Seepage Random Variables	
	Variation of Through-Seepage Random Variables	
	Drained Shear Strength of Soil	
Table 3-9:	Variation of Drained Shear Strength Parameters	1 9
	LIST OF FIGURES	
Figure 1-1:	: Lower San Joaquin Project Study Area	. 2
Figure 2-1:	: Geologic Units of Lower San Joaquin River RD-17	. 7
Figure 2-2:	Geologic Units of RD-404/French Camp Slough	. 8

Figure 2-3: Geologic Units of Stockton Diverting Canal	9
Figure 2-4: Geologic Units of Calaveras River	
Figure 2-5: Geologic Units of Delta Brookside / Delta Lincoln Village	
Figure 2-6: Northern California Fault Activity Map, CGS 2010	
Figure 2-7: Clamshell Dredge Along Sacramento River 1942	
Figure 2-8: Lower San Joaquin River Typical Section, 5 March 1957	
Figure 2-9: Areas of Seepage 1997, RD-17 (\approx RM 8.5)	
Figure 2-10: Seepage and Sack Rings 1997, RD-17 (≈RM 9.5)	
Figure 3-1: Underseepage Distress	
Figure 3-2: Underseepage Induced Slope Instability Distress	. 22
Figure 3-3: Typical GMS SEEP2D Seepage Analysis Model	. 29
Figure 3-4: Typical UTEXAS4 Slope Stability Analysis Model	
Figure 3-5: LSJRFS Index Point Location Map	
Figure 3-6: RD-17 Index Point LR-1 Without-Project Analyses Results	
Figure 3-7: RD-17 Index Point LR-2 Without-Project Analyses Results	
Figure 3-8: RD-17 Index Point LR-3 Without-Project Analyses Results	
Figure 3-9: RD-17 Index Point LR-4 Without-Project Analyses Results	
Figure 3-10: RD-17 Index Point FL-1 Without-Project Analyses Results	
Figure 3-11: RD-404 Index Point FR-1 Without-Project Analyses Results	
Figure 3-12: SDC Index Point SL-1 Without-Project Analyses Results	
Figure 3-13: SDC Index Point SL-2 Without-Project Analyses Results	
Figure 3-14: Calaveras River Index Point CL-1/CL-2 Without-Project Analyses Results	
Figure 3-15: Calaveras River Index Point D-5 Without-Project Analyses Results	
Figure 3-16: Calaveras River Index Point CR-1/CR-2 Without-Project Analyses Results	
Figure 3-17: Calaveras River Index Point D-4 Without-Project Analyses Results	
Figure 3-18: Delta Brookside Index Point D-BS Without-Project Analyses Results	
Figure 3-19: Delta Lincoln Village Index Point D-LV Without-Project Analyses Results	
Figure 3-20: Index Point LR-1 Combined Probability of Poor Performance Curve for Without	
Project Conditions	
Figure 3-21: Index Point LR-2 Combined Probability of Poor Performance Curve for Without	
Project Conditions	
Figure 3-22: Index Point LR-3 Combined Probability of Poor Performance Curve for Without	
	. 53
Figure 3-23: Index Point LR-4 Combined Probability of Poor Performance Curve for Without	
Project Conditions	
Figure 3-24: Index Point FL-1 Combined Probability of Poor Performance Curve for Without	
Project Conditions	
Figure 3-25: Index Point FR-1 Combined Probability of Poor Performance Curve for Without	
Project Conditions	
Figure 3-26: Index Point SL-1 Combined Probability of Poor Performance Curve for Without	
Project Conditions	
Figure 3-27: Index Point SL-2 Combined Probability of Poor Performance Curve for Without	
Project Conditions	
Figure 3-28: Index Point CL-1/CL-2 Combined Probability of Poor Performance Curve for	
Without Project Conditions	. 59
Figure 3-29: Index Point CR-1/CR-2 Combined Probability of Poor Performance Curve for	

Witho	out Project Conditions	60
Figur	e 3-30: Index Point D-4 Combined Probability of Poor Performance Curve for Without	
Projec	ct Conditions	61
Figur	re 3-31: Index Point D-5 Combined Probability of Poor Performance Curve for Without	
	ct Conditions	
	e 3-32: Index Point D-BS Combined Probability of Poor Performance Curve for Without	
	ct Conditions	
_	e 3-33: Index Point D-LV Combined Probability of Poor Performance Curve for Without	
,	ct Conditions	
	e 3-34: USGS 2008 Interactive Deaggregations (Beta) Input	
	e 3-35: USGS 2008 Interactive Deaggregations (Beta) Output	
_	e 4-1: Vegetation-Free Zone of Basic Levee	
_	re 4-2: Template Option 1 – Landside Slope Reconstruction	
_	re 4-3: Template Option 2 – Centerline Cutoff Wall	
	te 4-4: Template Option 3 – Cutoff Wall with Landside Slope Reconstruction	
_	e 4-6: Template Option 5 – Seepage Berm	
	e 4-7: Template Option 6 – Seepage Bernie 4-7: Template Option 6 – Combination Berm	
	e 4-8: Template Option 7 – Combination Berme 4-8: Template Option 7 – Levee Raise with Combination Berm	
	e 4-9: Template Option 8 – New Levee	
	e 4-10: Template Option 9 – New Levee with Cutoff Wall	
_	e 4-11: Template Option 10 – New Levee with Seepage Berm	
_	e 4-12: Template Option 11 – Seismic DSM (Degrade Levee) Seismic Remediation	
1 1841	2 1 12 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1	
	ENCLOSURES	
E1:	Geomorphology Maps	
E2:	Calculation Package	
E3:	Risk and Uncertainty Analyses	
E4:	Seismic and Liquefaction Analyses	
E5:	Template Options for Assigned Mitigation Measures	
E6:	Meeting Minutes for Expert Elicitation	
	ABBREVIATIONS	

ASTM	American Society of Testing and Materials
BTA	blanket theory analysis
bgs	below ground surface
c	cohesion
CB	cement bentonite
cfs	cubic feet per second
CGS	California Geological Survey
cm	centimeters
CPT	cone penetrometer test

CR Calaveras River

CSRA Cost and Schedule Risk Assessment

CW cutoff wall

CVFPB Central Valley Flood Protection Board

DBSA Delta Brookside Study Area
DLVSA Delta Lincoln Village Study Area

DMM deep mix method DSM deep soil mixing

DWR Department of Water Resources

EM Engineer Manual
ER Engineer Regulation
ETL Engineer Technical Letter
FCS French Camp Slough
FOS factor(s) of safety

FOSM First Order Second Moment

ft foot/feet

ft/s feet per second

GDR Geotechnical Data Report

GER Geotechnical Engineering Report
GMS Groundwater Modeling System
H:V horizontal to vertical ratio

HQ Headquarters U.S. Army Corps of Engineers

IBC International Building Code
 IWM in-stream woody material
 k coefficient of permeability
 Ka kiloannum – one thousand years

k_H horizontal hydraulic conductivity under fully saturated conditions k_H/k_V ratio between vertical and horizontal conductivities; anisotropic ratio k_V vertical hydraulic conductivity under fully saturated conditions

LiDAR Light Detection and Ranging

LM Levee Mile

LSJRFS Lower San Joaquin River Feasibility Study

LSJR Lower San Joaquin River

Ma million years

MCE Maximum Credible Earthquake MSWL Mean Summer Water Level

Mw Moment Magnitude

NAD83 North American Datum of 1983

NAVD88 North American Vertical Datum of 1988

NCEER National Center for Earthquake Engineering Research

NGA Next Generation Attenuation

NGVD29 National Geodetic Vertical Datum of 1929

NLD National Levee Database NULE Nonurban Levee Evaluations PCET Parametric Cost Estimation Tool

PCF per cubic foot

PDT Project Delivery Team

PED pre-construction engineering and design

PGA peak ground acceleration Pr(f) probability of failure

Pr(U) probability of poor performance PSHA Probabilistic Seismic Hazard Analysis

P1GDR Phase 1 Geotechnical Data Report

P1GER Phase 1 Geotechnical Engineering Report

PI Periodic Inspection RD Reclamation District

RM River Mile

SAFCA Sacramento Area Flood Control Agency SJAFCA San Joaquin Area Flood Control Agency

SB soil-bentonite

SCB soil cement bentonite SDC Stockton Diverting Canal

SGDR Supplemental Geotechnical Data Report

SOP Standard Operating Procedure SPT Standard Penetration Test

SRBPP Sacramento River Bank Protection Project

TEC Topographic Engineering Center

TM Technical Memorandum ULE Urban Levee Evaluation

USACE U.S. Army Corps of Engineers
USGS United States Geological Society
Vs30 velocity of the upper 30 meters
VVR vegetation variance request

WRDA Water Resources Development Act

WSE water surface elevation

1. INTRODUCTION

This report is the geotechnical addendum to the Lower San Joaquin River Feasibility Study (LSJRFS). The LSJRFS area includes portions of the Lower San Joaquin River (LSJR), French Camp Slough (FCS), Stockton Diverting Canal (SDC), Calaveras River (CR), the Delta Brookside Study Area (DBSA), and the Delta Lincoln Village Study Area (DLVSA). The flood plain includes most of the developed portions of North Stockton, Central Stockton, and South Stockton, including areas of Lathrop and Manteca. The San Joaquin watershed drains approximately 31,000 square miles of land, covering an area nearly the expanse of South Carolina, and a population of approximately 4,000,000.

1.1 PURPOSE AND SCOPE

This report presents the results of geotechnical analyses and feasibility level geotechnical recommendations as performed in accordance with Engineer Regulation (ER) 1110-2-1150 to address levee height, geometry, erosion, access, vegetation, seepage, and slope stability deficiencies within the LSJRFS area. Due to the evolving Planning process and the implementation of the 3x3x3 paradigm, this report was prepared using existing information provided by the Department of Water Resources (DWR), San Joaquin Area Flood Control Agency (SJAFCA), URS Corporation, and Kleinfelder. For this geotechnical engineering evaluation of the LSJRFS area, the following tasks were performed and are summarized in this report:

- review currently available geology, geomorphology, and geotechnical information
- review past performance and flood control system construction history/improvements
- identification of levee performance deficiencies through geotechnical analysis and engineering judgment
- probabilistic geotechnical analysis and development of levee performance curves
- seismic study of existing levees
- development of geotechnical conclusions and recommendations

1.2 PROJECT DESCRIPTION

The Lower San Joaquin River and Tributaries Project was first authorized by the Flood Control Act of 1944. The Lower San Joaquin River Feasibility Study was authorized by the Water Resources Development Act (WRDA) of 1986 following the feasibility studies authorized by the Flood Control Act of 1962 and following appropriations in 2004. The Cost-Share agreement signed in February 2009 initiated the multi-year feasibility study of the LSJR between the Corps, Central Valley Flood Protection Board (CVFPB) represented by the State of California Department of Water Resources, SJAFCA, and its partners.

The LSJRFS area, shown in Figure 1-1, has been divided into three basins: North Stockton, Central Stockton, and South Stockton.

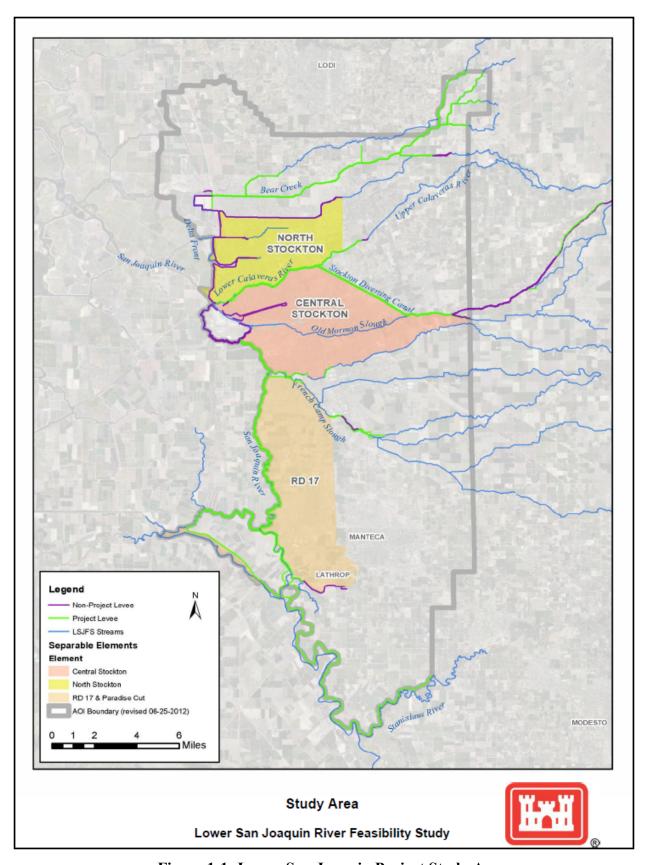


Figure 1-1: Lower San Joaquin Project Study Area

These three areas include the following stretches of levee, which are covered by this report:

- approximately 15 miles of levee along the east bank of the Lower San Joaquin River, Reclamation District 17 (RD-17), immediately downstream of Weatherbee Lake, north to the confluence of French Camp Slough
- approximately 2 miles of levee along the north (RD-404) and south banks (RD-17) of French Camp Slough (total 4 miles), immediately downstream of I-5, west to the confluence of the Lower San Joaquin River
- approximately 5 miles of levee along the west bank of the Stockton Diverting Canal (SJAFCA), immediately downstream of the confluence of Mormon Slough, northwest downstream to the confluence of Calaveras River
- approximately 6 miles of levee along the north (SJAFCA, RD-2074) and south (SJAFCA, RD-1614) banks of the Calaveras River (total 12 miles), immediately downstream of the Stockton Diverting Canal, southwest downstream to the confluence of the Lower San Joaquin River
- approximately 3.5 miles of levee west and north (RD-2074) of the Brookside Community along the Lower San Joaquin River and Fourteen Mile Slough, respectively
- approximately 2.0 miles of levee on the west side of Fourteen Mile Slough (RD-2119) located west of the Lincoln Village Community

The extents of the areas listed above were developed further by the Project Delivery Team (PDT) over the duration of the study (for example, in identifying with project alternatives).

1.3 REACH IDENTIFICATION

Reach identification (i.e., LR-1, FR-1, etc.) is the primary method used to describe the index point locations; however; for the purposes of the feasibility planning process, these reaches were further subdivided based on common properties, such as geographic features. In general, as stated above, this report presents information either by basin or reach; however, in some cases the report structure deviates from basin or reach-based organization. For instance, geology and geomorphology, construction history, and past performance are better related to channel features than basin related reaches. Therefore, for those topics, the information has been presented in the following groups: North Stockton, Central Stockton, South Stockton, RD-17, RD-404, French Camp Slough, Stockton Diverting Canal, Calaveras River, Tenmile Slough, and Fourteen Mile Slough.

2. SITE CONDITIONS

2.1 SOURCES OF DATA

The subsurface conditions and material properties of the levee embankments and foundation soils have been characterized by several studies in the past. These studies have been prepared as part of reconnaissance and feasibility efforts by the USACE, DWR, SAFCA, and SJAFCA among others. Following the 1986 flood event and the severe flooding of 1997 that resulted in dozens of levee failures throughout the San Joaquin River Basin, several studies were initiated which generated geotechnical data including:

- RD-17 Phase 1 Geotechnical Engineering Report (P1GER), December 2007, Phase 1 Geotechnical Data Report (P1GDR), September 2008; Supplemental Geotechnical Data Report (SGDR), December 2010; all reports prepared by URS for DWR
- RD-404 Supplemental Geotechnical Data Report (SGDR), April 2011; prepared by URS for DWR
- Stockton Diverting Canal/Calaveras River Phase 1 Geotechnical Data Report (P1GDR), July 2008; Phase 1 Geotechnical Engineering Report (P1GER), July 2011, Draft Supplemental Geotechnical Data Report (SGDR), March 2013; all reports prepared by URS for DWR
- Delta Brookside Study Area Draft Geotechnical Data Report (GDR), August 2012; prepared by Kleinfelder for DWR
- Delta Lincoln Village Study Area Draft Geotechnical Data Report (GDR), June 2012; prepared by Kleinfelder for DWR
- Geotechnical Assessment Report (GAR) South NULE Study Area, Volumes 1 through 4, May 2011; prepared by Kleinfelder for DWR

These studies consisted of feasibility geotechnical data and design reports that presented the results of engineering studies and investigations prior to plans and specifications for remedial construction of levees within the LSJ Basin.

Between ATR review and HQ review DWR completed evaluation reports (GERs) for Delta Brookside and Delta Lincoln Village study areas. Information from these reports was used to refine the extent of seismic mitigation during the HQ review process. These reports include:

- Delta Brookside Study Area Geotechnical Evaluation Report (GER) Volume I, January 2015; prepared by Kleinfelder for DWR
- Delta Brookside Study Area Geotechnical Evaluation Report (GER) Volume II, February 2015; prepared by Kleinfelder for DWR
- Delta Lincoln Village Study Area Geotechnical Evaluation Report (GER) Volume I, January 2015; prepared by Kleinfelder for DWR
- Delta Lincoln Village Study Area Geotechnical Evaluation Report (GER) Volume II, February 2015; prepared by Kleinfelder for DWR

The available geotechnical data from the above mentioned sources included subsurface geotechnical borings and Cone Penetrometer Tests (CPT) performed along the levee crest, waterside toe, landside toe, and within 500-feet of the landside toe; other data included geology and geomorphology studies, and geophysical surveys. The levee geometry was based on the existing data in the National Levee Database (NLD) supplemented by recent Light Detection and Ranging (LiDAR) survey and bathymetric survey provided by the DWR as part of the Urban Levee Evaluations (ULE) program.

Elevation references in this report are in feet and are based on the North American Vertical Datum of 1988 (NAVD88) unless otherwise noted. Conversion factors ranging between +2.26 to +2.42 were applied by the organizations mentioned above to convert Geodetic Vertical Datum of 1929 (NGVD29) elevations to NAVD88. All horizontal references in this report are in feet and are based on the California State Plane, Zone III, North American Datum of 1983 (NAD83).

2.2 GEOLOGY, GEOMORPHOLOGY, AND SEISMICITY

2.2.1 Geologic Setting

This section will summarize the geologic and geomorphic assessment developed by USACE, Fugro William Lettis & Associates (FWLA), and Kleinfelder for the LSJRFS area. The complete assessment report(s) are included as Appendix O in each report listed in Section 2.1; except for the GAR South NULE report.

This area of California was part of the early Cretaceous to Paleocene convergent tectonic margin and associated Sierran magmatism. The basement rock in this area consists of Sierran granite or granitoid rocks on the eastern side of the basin and Coast Range ophiolite to the west. Age-dated profiles suggest a migration of plutonism from west to east with the oldest rocks occurring on the margin of the San Joaquin Valley and the youngest appearing on the eastern flank of the Sierra Nevada (Hosford Scheirer and Magoon, 2008). With the end of plutonism, came the beginning of the flat slab subduction mega-sequence about 5 Ma (million years) subsequent. During the late Cretaceous through the beginning of the Paleocene, the Panoche and Moreno formations indicate dominantly marine conditions with periods of scattered and non-aerially extensive terrestrial deposition. The geologic record is incomplete from the late Paleocene to the early Eocene in the Northern Sub-province during which time the Lodo (marine) and Yokut (near shore fluvial deltaic) formations were deposited. The Yokut deposition was followed (conformably) in the north sub-province by the Domengine sand (shallow marine transgressive). Deposition of the Kreyenhagen formation (marine) began concurrently with the Domengine formation and continued long after into the middle Eocene (37 Ma). The geologic record is incomplete in the north sub-province until the deposition of the late Oligocene to early Miocene Zilch formation (terrestrial - period of worldwide regression) which lies unconformably above the Kreyenhagen. The Zilch is unconformably overlain by the upper Miocene Santa Margarita Sandstone (shallow marine clastic). The remaining sequence of sediments are generally Pliocene and Pleistocene terrestrial deposits derived from the uplift of the Sierra Nevada and Coast Range. These younger sediments include the Pliocene Mehrten formation (terrestrial fluvial - derived from volcanic sources), and the Pliocene China Hat formation (terrestrial fluvial – Sierran origin). These are overlain by the Pleistocene Merced, Turlock Lake, Riverbank, and Modesto formations; all of which thin to the west of the basin and interfinger with sediments derived from

the coast range to the west. These are in turn incised by Holocene alluvial channels and covered by Holocene fan deposits.

The RD-17 basin follows the Lower San Joaquin River as it flows into the San Joaquin Delta. The LSJR is near a contact of young, fluvial deposits within the Delta (in the west) and a gently west sloping alluvial fan formed by the Stanislaus and Calaveras Rivers (in the east). Upstream of the RD-17 study area, the LSJR splits into multiple channels including Tom Paine Slough and Paradise Cut. All major channels are characterized by several overflow and secondary channels that typically diverge to the north and west from the LSJR. Before agricultural development was introduced into these areas, the channels flowed into and through tidal marshes. Tidal effects, sea-level changes, and subsidence within the Delta have influenced the events along the LSJR over the past thousands of years.

The RD-404 study area occupies a lowland area along the east bank of the Lower San Joaquin River just north of French Camp Slough headed north-west to the Port of Stockton. This area is situated between two large Pleistocene alluvial fans that originated from the Sierra Nevada Range. Lone Tree and Littlejohns Creek fill in the low lying areas of these two large fans with their own alluvial fan sediment and then drain to French Camp Slough traversing the southern boundary of the study area.

The Stockton Diverting Canal and Calaveras River study areas are similar in setting to the other areas in this study. They are situated within two large alluvial fans underlain by materials that originated from the Sierra Nevada Range. The Calaveras River flows along the lateral margin of the Calaveras alluvial fan. The western extents of the study area, west of Highway I-5, are within the eastern part of a tidally influenced Delta. Elevations in this area are at or below sea level. This area at or below sea level is a transition zone of low energy where alluvial materials and organic rich sediment string together (Marchand and Atwater, 1979; Cosby and Carpenter, 1937).

The Delta Brookside study area shares the same geologic setting as the Lincoln Village study area. The majority of the entire study area is underlain by the Delta geomorphic domain except for the southeast portion of the Lincoln Village study area that trends east beyond Highway I-5 onto alluvial fans underlain by materials that originated from the Sierra Nevada Range. The Delta geomorphic domain consists of saucer-shaped islands separated by fluvial channels and tidal sloughs that were connected prior to dredging and levee construction. The western extents of the study areas, including Buckley Cove and Fourteen Mile Slough, are part of the tidally influenced Delta that, prior to reclamation, was part of the inundated Delta characterized by organic-rich peat and peaty mud sediments (Atwater, 1982).

2.2.2 Geomorphology

For a summary description of area geomorphology, the LSJRFS area was broken up into the following areas: Lower San Joaquin River RD-17, RD 404/French Camp Slough, Stockton Diverting Canal, Calaveras River, and North Stockton Delta Brookside and Lincoln Village. Site-specific geomorphology maps produced by FWLA and Kleinfelder are included in Enclosure 1.

Historical deposits along the RD-17 basin overlay Holocene alluvial deposits. The historical channel deposits mapped east of the RD-17 levees suggest a younger sandy material overlain with the RD-17 levee prism (Figure 2-1). Detailed maps completed by Atwater (1980, 1982) showed the deposits of the northward flowing San Joaquin River system are primarily Holocene in age with more recent data suggesting less than 7,000 years of age (Malamoud-Roam et al., 2007). The San Joaquin River deposits were defined by Atwater (1982) as undivided Holocene alluvial floodplain deposits with isolated areas of Holocene basin deposits. These shallow deposits are underlain by a much thicker sequence of alluvial deposits from the Stanislaus River drainage originating from the Sierra Nevada Range and eolian deposits from the Central Valley. The Pleistocene deposits in the east are primarily silts and clayey materials with lenses of gravel all grouped into the Modesto Formation; the age of these deposits have been estimated by Atwater (1980) to be between 14,000 and 40,000 years old. The RD-17 area contains minor historic debris resulting from hydraulic mining. A surficial geologic map created by FWLA for the RD-17 area is included as part of Enclosure 1.

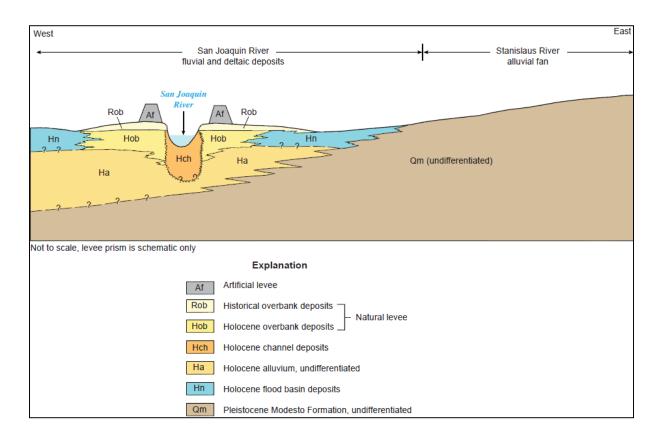


Figure 2-1: Geologic Units of Lower San Joaquin River RD-17

A surficial geologic map of RD-404 shows historical deposits along the Lower San Joaquin River suggesting a younger sandy material overlain with the levee prism along this section of RD-404. The map also shows a blend of silty, clayey, organic material overlain with the RD-404 levee prism along French Camp Slough (Figure 2-2). The oldest geologic unit in the study area is the late Pleistocene Modesto Formation that underlies a low gradient alluvial fan towards the eastern portion of the study area. It consists of unconsolidated to semi-consolidated sands, silts, and clayey materials and is part of a developed clay-rich duripan horizon. This clay-rich horizon likely forms extensive lateral zones of impermeable material in the shallow subsurface. The thickness and age of the Modesto Formation varies; however, the lower member is exposed in this study area and ranges from 29 to 42 Ka (Marchand and Allwardt, 1981). A surficial geologic map of this area is included as part of Enclosure 1.

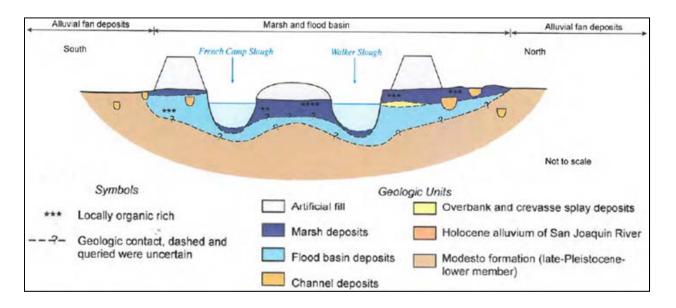


Figure 2-2: Geologic Units of RD-404/French Camp Slough

A surficial geologic map of the Stockton Diverting Canal and Calaveras River (Enclosure 1) show that SDC and a majority of the Calaveras River (from SDC to just east of Highway I-5) are within the domain of an alluvial fan. The area west of Highway I-5 resides within an intertidal domain. The SDC is a linear manmade channel that carries flows from Mormon Slough across the alluvial fan to the Calaveras River. The channel is filled with fine-grained silts and clays and crosses 15 channels that once flowed down the alluvial fan. The Modesto Formation underlies the levees along the canal to a depth of approximately 10 to 25 feet below the levee base; material at these depths consist of very stiff to hard silty clays to sandy clays, and silty sands. Underlying this material is a denser well consolidated Riverbank Formation (Figure 2-3).

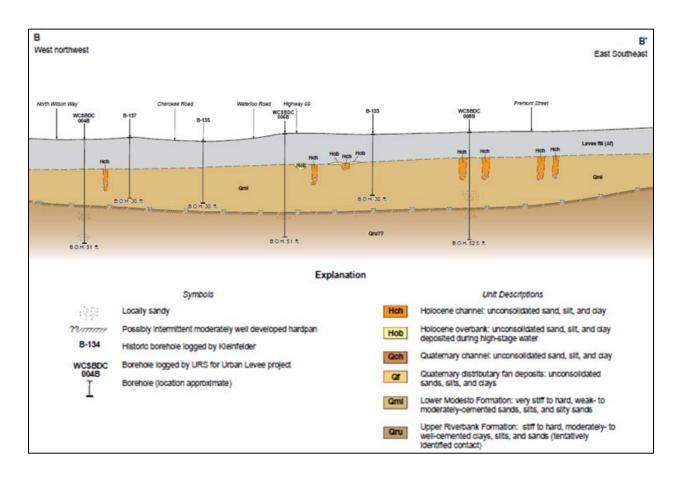


Figure 2-3: Geologic Units of Stockton Diverting Canal

The surficial geologic map shown for SDC (Enclosure 1) shows a portion of the Calaveras River within the alluvial fan. The Calaveras River ranges from 28-feet above sea level in the upstream portion (east) to less than 5 feet above sea level at the downstream end (west southwest). This portion of the Calaveras River crosses 8 channels that once flowed down the alluvial fan. Thin layers of unconsolidated Holocene sands and silts overlay more consolidated deposits of Modesto Formation. Additional deposits of Pleistocene, Holocene, historical channel, overbank, and historic overbank deposits underlie the levees in this portion of the Calaveras River; the Holocene and historic deposits most likely contribute to underseepage issues in these areas. The west-southwest portion of the Calaveras River extends westward from 1/4 mile east of Highway I-5 to the confluence of the LSJR. This is a low lying intertidal area that was prone to depositional and erosional forces prior to levee construction. Levees in this area are underlain by Holocene peat and mud. Other materials such as, marsh, historic overbank, crevasse splay deposits, and channel deposits of varying age also exist in this portion of the river. The historic crevasse splay deposits and the historic overbank deposits most likely contribute to underseepage issues in these areas. The areas with the most potential for underseepage would be the crescent-shaped slivers of Holocene channel deposits. Figure 2-4 shows the geologic units of this area.

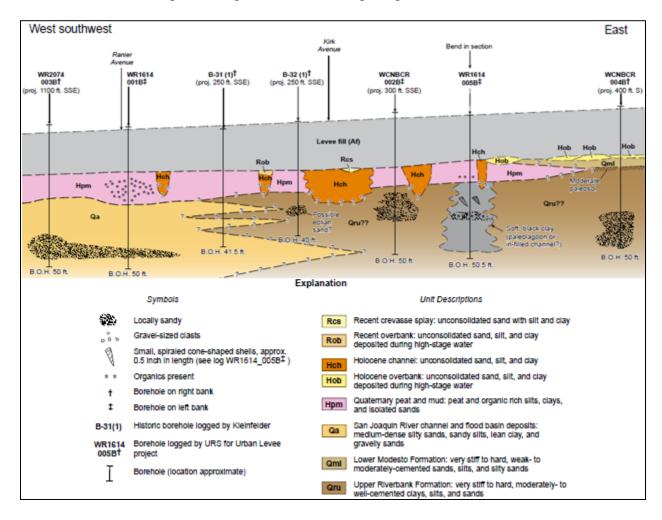


Figure 2-4: Geologic Units of Calaveras River

A surficial geologic map of the Delta Brookside/Delta Lincoln Village study areas (Enclosure 1) shows a northward trending contact just east of Highway I-5 that separates the Delta Geomorphic Domain to the west from the Pleistocene Modesto Formation in the east. The mapped contact between these two domains roughly follows the 1850 tidal line of Atwater (1982). Figure 2-5 shows a cross-sectional view running east to west of the various geologic units. The oldest underlying portions of the Delta islands are late Holocene consisting of unconsolidated organic-rich silts, clays, peat, and mud deposits; these materials accumulated in this intertidal area at or near sea level in these low-flow areas. This material is highly concentrated in both the Delta Brookside and Delta Lincoln Village study areas. Multiple channels of Holocene channel deposits, isolated Holocene overbank deposits, and historical recent overbank deposits crosscut this material flowing across the alluvial fans in a west-southwest orientation; the Holocene and historic deposits most likely contribute to underseepage issues in these areas. The oldest unit within the study area is the late Pleistocene Modesto Formation; this material is unconsolidated, slightly weathered gravels, sands, silts, and clays from upper alluvial fans. The Modesto Formation is exposed along the eastern portions on the study area trending northwest.

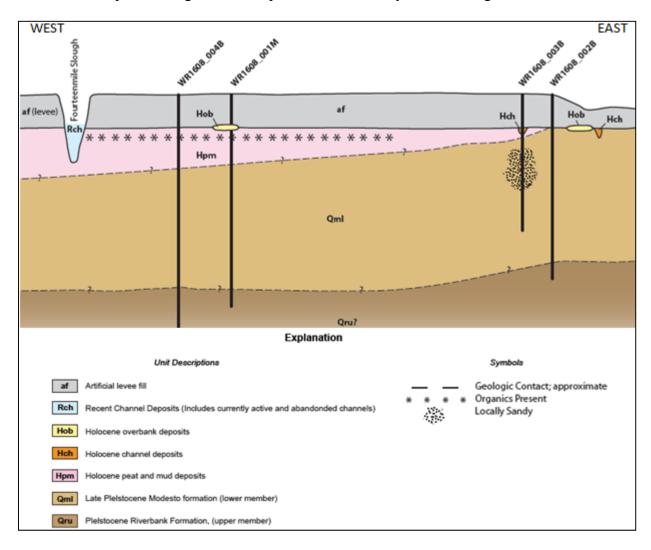


Figure 2-5: Geologic Units of Delta Brookside / Delta Lincoln Village

2.2.3 Seismic Setting

The LSJRFS area lies within the San Joaquin Valley and is exposed to less seismic response during a maximum credible earthquake (MCE) on the nearest active fault than sites in the San Andreas, Hayward, or Calaveras fault zones. Stockton is approximately 65 miles east of the San Andreas Fault. The San Andreas Fault is one of the longest active faults in the world at roughly 600 miles in length, stretching from the coast line in Northern California to the Gulf of California. The San Andreas Fault is capable of generating a moment magnitude (Mw) 8.5 MCE. The last major event of record for this strike-slip fault was the moment magnitude (Mw) 6.9 MCE Loma Prieta earthquake on October 17, 1989. One of the largest events of record for the San Andreas Fault was the moment magnitude (Mw) 7.9 MCE San Francisco earthquake that occurred April 18, 1906.

Stockton is approximately 45 miles east of the Hayward Fault. The Hayward Fault borders the hills of Berkeley and Hayward and extends southeast where it meets up with the Calaveras Fault. The Hayward Fault is capable of generating a moment magnitude (Mw) 7.5 MCE. The last major event of record for this right-lateral, strike-slip fault was on October 21, 1868. The moment magnitude (Mw) of this event is not known, however, it was very destructive.

Stockton is approximately 40 miles east of the Calaveras fault system. The Calaveras fault is approximately 90 to 100 miles in length, extending from central Contra Costa County southeast to where it meets up with the San Andreas Fault just south of Hollister, CA. The Calaveras Fault is capable of generating a moment magnitude (M_W) 7.0 MCE. The last major event of record for this right lateral, strike-slip fault was the moment magnitude (M_W) 6.2 MCE Morgan Hill earthquake on April 24, 1984.

The nearest active fault is the Great Valley 7 fault (part of the San Joaquin Fault zone) located approximately 19 miles southwest of Stockton, CA. The San Joaquin Fault marks the physiographic boundary between the Diablo Range and the Central Valley (Unruh and Krug, 2007). The San Joaquin fault parallels the range-front from the Corral Hollow Creek outlet in the north to the Garzas Creek outlet in the south. Estimates of motion for this fault are in the range of 60 meters of west-side uplift over the last 200 to 300-thousand years. Maulchin (1996) has estimated a Mw 6.5 MCE for this fault; however, there is little evidence that this fault has moved in Holocene times.

Figure 2.6 displays the various Northern California fault zones as shown in a 2010 fault map from California Geological Survey (CGS).

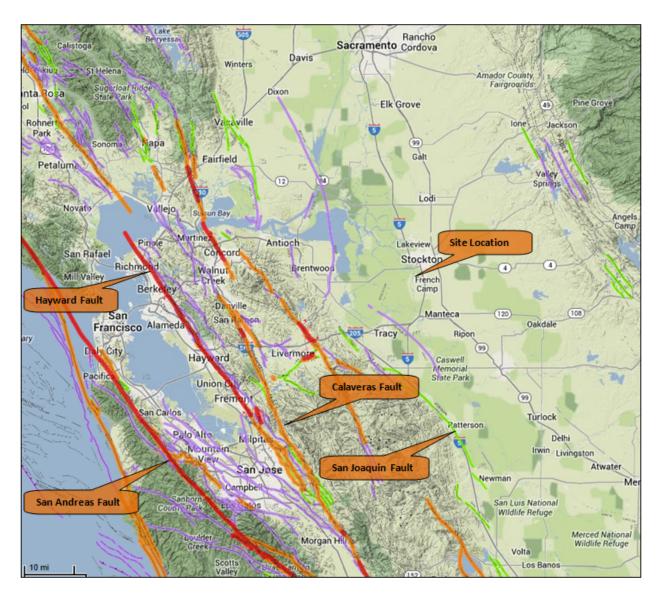


Figure 2-6: Northern California Fault Activity Map, CGS 2010

2.3 LEVEES

2.3.1 Construction History

A mix of Federal, State, and local agencies have been involved in flood control project construction and operation since levees were first constructed in California in the mid to late-1800's. Since the creation of the State Reclamation Board (now the Central Valley Flood Protection Board or CVFPB) in 1911 and the authorization of the California Central Valley Project Act in 1933, most levee improvements have been first Federally authorized by Congress, and then subsequently authorized by the State Legislature.

The first levees along the Lower San Joaquin River were most likely constructed under the California Central Valley Project Act or the Lower San Joaquin River Flood Control Project using clamshell dredges with material sourced from the channel. The levees were usually constructed at least 20 to 50 feet from the river with dredge material placed in the form of a pyramid. The base of the pyramidal shape was up to eighty (80) feet wide built to a height four (4) feet above the 1862 high-water mark. Willows were usually planted along the banks of the river and alfalfa was grown on the slopes of the levee to control erosion. This method of construction usually resulted in loose, sandy fill material that was deepest below the center of the levee. Historic logs show the levee sections were composed of silt to sandy silt, silty sand sometimes interbedded with lean clay, poorly graded sand, and well graded sand. Figure 2-7 shows an example of clamshell dredging performed along the Sacramento River at RM 57.3 in 1942.

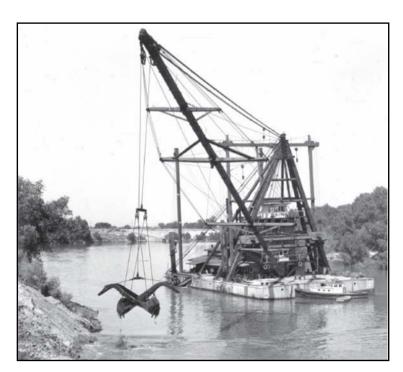


Figure 2-7: Clamshell Dredge Along Sacramento River 1942

Many of these levees were then reconstructed, repaired, or reshaped with materials sourced from waterside borrow pits using scrapers, dozers, and compactors between 1947 and 1957. Figure 2-8 below represents a typical levee section constructed on the Lower San Joaquin River in the 1940's through 1950's.

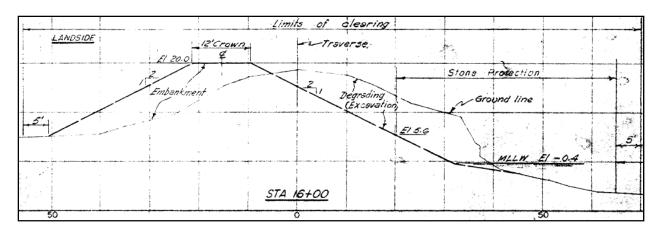


Figure 2-8: Lower San Joaquin River Typical Section, 5 March 1957

It should be noted that because of the construction history outlined above, the upper portion of the semi-pervious blanket beneath the center of the levee has been removed and commonly replaced with sand. Typically, the sand core extends to a greater depth beneath the center of the levee than beneath either of the flanks or the surrounding ground. Most of the levee material was hydraulically dredged from the Lower San Joaquin River and piled or pushed into place with no mechanical compaction. Some mechanical shaping of the upper and outer portions of the sand core likely occurred during establishment of the general levee geometry.

2.3.2 Past performance

The LSJRFS area has experienced several high-water events in recorded history. Journals and legends from Native Americans and explorers document flood events as far back as the 1800's. One of the larger events of record occurred in the winter of 1950 with another following in 1955, and the most recent notable flooding occurring in 1986 and 1997. Though these flood events were documented, past performance history of the individual study areas was not always documented and/or preserved for future use. The following past performance history was obtained from NULE and ULE data reports. It should be noted that during the development of the fragility curves, the past historical performance for each reach was incorporated as part of the judgment based probability used to develop the fragility curve for that reach, rather than focusing on a specific point of historical significance.

The RD-17 basin has experienced several large flood events. Data reports document interviews with local residents that state several floods occurred in the early 1900's before local farmers purchased their own dredging equipment in attempts to protect their land. Early records document significant seepage erosion, flood fighting, and a levee breach during the flood of December 1950. The failure, approximately 300 feet in length, occurred south of Dos Reis

Road. The levees were subjected to record levels again in the 1997 flood event. Emergency flood fighting was initiated when large amounts of seepage and boils were discovered along the landside of the levee. The waterside experienced undercutting, and erosion related to wave runup. An intentional breach upstream in RD-2094 was made in an effort to halt backwater from outflanking the Dryland Levee and entering RD-17 and flooding significantly populated areas. Figures 2-9 and 2-10 documented landside seepage between River Mile (RM) 8.0 and 10.0 of the RD-17 levee along the east bank of the Lower San Joaquin River in 1997.

Figure 2-9: Areas of Seepage 1997, RD-17 (≈RM 8.5)

Figure 2-10: Seepage and Sack Rings 1997, RD-17 (≈RM 9.5)

Data reports document some historical performance issues of the levees along RD-404 from interviews of local residents. The most notable events of record for this area are the January 1997, February 1998, and the early 2006 flood events. The levees experienced landside seepage, boils, and waterside erosion.

Data documenting historical levee performance along the left bank of the Stockton Diverting Canal and Calaveras River are sparse; however, existing data reports document erosion along the left bank of the Stockton Diverting Canal between Waterloo Road and East Fremont Street. The South NULE report addresses the right bank of the Stockton Diverting Canal; the report lists five high-water events (1967, 1969, 1997, 1998, and 2006) for which there were no documented reports of seepage, instability, boils, breaches, or overtopping. Data reports document erosion along both the right and left banks of the Calaveras River between North El Dorado Street, and Brookside Road. Isolated areas of seepage were observed along the Calaveras River (areas were not specified) and did not require emergency flood fighting. A section of levee was reconstructed along the north bank of the Calaveras River (approximately 100 feet in length just south of Brookside School) due to settlement.

Data reports indicate the predominant performance issues for the Delta Brookside Study Area to be settlement, seepage, bank erosion, and rodent activity. Past levee raises, as a result of dredging the Deep Water Channel, induced settlement of the organic soil layers along Tenmile Slough. Areas of historic seepage were documented during the 1997 event and include areas along the San Joaquin River Deep Ship Channel, Buckley Cove, and the south and east banks for Fourteen Mile Slough.

Data reports indicate the predominant performance issues for the Delta Lincoln Village Study Area to be seepage and bank erosion. Bank erosion has steadily increased as boating activities have increased on Fourteen Mile Slough. Bank protection has been an ongoing maintenance activity mitigated with the installation of rip-rap bank protection. The extents of the existing bank protection are not known. Historic seepage has been documented along the southern portion of Lincoln Village along Fourteen Mile Slough (Station 136+70 and 154+10). The data report states that seepage mitigation in the form of cutoff walls were installed in the vicinity of these areas in 1999; however, no As-Builts were obtained to confirm the installation of these measures.

2.4 HYDRAULIC LOADING CONDITIONS

Water surface profiles for the LSJRFS area were obtained from developed cross-sections within existing P1GDR's, P1GER's, and SGDR's provided by the DWR, URS, and Kleinfelder. The cross-sections provided 200 year and sometimes 500 year flood frequencies.

During the preparation of this report, the hydraulic models for these areas were in the process of being revised and updated. Due to the detailed review process required of the hydraulic model update, the decision was made to use design water surface elevations developed in the earlier reports prepared by URS and Kleinfelder as stated in Section 2.1.

Tables 2-1, 2-2, and 2-3 below summarize the water surface elevations deterministically analyzed at each index point, by basin (i.e., South Stockton, Central Stockton, and North Stockton). Subsequent sections of this report provided more information regarding water surface elevations used for geotechnical analyses. Index points are further described in Section 3.3.4 of this report. All water surface elevations are in NAVD 88.

Table 2-1: South Stockton Basin Analyses Water Surface Elevations (RD-17)

Index Point	Event	Stage	Head
LR-1	Crest	25.0	15.7
	E1.22.4	22.4	14.1
RD-17 LSJR	200yr	19.8	12.6
25010	El.17.0	17.0	10.9

Index Point	Event	Stage	Head
	Crest	27.8	14.7
LR-2 RD-17	El.24.6	24.6	14.3
LSJR	200yr	21.5	13.8
25010	El.17.0	17.0	13.0

Index Point	Event	Stage	Head
LR-3	Crest	31.0	29.9
	E1.28.9	28.9	28.0
RD-17 LSJR	200yr	26.9	26.1
Lovic	E1.24.0	24.0	23.4

Index Point	Event	Stage	Head
	Crest	33.9	23.3
LR-4 RD-17	200yr	31.3	22.4
LSJR	E1.27.5	27.5	21.1
2277	E1.23.7	23.7	19.9

Index Point	Event	Stage	Head
FL-1	Crest	21.4	12.2
RD-17	El.18.6	18.6	11.5
French Camp Slough	200yr	15.9	10.9
	El.13.0	13.0	10.3

Table 2-2: Central Stockton Basin Analyses Water Surface Elevations (RD-404, Stockton Diverting Canal, Left Bank of Calaveras River)

Index Point	Event	Stage	Head
FR-1	Crest	21.8	5.7
RD-404 French Camp Slough	El.18.8	18.8	5.3
	200yr.	15.9	4.8
	El.12.9	12.9	4.3

Index Point	Event	Stage	Head
SL-1	Crest	39.2	30.5
Stockton	El.36.1	36.1	29.3
Diverting	El.33.1	33.1	28.0
Canal	200yr.	30.2	26.7

Index Point	Event	Stage	Head
SL-2	Crest	44.6	39.5
Stockton	200yr	40.4	37.5
Diverting	E1.38.8	38.8	36.7
Canal	El.37.2	37.2	35.9

Index Point	Event	Stage	Head
CL-1/CL-2 Calaveras River	Crest	31.4	23.3
	El.29.4	29.4	22.9
	El.27.4	27.4	22.4
	200yr.	25.5	21.7

Index Point	Event	Stage	Head
D-5 Calaveras River	Crest	17.5	9.2
	200yr.	13.2	7.4
	El.10.0	10.0	6.1
	E1.7.2	7.2	4.9

Table 2-3: North Stockton Basin Analyses Water Surface Elevations (Right Bank of Calaveras River, Delta Brookside Community and Delta Lincoln Village)

Index Point	Event	Stage	Head
CR-1/CR-2 Calaveras River	Crest	29.7	25.2
	E1.28.2	28.2	24.8
	200yr	26.9	24.2
	E1.25.3	25.3	23.1

Index Point	Event	Stage	Head
D-4 Calaveras River	Crest	18.8	12.3
	El.16.5	16.5	11.1
	200yr.	14.2	9.9
	El.11.8	11.8	8.6

Index Point	Event	Stage	Head
D-BS	Crest	18.0	3.3
Delta	El.14.0	14.0	2.0
Brookside	El.10.0	10.0	0.7
Community	El.6.0	6.0	0.6

Index Point	Event	Stage	Head
D-LV Delta Lincoln Village	Crest	13.2	3.2
	El.11.0	11.0	2.8
	El.8.5	8.5	2.4
	El.6.0	6.0	2.0

3. WITHOUT PROJECT CONDITIONS

Levee construction and remediation has occurred within the study area since the middle of the 19th century. While the modern levee systems were constructed in the early 20th century and remediated in the 1940's through 1950's, the vast majority of the construction and remediation consisted of crest widening and slope flattening. Beginning in the early 1990s and continuing through present day, some internal improvements have been, and continue to be constructed in the form of cutoff walls and other improvements consisting of seepage and/or stability berms. The without project conditions documented by the sources listed in Section 2.1 are given below.

3.1 POTENTIAL FAILURE MODES

For the purposes of problem identification and alternatives analysis, several different failure modes have been evaluated for the without-project condition. The failure modes included: erosion, overtopping, seepage (under and through), slope stability, and seismic.

3.1.1 Overtopping

Overtopping occurs when the water surface elevation is greater than the elevation of the levee crest. In this case, water will flow over the crest and onto the landside of the levee. As the levee is overtopped, the action of the water flowing down the landside levee slope and into the basin may cause backside erosion of the landside levee slope and levee toe. This backside erosion may lead to sloughing of the levee and/or a breach condition. For the LSJRFS, the assumption is made that if a levee overtops it fails.

3.1.2 Erosion

Erosion is the wearing away of the riverbank and/or waterside levee slope due to high flows. Erosion can also cause the degradation of the channel invert (scour) causing slope instability. Erosion can occur on the landside of the levee due to overtopping. Erosion occurs when the velocity of the river generates an effective hydraulic shear stress greater than the critical shear stress of the soil over which it flows. As the critical shear stress of the soil is exceeded, soil-particle movement begins. Loosely compacted cohesionless soils are more susceptible to erosion; whereas, cohesive engineered fill is less susceptible. The LSJRFS did not perform explicit analyses for this potential failure mode; erosion was captured as a judgment based curve as part of the performance curves based on historical information and Periodic Inspection (PI) reports.

3.1.3 Seepage

Seepage is subdivided into two categories: seepage through the levee embankment (through-seepage) and seepage beneath the levee embankment through foundation layers (underseepage). Through-seepage occurs when water from the river passes through a pervious levee and weakens the interior of the existing levee causing internal erosion that leads to slope instability or movement of embankment material. Concentrated underseepage that carries silt and sand up to the surface through a more or less open channel in the top stratum (usually of clays and/or silts) is known as a sand boil. Active erosion of sand or other soils from under a levee or top stratum, as a result of substratum pressure and concentration of seepage in localized channels, is known

as piping. If the hydrostatic pressure in the pervious substratum landward of a levee becomes greater than the submerged weight of the top stratum, the excess pressure will cause heaving of the top stratum or a rupture at one or more weak spots. This results in a concentration of seepage flow that may cause sand boils and/or underground piping as shown in Figure 3-1.

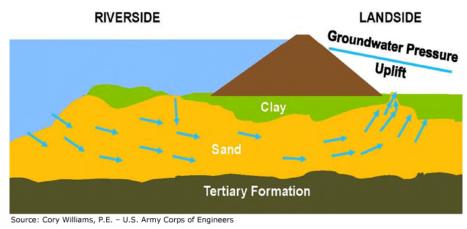


Figure 3-1: Underseepage Distress

3.1.4 Slope Stability

Hydraulic loading of the levee during a flood event reduces the strength of the levee embankment materials causing instability in the embankment slope. Additionally, uplift pressures caused by an excess in pore water pressure at the landside levee toe can lead to the movement of embankment material within the levee due to seepage causing levee instability, as shown in Figure 3-2.

Levee instability can occur on both the waterside and landside of the embankment. Slope stability of the landside slope is typically analyzed, and in instances where the waterside slope is somewhat steep, waterside slope stability may be analyzed as well. Cases will also exist where a rapid drawdown condition occurs. Rapid drawdown conditions arise when a submerged slope experiences a sudden reduction in water level. This change in water surface elevation causes a change in pore water pressure within the embankment. The excess pore water pressure contained in the embankment may lead to a waterside slope stability failure. Even though waterside slope stability and rapid drawdown are potential failure modes, they typically have limited affect on feasibility level designs and are therefore considered design-level analysis.

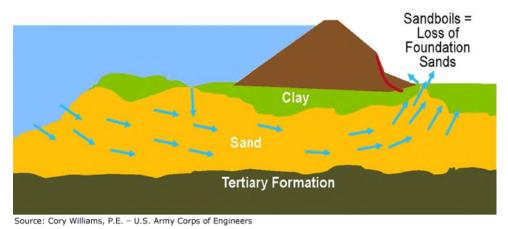


Figure 3-2: Underseepage Induced Slope Instability Distress

3.1.5 Seismic

Levees can fail as result of a seismic load which may cause degradation due to liquefaction. Liquefaction can lead to detrimental consequences such as loss of freeboard due to embankment instability, transverse crack-induced piping, and loss of freeboard due to settlement. Evaluations are typically completed to determine the liquefaction resistance of soils; this is known as liquefaction triggering. Other seismically induced failure modes include lateral spreading, which can cause vertical displacement of the levee leading to loss of freeboard and levee stability. The seismic analyses performed for this study focuses on liquefaction and vertical displacement as potential seismic failure modes; this analysis is included as Enclosure 4.

3.1.6 Other Minor Failure Modes

Other failure modes not explicitly analyzed for the deterministic analysis, are considered in the judgment portion of the probabilistic levee fragility curves. A summary of each mode is presented below, and additional information is located in 3.5.4.

- <u>Vegetation</u>: The presence of vegetation can effect performance based on the density of the growth, proximity to the embankment, and type of vegetation. The root systems can shorten seepage paths in the embankment, or can extend through an impervious land- or water-side blanket to shorten seepage paths. Factors that increase risk of failure for this mode include: evidence of past performance problems at areas with significant vegetation, presence of root systems capable of penetrating impervious material, locations where floodwater is known to persist for long periods of time, and improperly removed trees.
- <u>Animal Burrows</u>: The presence of burrowing animals can contribute to seepage failure by creating voids and pipes in the embankment, shortening seepage paths leading to piping of material. Factors that increase risk of failure include: locations with a high density of animal burrows, large animal burrows, multiple holes or dens in close vicinity (particularly on both sides of the embankment at the same location along the levee), situations with impervious materials in the embankment over coarse-grained foundations, holes low in the levee, and

- locations where floodwater is known to persist for long periods of time.
- Encroachments: Encroachments include structural features within the levee easement that affect the performance of the levee, or contribute to masking levee performance. These consist of canals, pump stations, roads, buildings or other structures. In the case of canals or other excavations, these features can penetrate the impervious blanket, shortening the seepage path, or concentrate seepage at a point or line. For the cases of roads or buildings, these features and their appurtenant structures may hide problems because they render critical areas inaccessible to required period inspections, or flood monitoring.
- <u>Utilities</u>: Utility pipes and other conduits are frequently associated with seepage and piping problems. These may be due to improper design of closure structures, improper backfill around the utility, or by failure of the utility itself by improper operation, lack of maintenance, or exceedance of service life. The risk of failure for utilities increases with age since construction. The lack of documentation of these listed items often increases uncertainty about the condition of the utility. These problems are aggravated because typically local sponsors do not have funding, equipment or expertize in evaluation of utilities. The risk of failure for this mode is increased where the assessment has identified these indicators.
- **Erosion**: Erosion is typically evaluated with the hydraulic and geotechnical engineers coordinating an assessment jointly. Risk factors that increase erosion risk include: past history of erosion problems, expected high channel velocities and scour-critical areas.

3.2 GEOTECHNICAL REACH DESCRIPTION

SL-2

CL-1/CL-2

D-5

CR-1/CR-2

D-4

D-BS

D-LV

Stockton

North Stockton

The following subsections describe the conditions that comprise, and were used to distinguish, reaches for this study that are represented by the Index Points. Table 3.1 summarizes the reach of levee represented by each Index Point.

Maintaining Basin Reaches Channel Length (mi) Agency LR-1 6.4 LR-2 3.8 South Lower San Joaquin River LR-3 **RD-17** 1.5 Stockton LR-4 1.5 FL-1 French Camp Slough 1.9 RD-404 FR-1 French Camp Slough 2.1 SL-1 **SJAFCA** 2.2 Central Stockton Diverting Canal

Calaveras River (left

bank)

Calaveras River (right

bank)

LSJR/Tenmile

Slough/Fourteen Mile

Slough

Fourteen Mile Slough

2.9

2.9

3.1

2.9 3.2

3.7

2.0

SJAFCA

SJAFCA

RD-1614

SJAFCA

RD-2074

RD-2074

RD-2119

Table 3-1: LSJRFS Area Levees

3.2.1 RD-17 Basin

The RD-17 levees, including the east bank of the Lower San Joaquin River and the left bank of French Camp Slough, extend for approximately 15 miles. The levee crest height ranges from 8 to 16 feet above the landside levee toe. The crest width varies from 12 to 20 feet. The landside and waterside slopes are predominantly 2H:1V or flatter (H:V, Horizontal: Vertical); however, there are areas throughout the system with slopes steeper than 2H:1V. The RD-17 levee system resides in both a high density housing urban area and rural agricultural area. In the northern area, there is significant waterside vegetation (mostly large trees and riparian habitat) that thins out to sparse waterside vegetation heading south along the embankment. In some areas, landside vegetation (mostly trees) exists near the levee toe or on the levee slopes. On the landside, numerous encroachments include: fences at or near the landside levee toe, out buildings, residences, parks, pump stations, agricultural land, power poles, road crossings, Highway/Freeway I-5, and 120, railroad crossings, ditches, treatment plants, and water bodies.

- At index point location FL-1 the levee embankment is predominantly sandy lean clay with a lean clay to sandy lean clay blanket underlain by an aquifer composed of silty sand. Geomorphology in this area shows stringers of Historical channel deposits.
- At index point location LR-1 the levee embankment varies from lean clay to silt with a lean clay blanket underlain by an aquifer composed of poorly graded sand with silt to silty sand. Geomorphology in this area shows stringers of Historical channel deposits.
- At index point location LR-2 the levee embankment varies from poorly graded sand with silt to clayey sand with a thin lean clay to silty sand blanket underlain by an aquifer composed of poorly graded sand with silt. Geomorphology in this area shows significant areas of overbank and basin deposits.
- At index point location LR-3 the levee embankment varies from lean clay to silty sand with a silty sand blanket underlain by an aquifer composed of poorly graded sand with silt to silty sand. Geomorphology in this area shows significant areas of Holocene and Historical alluvial fan deposits.
- At index point location LR-4 the levee embankment is predominantly clayey sand with a lean clay to sandy lean clay blanket underlain by an aquifer composed of poorly graded sand with silt. Geomorphology in this area shows significant areas of Holocene alluvial fan deposits.

3.2.2 RD-404

The RD-404 levee along the right bank of French Camp Slough extends for approximately 2 miles. The levee crest height ranges from 10 to 13 feet above the landside levee toe. The crest width varies from 15 to 25 feet. The landside slopes are predominantly 2H:1V or flatter. The waterside slopes are predominantly steeper than 2H:1V. There is vegetation along both the landside and waterside of the levee embankment; mostly shrubs, small trees, and riparian habitat along the waterside, and large trees along the landside levee toe and slopes. On the landside, there are some encroachments due to outbuildings, power poles, water bodies, and parking areas related to Van Buskirk Park Golf Course, as well as the I-5 Highway.

At index point location FR-1 the levee embankment is predominantly lean clay and silt
with a thin clayey sand blanket underlain by an aquifer composed of silty sand.
Geomorphology in this area shows predominantly marsh deposits with stringers of
Historical channel deposits.

3.2.3 Stockton Diverting Canal

The levee along the left bank of the Stockton Diverting Canal extends for approximately 5 miles. The levee crest height ranges from 10 to 16 feet above the landside levee toe. The crest width varies from 14 to 25 feet. The landside and waterside slopes are predominantly 2H:1V; however, there are areas throughout the system with slopes steeper than 2H:1V. A waterside bench, approximately 20 feet wide, is present. The levee system resides in both a high density housing urban area and an industrial area. Areas of landside vegetation are present in the urban area. In some areas, landside vegetation (mostly trees) exists near the levee toe or on the levee slope. Waterside vegetation consists of sparse grasses and shrubs. On the landside, numerous encroachments include: fences at or near the landside levee toe, out buildings, residences, railroad tracks/rail yard, pump stations, power poles, road crossings, railroad crossings, industrial areas, parking and storage areas, and Highway/Freeway 99, 88, and 26.

- At index point location SL-1 the levee embankment is predominantly sandy lean clay with a thin lean clay blanket underlain by an aquifer composed of silty sand.
 Geomorphology in this area shows stringers of Historical and Holocene channel deposits.
- At index point location SL-2 the levee embankment is predominantly sandy silt with a lean clay blanket underlain by an aquifer composed of silty sand. Geomorphology in this area shows stringers of Holocene overbank and channel deposits.

3.2.4 Calaveras River South Bank

The levee along the left (south) bank of the Calaveras River extends for approximately 6 miles. The levee crest height ranges from 8 to 14 feet above the landside levee toe. The crest width is predominantly 12 feet that widens towards road crossings. The landside and waterside slopes are predominantly 2H:1V or flatter; however, there are areas throughout the southern alignment with slopes steeper than 2H:1V, and an area along the waterside that is roughly 1H:1V. A waterside bench from 10 to 20 feet wide is present throughout the southern alignment. The levee system resides in various settings. Urban area high density housing is present throughout most of the alignment; however, agricultural land, industrial areas, educational areas, and recreational areas are also present. Landside vegetation (mostly trees) is present in the urban, agricultural, educational, and recreational areas. In some areas, landside vegetation exists near the levee toe, on the levee slope, or on the crest of the levee. Waterside vegetation consists of sparse grasses, shrubs, and a few trees along the toe and slopes in the eastern portion of the alignment; more dense waterside vegetation (mostly trees) is present west of University of the Pacific to the confluence of the LSJR. On the landside, numerous encroachments include: fences at or near the landside levee toe, out buildings, residences, stairs on slopes, railroad crossings, pump stations, road crossings, power poles, industrial areas, parking lots, Highway I-5, recreational facilities including Stockton Golf and Country Club; waterside encroachments include: stairs on slopes, boat docks, and recreational facilities including Stockton Yacht Club.

- At index point location CL-1/CL-2 the levee embankment is predominantly sandy silt with an elastic silt blanket underlain by a deeper aquifer composed of poorly graded sand with silt. Geomorphology in this area shows stringers of Historical and Holocene channel deposits.
- At index point location D-5 the levee embankment is predominantly silt with a lean clay blanket underlain by an aquifer composed of silty sand. Geomorphology in this area shows an abundance of peat, mud, and organic material with stringers of Holocene overbank and channel deposits.

3.2.5 Calaveras River North Bank

The levee along the right (north) bank of the Calaveras River extends for approximately 6 miles. The levee crest height ranges from 6 to 12 feet above the landside levee toe. The crest width varies from 12 to 15 feet and widens towards road crossings. The waterside slopes are predominantly 2H:1V or flatter; however, there are a few areas throughout the northern alignment with slopes steeper than 2H:1V; and an area along the waterside that is roughly 1H:1V. The landside slopes are predominantly 2H:1V or steeper throughout the northern alignment. A waterside bench 30 to 50 feet wide is present throughout the northern alignment. The levee system resides predominantly in an urban area with high density housing, churches, and several schools. Landside vegetation (mostly trees) is present in the urban and educational areas. In some areas, landside vegetation exists near the levee toe, on the levee slope, or on the crest of the levee. Waterside vegetation consists of sparse grasses, shrubs, and a few trees along the toe and slopes in the eastern portion of the alignment; more dense waterside vegetation (mostly trees) is present west of Stagg High School to the confluence of the LSJR. On the landside, numerous encroachments include: fences at or near the landside levee toe, fences on slopes, out buildings, residences, swimming pools, stairs on slopes, railroad crossings, pump stations, power poles, road crossings, parking lots, and Highway I-5; waterside encroachments include stairs on slopes, and boat docks.

- At index point location CR-1/CR-2 the levee embankment is predominantly sandy lean clay with a thin blanket of sandy lean clay underlain by an aquifer composed of sandy silt. Geomorphology in this area shows an abundance of alluvial deposits with stringers of Holocene channel deposits.
- At index point location D-4 the levee embankment varies from sandy silt to sandy lean clay with a thin blanket of sandy fat clay and sandy silt underlain by an aquifer composed of poorly graded sand with silt. Geomorphology in this area shows stringers of Holocene overbank and channel deposits.

3.2.6 Delta Brookside Study Area

The Delta Brookside Study Area levee extends approximately 3.5 miles along the west and north of the Brookside community, an urban high density housing development. The levees reside along the Stockton Deep Water Channel of the LSJR, Buckley Cove, Tenmile Slough, and Fourteen Mile Slough. Along the Deep Water Channel, the levee crest height ranges from 6 to 12 feet above the landside levee toe. The crest width varies from 12 to 16 feet and widens towards Buckley Cove. The landside and waterside slopes are predominantly 2H:1V or flatter;

however, there are a few areas along the waterside with slopes steeper than 2H:1V. Along Buckley Cove, the levee crest height ranges from 8 to 18 feet above the landside levee toe. The crest width varies from 14 to 20 feet. The landside and waterside slopes are predominantly 2H:1V or flatter. Along Tenmile Slough, the levee crest height ranges from 16 to 20 feet above the landside levee toe. The crest width varies from 14 to 18 feet. The landside and waterside slopes are predominantly 2H:1V or flatter. Along Fourteen Mile Slough, the levee crest height ranges from 8 to 14 feet above the landside levee toe. The crest width varies from 18 to 40 feet. The landside and waterside slopes are predominantly 2H:1V or flatter. Landside vegetation (mostly trees) is present throughout the highly urbanized area at most residences, and in most cases near the levee toe. Waterside vegetation consists of a few trees at the toe within the Deep Water Channel, grasses, shrubs, and trees along Buckley Cove, shrubs and brush along Tenmile Slough, and a few trees along Fourteen Mile Slough. On the landside, numerous encroachments include: fences at or near the landside levee toe, fences on slopes, decks and/or retaining walls on slopes and crest, out buildings, residences, swimming pools, stairs on slopes, and pump stations; waterside encroachments include: stairs on slopes, concrete patios/decks, boat docks, road crossings, and Highway I-5.

 At index point location D-BS the levee embankment is predominantly lean clay with portions of an older levee constructed of organic clay. The thin blanket varies from organic clay to lean clay underlain by an aquifer composed of silty sand.
 Geomorphology in this area shows an abundance of peat, mud, and organic material with stringers of Holocene channel deposits and overbank deposits.

3.2.7 Delta Lincoln Village Study Area

The Delta Lincoln Village Study Area levee extends approximately 2.5 miles along the west and south of the Lincoln Village community on Fourteen Mile Slough, an urban high density housing development. The levee crest height ranges from 6 to 12 feet above the landside levee toe. The crest width varies from 12 to 14 feet and widens towards road crossings. The waterside slopes are predominantly 2H:1V or flatter; however, there are a few areas near Station 200+00 with slopes steeper than 2H:1V; and two areas roughly 1H:1V. The landside slopes are predominantly 2H:1V or flatter throughout the alignment. Landside vegetation (mostly trees) is present throughout the highly urbanized area at most residences, and in most cases near the levee toe. Waterside vegetation (mostly trees) begins moving south along the alignment just before Village West Yacht Club; the waterside vegetation (mostly trees) becomes denser heading south then east along Fourteen Mile Slough. On the landside, numerous encroachments include: fences at or near the landside levee toe, fences on slopes, fences on crest, decks and/or retaining walls on slopes and crest, out buildings, residences, power poles, swimming pools, stairs on slopes, and pump stations; waterside encroachments include: stairs on slopes, concrete patios/decks, boat docks, Village West Yacht Club, road crossings, and Highway I-5.

At index point location D-LV the levee embankment is predominantly lean clay with a
thin blanket of lean clay underlain by a deep aquifer was comprised of silty sand to
poorly graded sand with silt. Geomorphology in this area shows an abundance of peat,
mud, and organic material with stringers of Holocene channel deposits, overbank
deposits, and marsh deposits.

Subsequent to completion of this study, an alternative alignment was presented on the west side of Fourteen Mile Slough to minimize real estate impacts to the densely populated Lincoln Village community. This alignment extends approximately 2.0 miles and includes a new levee, improvements to existing levees, and a closure structure. Index point D-LV was utilized for site characterization.

3.3 SEEPAGE AND STABILITY METHODOLOGY

Deterministic seepage and stability analyses were performed for various water surface elevations, including top of levee. The probabilistic analyses were performed for a range of stages not correlated to flood frequency, but which represented stages from no head (landside toe of levee) to maximum head (top of levee). Refer to Section 2.4 for water surface elevations used at each Index Point for seepage and stability analyses.

3.3.1 Steady State Seepage Analysis

Deterministic steady state seepage analysis was performed using SEEP2D within GMS 6.5 (Groundwater Modeling System), a finite element program. Results from the seepage analysis were used to calculate average vertical exit gradients at the landside levee toe and/or at a more critical location near the levee toe if applicable; for example, at the invert of the empty drainage ditch. The pore pressures and/or phreatic surfaces were exported to UTEXAS4 for use in slope stability analysis.

Boundary conditions along the waterside ground surface from the waterside model extents to the levee slope were assigned as fixed total head conditions corresponding to the analyzed water elevation. On the landside, exit face boundary conditions are applied from the crest hinge point to landside extents of the model. All other boundaries not explicitly assigned a condition are assumed by the program to be no flow; this includes both vertical faces of the model and the bottom nodes. The landside model extents were extended 2,000 feet from the levee centerline and to the end of available topographic information on the waterside. Figure 3-3 shows a typical GMS SEEP2D seepage model.

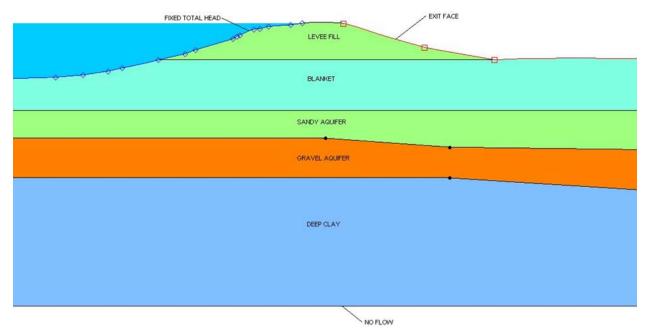


Figure 3-3: Typical GMS SEEP2D Seepage Analysis Model

Levees constructed of fine grained clays having stability berms with drainage layers that capture any seepage through the levee, or having cutoff walls constructed through the levee embankment, are unlikely to be susceptible to through-seepage caused internal erosion. Levees of silt, silty sand, and/or sand were considered to be susceptible to internal erosion caused by through-seepage and were considered as deficient from a through-seepage perspective.

3.3.2 Steady State Slope Stability Analysis

Embankment stability against shear failure was analyzed using the UTEXAS4 software package for steady state conditions. Analyses to find factors of safety against sliding were conducted using a floating grid automatic circular failure surface search routine to identify the critical failure surfaces with the Spencer Procedure within the embankment and/or foundation. The Spencer Procedure satisfies both force and moment equilibrium for each slice. A minimum weight restriction was applied to the slices within the failure surface to eliminate surficial failure surfaces. Where tensile stresses exist on the failure surface, a crack depth was introduced to eliminate the tensile stresses, but not compressive stresses. The appropriate depth for a crack is the one producing the minimum factor of safety (FOS), which corresponds to the depth where tensile, but no compressive stresses are eliminated. If a crack was required, the maximum crack depth was set to producing the lowest FOS; typically, two to four feet. Figure 3-4 shows a typical UTEXAS4 model.

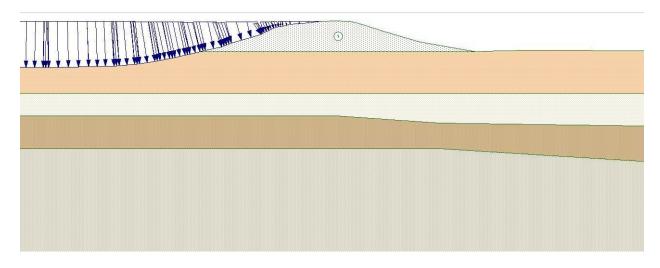


Figure 3-4: Typical UTEXAS4 Slope Stability Analysis Model

The long term evaluation was considered with steady state seepage and is based on the assumption of a fully developed phreatic surface through the embankment. Saturated unit weights are used in the embankment and the pore water pressure is imported from SEEP2D. External water pressures from the channel are applied as a distributed load against the landside slope. Effective shear strength parameters c' and Φ' were used for all materials.

3.3.3 Material Properties

In order to develop geotechnical products for the LSJRFS area in a timely manner, the PDT and Sponsors agreed to use existing subsurface information (i.e., Geotechnical Data Reports (GDR) and Geotechnical Engineering Reports (GER)) developed by both URS and Kleinfelder for DWR. Cross sections, material properties, including hydraulic conductivity for seepage analysis and drained (effective) shear strength and unit weight for slope stability analysis, were obtained from existing P1GER's provided by DWR, URS, and Kleinfelder. The stratigraphy of the existing levee cross-sections were divided into unique layers typically consisting of levee embankment fill, a foundation or blanket layer, pervious aquifer layers separated by an aquitard, and a deeper fine grained layer.

The hydraulic conductivities developed in the earlier GER's were reevaluated and assigned based on soil classification and fines content using typical values developed and evolved from soil index property and hydraulic conductivity testing on samples gathered from numerous subsurface investigations coupled with limited in-situ testing and engineering judgment performed by USACE, DWR, URS, Kleinfelder, and others on similar levees and in similar geologic conditions to this project. These typical values have been adopted for this project and are presented in Table 3-2 below.

Many soil deposits have a different horizontal hydraulic conductivity than vertical hydraulic conductivity. The ratio of horizontal hydraulic conductivity divided by vertical hydraulic conductivity is referred to as anisotropy ratio (k_H/k_V). Anisotropy between horizontal and

vertical conductivities is influenced by a number of factors including a variation in material properties within a modeled layer (inter-bedded lenses of sand in a silt or clay layer), cracks within the layer, etc. The analyses were performed using a soil anisotropy ratio of 4 for sands, clays and silty material; some gravels were given an anisotropy ratio of 10 based on decreased fines content.

Table 3-2: Hydraulic Conductivities

	140.00 21 1130	Hydraulic Conductivity				
Material Type	Soil Description	k _H (cm/sec)	k _H (ft/day)	$k_{ m H}/k_{ m V}$	k _V (cm/sec)	k _V (ft/day)
	Engineered Embankment	1.0E-06	0.0028	4	2.5E-07	0.0007
CI.	Non-Engineered Embankment	1.0E-05	0.028	4	2.5E-06	0.0071
Clay	Blanket ≥10ft Thick	1.0E-05	0.028	4	2.5E-06	0.0071
	Blanket 5ft<>10ft Thick	1.0E-05	0.028	4	2.5E-06	0.0071
	Blanket ≤5ft Thick	1.0E-05	0.028	4	2.5E-06	0.0071
Silt	Elastic (plastic)	5.0E-05	0.142	4	1.3E-05	0.035
Silt	Non-plastic	2.0E-04	0.57	4	5.0E-05	0.14
	30-49% fines	5.0E-05	0.14	4	1.3E-05	0.035
Clayey Sand to	13-29% fines	1.0E-04	0.28	4	2.5E-05	0.071
Sand	8-12% fines	1.0E-03	2.8	4	2.5E-04	0.71
	0-7% fines	5.0E-03	14	4	1.3E-03	3.5
	30-49% fines	5.0E-04	1.4	4	1.3E-04	0.35
G'14 - G 1 + - G 1	13-29% fines	1.0E-03	2.8	4	2.5E-04	0.71
Silty Sand to Sand	8-12% fines	5.0E-03	14	4	1.3E-03	3.5
	0-7% fines	1.0E-02	28	4	2.5E-03	7.1
	28-49% fines	4.0E-04	1.1	4	1.0E-04	0.28
	18-27% fines	1.0E-03	2.8	4	2.5E-04	0.71
Gravel	13-17% fines	6.0E-03	17	4	1.5E-03	4.3
	8-12% fines	1.2E-02	34	4	3.0E-03	8.5
	0-7% fines	2.5E-02	71	4	6.3E-03	17.7
Gravel with Cobbles and Sand	28-49%fines	4.0E-04	1.1	4	1.0E-04	0.28
	18-27% fines	1.0E-03	2.8	4	2.5E-04	0.71
	13-17% fines	1.0E-02	28	10	1.0E-03	2.8
Coooles and Sand	8-12% fines	1.0E-01	283	10	1.0E-02	28
	0-7% fines	2.0E-01	567	10	2.0E-02	57

The resistance to penetration of the soils measured in blows per foot (field N-value) during the driving of Standard Penetration Test (SPT) samplers and Cone Penetrometer Test (CPT) tip resistance served as a site specific data source for the determination and verification of shear strength parameters for granular, cohesionless soils through empirical correlations. Empirical correlations with SPT N-values by Uchida (1996) and Peck (1974) were used for the estimation of the drained (effective stress) angle of internal friction Φ' . For cohesive soils (including clays and plastic silts), the empirical correlations by Mitchell (1976) and Bowles (1996) were used for estimation of Φ' using the Plasticity Index (PI) of the soil.

For both cohesive and cohesionless materials, shear strengths predicted by correlations were compared to typical published values and values used in previous analysis in similar materials, and then adjusted based on engineering judgment. Typical shear strengths by material classification used in steady state slope stability analysis are shown in Table 3-3.

Table 3-3: Shear Strength of Soils

Matarial True	Cail Dagarindian	Shear Strength			
Material Type	Soil Description	c' (psf)	Φ' (°)	γ(pcf)	
	SB	50	0	85	
Cutoff Wall	SCB	500			
	СВ	5000			
	Clay Foundation	50-100	20-30	115	
Clay	Clay Engineered Embankment	50-200	28-30	115	
	Clay Non-engineered Embankment	50-100	22-26	115	
Sil	0	28-32	120		
Clayey Sand at	0	28-33	125		
San	0	30-35	130		
Gravel and I	0	35-40	135		

3.3.4 Representative Cross Sections

Typically, cross-sections for geotechnical analysis are selected to represent critical surface and subsurface conditions of each reach. The topography of each reach is inherently variable. The existence of access ramps on both the landside and waterside of the levee, roadways and railroads running perpendicular and parallel to the levee, and/or pump stations or other structures built up adjacent to the levee section create difficulties to discern the typical versus critical cross-section.

For the LSJRFS area, the sections were selected based on subsurface data, laboratory test results, geomorphology, surface conditions, field reconnaissance, historical performance, and levee geometry. The ground surface elevations used in the cross-sections were based on the LiDAR and bathymetric surveys performed by URS, Kleinfelder, and Fugro for DWR from 2007 and 2008. The natural soil layers were delineated based on boring logs and laboratory test results. Typically one cross section per reach was selected for analysis and referred to as an index point.

In some cases, multiple cross sections were analyzed in each reach to verify the initial location. Table 3-4 and Figure 3-5 present the location of the cross-sections representing the LSJRFS index points. A total of fourteen (14) cross-sections were analyzed, 4 cross-sections were analyzed in the RD-17 Basin along the east bank of the LSJR, 2 cross-sections were analyzed in the French Camp Slough area (one section in the northern portion of RD-17, one section in the southern portion of RD-404); 2 cross-sections were analyzed along the west bank of the SDC; 4 cross-sections were analyzed along the Calaveras River (two sections along the right bank, two section along the left bank); and 2 cross-sections were analyzed in the Delta Front area (one section in the Brookside area, one section in the Lincoln Village area).

Table 3-4: Index Point Locations (1200-yr. WSE not given)

1 able 3-4: Index Point Locations (1200-yr. WSE not given)						T
Index Point	Station	State Plane (ft) Northing	State Plane (ft) Easting	Crest Elev. (ft)	≈200-yr DWSE (ft) NAVD88	River
CL1/CL2	6757+00	2185288	6336628	31.4	25.5	Calaveras River
CR1/CR2	3306+00	2185583	6337043	29.7	26.9	Calaveras River
D4	3092+00	2180295	6319366	18.8	14.2	Calaveras River
D5	6535+00	2178738	6317908	17.5	13.2	Calaveras River
SL1	846+68	2183207	6340943	39.2	30.2	Diverting Canal
SL2	976+00	2176913	6352470	44.6	40.4	Diverting Canal
FR1	1164+20	2158156	6329042	21.8	15.9	French Camp Slough
FL1	1049+00	2156653	6329984	21.4	15.9	French Camp Slough
LR1	1292+00	2139808	6322846	25.0	19.8	San Joaquin River
LR2	1417+00	2131643	6324275	27.8	21.5	San Joaquin River
LR3	1685+00	2116984	6326321	31.0	26.9	San Joaquin River
LR4	1815+00	2105994	6330785	33.9	31.3	San Joaquin River
D-LV	162+50	2185939	6315555	13.6	11.0 ¹	14-Mile Slough
D-BS	166+50	2183200	6311320	18.2	10.0^{1}	LSJ/14-Mile Slough

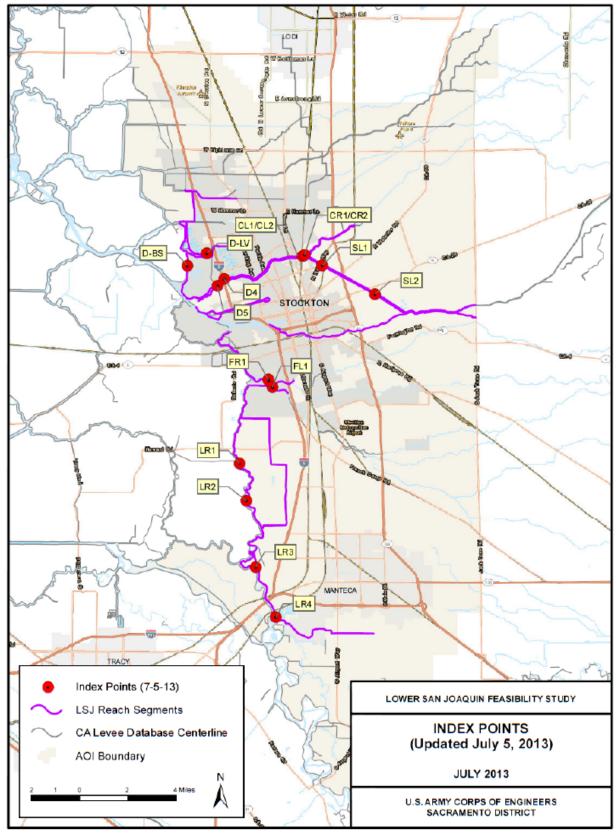


Figure 3-5: LSJRFS Index Point Location Map

3.4 SEEPAGE AND STABILITY ANALYSIS RESULTS

The following section presents the results of geotechnical steady state seepage and slope stability analyses performed in accordance with the methodology described in Section 3.3. The analyses cross-sections were evaluated in accordance with design criteria described in Section 4.3.2 for various water surface elevations, including top of levee, as indicated in Section 2.4. The analyses for each location were performed for the without-project condition as described in Section 3.3.

Enclosure 2 contains a tabulation of the analyses results including: the hydraulic conductivities and material strength parameters assigned for each cross-section used in analysis; seepage gradients and slope stability factors of safety for various WSE; plates of cross-section geometry, stratigraphy, total head contours (seepage analysis), and failure surfaces (slope stability analysis) for a crest water surface elevation are included.

The following subsections present the analyses results for without project conditions at each of the cross-section locations. Figures presented for each cross-section display underseepage average vertical exit gradient calculated at the landside levee toe and slope stability FOS for the analyzed water surface elevations.

3.4.1 South Stockton – Lower San Joaquin River East Bank RD-17

The without-project conditions analyses for south Stockton includes five (5) index points; four (4) along the right (east) bank of the Lower San Joaquin River, and one (1) index point along the left (south) bank of French Camp Slough; these five (5) index points represent RD-17. The index point locations, LR-1, LR-2, LR-3, LR-4, and FL-1, are shown in Figure 3.5. As the results show below, LR-1, LR-2 and LR-3 display exit gradients and slope stability factors of safety (FOS) that do not meet design criteria at various water surface elevations. Figure 3-6 to Figure 3-10 displays steady state seepage and landside slope stability results for the analyzed water surface elevations.

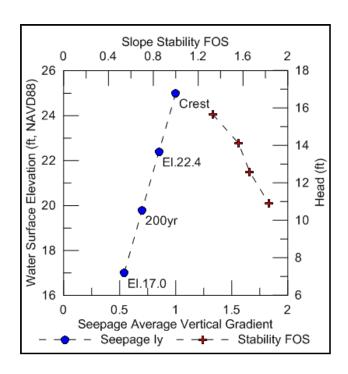


Figure 3-6: RD-17 Index Point LR-1 Without-Project Analyses Results

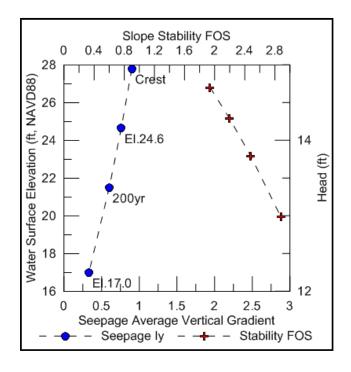


Figure 3-7: RD-17 Index Point LR-2 Without-Project Analyses Results

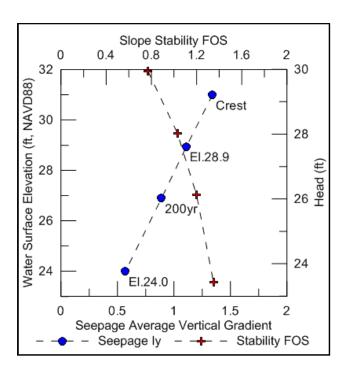


Figure 3-8: RD-17 Index Point LR-3 Without-Project Analyses Results

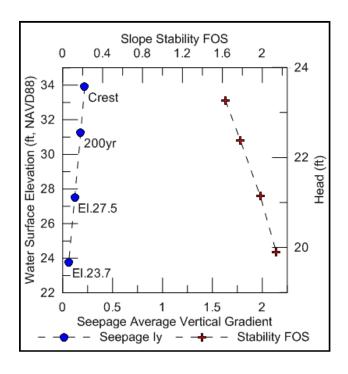


Figure 3-9: RD-17 Index Point LR-4 Without-Project Analyses Results

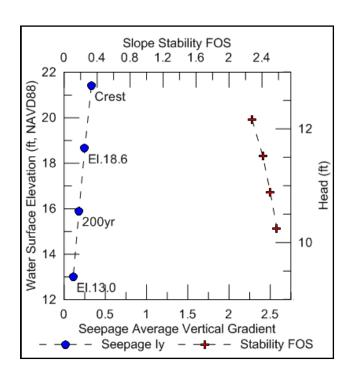


Figure 3-10: RD-17 Index Point FL-1 Without-Project Analyses Results

3.4.2 Central Stockton – RD-404 French Camp Slough/Stockton Diverting Canal, Left Bank Calaveras River

The without-project conditions analyses for central Stockton includes a total of five (5) index points; one (1) along the right (north) bank of French Camp Slough in RD-404, two (2) along the left (west) bank of the Stockton Diverting Canal, and tow (2) along the Left (south) bank of the Calaveras River. The index point locations for FR-1, SL-1, SL-2, CL-1/CL-2, and D-5, are shown in Figure 3.5. As the results show below, FR-1, SL-1 and SL-2 display exit gradients, and in some cases slope stability FOS, that do not meet design criteria at various water surface elevations. Figure 3-11 to Figure 3-15 displays steady state seepage and landside slope stability results for the analyzed water surface elevations.

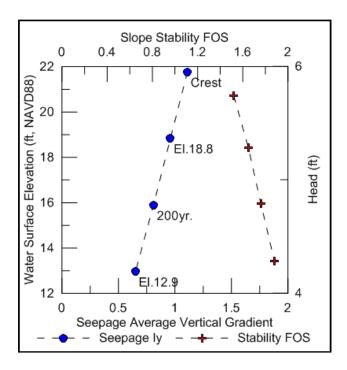


Figure 3-11: RD-404 Index Point FR-1 Without-Project Analyses Results

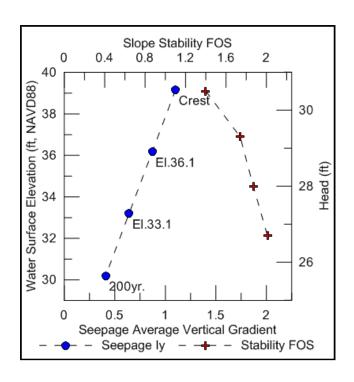


Figure 3-12: SDC Index Point SL-1 Without-Project Analyses Results

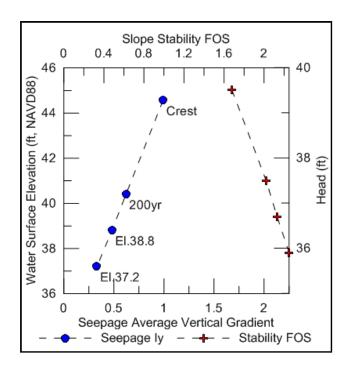


Figure 3-13: SDC Index Point SL-2 Without-Project Analyses Results

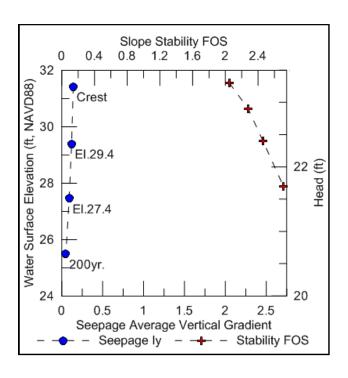


Figure 3-14: Calaveras River Index Point CL-1/CL-2 Without-Project Analyses Results

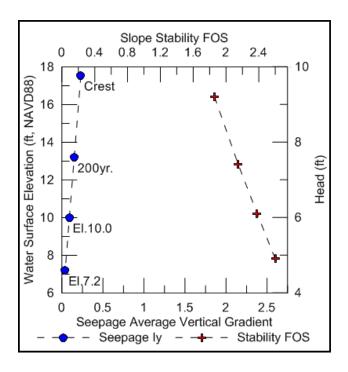


Figure 3-15: Calaveras River Index Point D-5 Without-Project Analyses Results

3.4.3 North Stockton – Right Bank Calaveras River, Delta Brookside, Delta Lincoln Village

The without-project conditions analyses for North Stockton includes a total of four (4) index points; two (2) along the right (north) bank of the Calaveras River, one (1) along the Delta Brookside Study Area, and one (1) along the Delta Lincoln Village Study Area. The index point locations for CR-1/CR-2, D-4, D-BS, and D-LV are shown in Figure 3.5. As the results show below, CR-1/CR-2, D-4, and D-BS display exit gradients, and in some cases slope stability FOS, that do not meet design criteria at various water surface elevations. Figure 3-16 to Figure 3-19 displays steady state seepage and landside slope stability results for the analyzed water surface elevations.

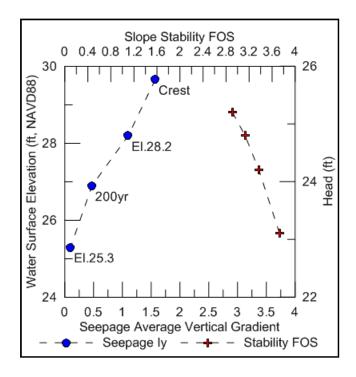


Figure 3-16: Calaveras River Index Point CR-1/CR-2 Without-Project Analyses Results

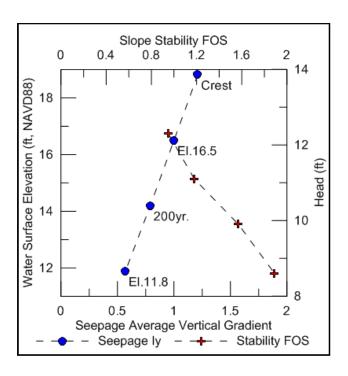


Figure 3-17: Calaveras River Index Point D-4 Without-Project Analyses Results

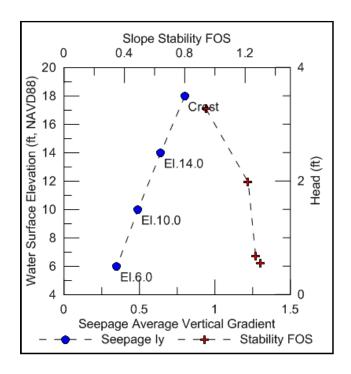


Figure 3-18: Delta Brookside Index Point D-BS Without-Project Analyses Results

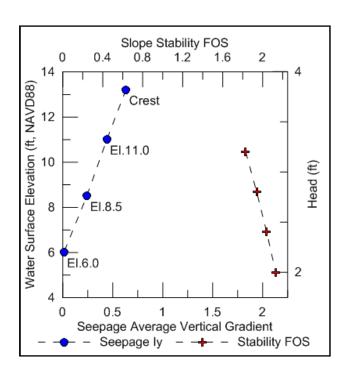


Figure 3-19: Delta Lincoln Village Index Point D-LV Without-Project Analyses Results

3.5 PROBABILISTIC ANALYSIS METHODOLOGY

Index points were selected for geotechnical analysis to represent the critical surface and subsurface conditions of each planning reach in order to identify the geotechnical deficiencies of the reach. The sections were selected based on previous geotechnical analysis, past levee performance, existing levee improvements, subsurface data, laboratory test results, surface conditions, field reconnaissance, and levee geometry. A critical section representing each reach was developed using existing subsurface data spread throughout the reach to establish a mean blanket and aquifer thickness. Analysis of underseepage, through-seepage, and slope stability make up the analytical components of the curve; whereas, judgment-based probabilities (i.e. vegetation, rodent activity, encroachments, and erosion) are based on site conditions as determined from periodic inspection reports, photographs, historical reporting, data reports, and expert opinion elicitations. The ground surface elevations used in the cross-sections were based on the LiDAR and bathymetric surveys performed by URS, Kleinfelder, and Fugro for DWR from 2007 and 2008. The analysis model stratigraphy was interpreted based on existing boring logs near the index point.

The First-Order-Second-Moment (FOSM) method, as recommended in ETL 1110-2-556, "Risk-Based Analysis in Geotechnical Engineering for Support of Planning Studies," dated 28 May 1999, was followed during the probabilistic evaluation of each index point. In this approach, the uncertainty in performance is taken to be a function of the uncertainty in model parameters. The standard deviations of a performance function were estimated based on the expected values (means) and the standard deviation of the random variable means. The performance functions considered were underseepage, through-seepage, and slope stability.

The final result of the FOSM method is a reliability index, Beta (β), representing the amount of standard deviation of the performance function by which the expected value exceeds the limit equilibrium state. The limit equilibrium state was defined using a FOS of 1.0. The standard deviation and variance of the performance function are calculated from the standard deviation and variance of the foundation and embankment parameters using the Taylor series method based on a Taylor series expansion of the performance function about the expected values. The partial derivatives were calculated numerically using an increment of plus and minus one standard deviation centered on the expected mean value. The variance of the performance function was obtained by summing the products of the partial derivatives of the performance function considering the variance of the corresponding parameters. The probability of poor performance, Pr(U), of the levee was expressed as a function of the river water elevation and the random variables of each performance function.

Potential sources of levee distress, or poor performance, considered in the analyses were underseepage through the levee foundation, through-seepage through the levee embankment, and instability of the landside levee slope under steady state conditions. The levees were evaluated against the above mentioned performance modes at five different water surface elevations. The loading conditions in most cases included the levee crest, levee crest minus three feet, half levee height, toe plus three feet, and landside levee toe where the probability of poor performance was considered to be zero. Using this method of selecting loading conditions, the levee performance curves would theoretically represent probability of poor performance at multiple flood frequencies.

Sudden drawdown conditions may result in levee slope failure; however, flooding is unlikely to occur when the water is at low elevation. Sudden drawdown was not considered in the analysis. Additionally, a judgment based conditional probability of poor performance curve is included in the risk and uncertainty analysis. This analysis considers: existing and past erosion history of the levee and riverbank, maintenance, encroachments, vegetation on the levee slopes and within the levee critical area, animal burrows and other external damaging conditions.

The probability of poor performance was evaluated by assessing the foundation and embankment materials and assigning values for the probability moments of the random variables considered in the analyses. Random variables for underseepage included the ratio of the horizontal permeability of the aquifer to the vertical permeability of the blanket, blanket thickness, and aquifer thickness. Random variables for through-seepage included critical tractive stress, porosity, and intrinsic permeability of the levee embankment material. Random variables for slope stability included effective friction angle, effective cohesion, and total unit weight of the levee embankment, and effective friction angle and cohesion of the foundation material.

3.5.1. Underseepage

Underseepage analysis was performed using blanket theory analysis (BTA) as described in ETL 1110-2-556, EM 1110-2-1913, and TM 3-424. Finite element analyses using the SEEP2D program, part of the GMS version 6.5 software package, were developed to independently check the blanket theory results. In general, the finite element and the empirical seepage calculations supported each other, predicting qualitatively similar results. Statistical analysis was used for each reach in determination of the coefficients of variation and standard deviation of the permeability ratios, blanket thickness, and thickness of the underlying aquifer. A critical gradient of 0.80 was used, considering 112 pounds per cubic foot (pcf) unit weight of the blanket. The unit weight of the blanket was considered the same at all index points. Values of vertical and horizontal permeability based on material classification and fines content are shown in Table 3-5 below (a reduced version of Table 3-2).

Table 3-5: Vertical and Horizontal Hydraulic Conductivity

	abic 3-3. Vertical and 11		Hydraulic Conductivity			
Material Type	Soil Description	k _H (cm/sec)	k _H (ft/day)	k _H /k _V	k _V (cm/sec)	k _V (ft/day)
	Engineered Embankment	1.0E-06	0.0028	4	2.5E-07	0.0007
Clay	Non-Engineered Embankment	1.0E-05	0.028	4	2.5E-06	0.0071
	Blanket ≥10ft Thick	1.0E-05	0.028	4	2.5E-06	0.0071
	Blanket 5ft > 10ft Thick	1.0E-05	0.028	4	2.5E-06	0.0071
	Blanket ≤5ft Thick	1.0E-05	0.028	4	2.5E-06	0.0071
Silt	Elastic (plastic)	5.0E-05	0.142	4	1.3E-05	0.035
Silt	Non-plastic	2.0E-04	0.57	4	5.0E-05	0.14
Peat	Organic Soil	4.0E-06	0.01	4	1.0E-06	0.0028
Clayey Sand to	30-49% fines	5.0E-05	0.14	4	1.3E-05	0.035
	13-29% fines	1.0E-04	0.28	4	2.5E-05	0.071
Sand	8-12% fines	1.0E-03	2.8	4	2.5E-04	0.71
	0-7% fines	5.0E-03	14	4	1.3E-03	3.5
	30-49% fines	5.0E-04	1.4	4	1.3E-04	0.35
Silty Sand to	13-29% fines	1.0E-03	2.8	4	2.5E-04	0.71
Sand	8-12% fines	5.0E-03	14	4	1.3E-03	3.5
	0-7% fines	1.0E-02	28	4	2.5E-03	7.1
	28-49% fines	4.0E-04	1.1	4	1.0E-04	0.28
	18-27% fines	1.0E-03	2.8	4	2.5E-04	0.71
Gravel	13-17% fines	6.0E-03	17	4	1.5E-03	4.3
	8-12% fines	1.2E-02	34	4	3.0E-03	8.5
	0-7% fines	2.5E-02	71	4	6.3E-03	17.7

3.5.2 Through-Seepage

Levees constructed either of fine grained clays, having stability berms with drainage layers that extend along the levee slope that captures seepage through the levee, or having cutoff walls constructed through the levee embankment are unlikely to be susceptible to through-seepage caused internal erosion. Levees of silt, silty sand, and sand were considered to be susceptible to internal erosion and were evaluated using the modified Khilar, Folger, and Gray erosion model as prescribed in ETL 1110-2-556. Using this method, the critical gradient through the levee embankment was calculated based on variations in the critical tractive stress, porosity, and intrinsic permeability of the levee material and compared with the predicted horizontal gradient through the levee embankment from the SEEP2D model. Table 3-6 shows the mean values of the random variables of the levee embankment material used to calculate the critical gradient were critical tractive stress (dynes/cm²) which was taken as ten times the d₅₀ (mm), the porosity

based on material classification as proposed by Weight and Sonderegger in "Manual of Applied Field Hydrology", and intrinsic permeability was taken as approximately 1x10⁻⁵ times the horizontal permeability (cm/sec). Table 3-7 presents coefficients of variation for the through-seepage analysis random variables that were obtained using methodologies outlined in ETL 1110-2-556.

Table 3-6: Through-Seepage Random Variables

Material	Tractive Stress (dynes/cm²)	Porosity (%)	Intrinsic Permeability (cm²)
Clay	5 – 50	40 - 70	$1.0E^{-10}$
Silt	0.5 - 50	35 - 50	$2.0E^{-9} - 5.0E^{-10}$
Sand	1 - 20	25 - 50	$1.0E^{-6} - 5.0E^{-9}$
Gravel	15 - 250	20 - 40	$2.5.0E^{-6} - 4.0E^{-9}$
Sand and Gravel	15 - 250	15 - 35	2.3.0E - 4.0E

Table 3-7: Variation of Through-Seepage Random Variables

Random Variable	Coefficient of Variation (%)		
Critical Tractive Stress (T _c dynes/cm ²)	10		
Porosity (n)	10		
Intrinsic Permeability (k _o cm ²)	30		

3.5.3 Landside Slope Stability

The cases analyzed for stability risk analyses considered long-term conditions with steady state seepage along the landside slope of the levee. The phreatic surface and pore water pressures were developed for the steady state condition using the SEEP2D finite element computer program developed as part of GMS version 6.5. The limit equilibrium computer program UTEXAS4 was used to perform the stability analyses. Circular failure surfaces were assumed and the embankment was modeled as homogeneous. All analyses consisted of running a search routine to identify the critical failure surface using the Spencer's Method.

A sensitivity study was done to determine which parameters in the slope stability calculations were most influential. For this study, those variables are soil strength and unit weights of the soil in the levee embankment and soil strength in the foundation. Statistical descriptors for these variables were determined using available site-specific information and published statistical data. The piezometric lines or pore water pressures for each water elevation were determined using the finite element program SEEP2D for the levee embankment and its foundation.

The drained soil strength parameters used in the stability analyses are shown in Table 3-8; these values were based on a generalized conservative assumption of shear strength by soil type from previous studies in the project area. For each index point the generalized assumption was compared with available field and laboratory testing from nearby explorations. The coefficients of variation for soil strength parameters and unit weight of the fill material in the levee or the top

impervious blanket are shown in Table 3-9 and were obtained using methodologies outlined in ETL 1110-2-556, and those proposed by Harr in the "Reliability-Based Design in Civil Engineering", and Duncan in the "Manual for Geotechnical Engineering Reliability Calculations".

Table 3-8: Drained Shear Strength of Soil

Tuble of Diamed Shear Strength of Son					
Matarial Type	Soil Description	Shear Strength			
Material Type	Soil Description	c' (psf)	Φ' (°)	γ (pcf)	
Cutoff Wall	SCB, SB, CB	50	0	85	
	CH Levee Embankment	100	22	115	
Clave	CH Foundation	100	26	115	
Clay	CL Levee Embankment	50	24	115	
	CL Foundation	50	28	115	
Silt	ML Levee Embankment-	0	28	115	
	ML Foundation	0	30	120	
Clayey Sand and Silty Sand	-	0	33	125	
Sand	-	0	35	130	
Gravel and Drain Rock	-	0	35	135	

Table 3-9: Variation of Drained Shear Strength Parameters

Random Variable	Coefficient of Variation (%)
Effective Friction Angle (Φ)	13
Effective Cohesion (c psf)	40
Total Unit Weight (γ pcf)	7

3.5.4 Judgment

A judgment based conditional probability function was based on the existing and past erosion history of the levee and riverbank, maintenance, encroachments, vegetation on the levee slopes and within the levee critical area, animal burrows and other external damaging conditions. Generally, past experience with poor performance at utility crossing and rodent activity indicates the risk of failure is somewhat significant in the analyzed areas. The judgment based curve is included for each analyzed levee cross section and in the combined curve of failure.

In June 2009, an expert elicitation was conducted for the purpose of developing the geotechnical judgment portion of the curves; the meeting minutes are included as Enclosure 6. This expert elicitation was conducted in accordance with ETL 1110-2-561, "Appendix E, Expert Elicitation in Geological and Geotechnical Applications" 31 January 2006. The members of the expert elicitation team were highly recognized professional specialists in erosion and geotechnical issues. The expert elicitation focused on the judgment part of the geotechnical risk and

uncertainty curves for flood control structures; the team discussed and reached consensus on the impact of different factors of the judgment curve, such as:

- the vegetation on the levees and within the levee right of way
- penetrations through the levee and foundation
- encroachments into the levee and levee right-of-way
- erosion of the riverbank and waterside slopes of the levee
- animal burrows

The expert elicitation also concluded that up to a certain water elevation, the risk of poor performance as determined by analyses or considered in the judgment portion of the curves may not necessarily coincide with the risk of failure. Based on historical performances of levees, it appears the risk of failure as determined in the analyses may be conservative and the poor performance of a levee may not lead to a catastrophic levee failure; even if distresses of the levee embankment needed to be repaired after a flood to bring the levee to the pre-flood performance. Consequently, the risk of catastrophic failure may be reduced based on the historical past performance, and consequently the curves may be altered.

3.5.5 Combined Curves

The total conditional probability of poor performance as a function of floodwater elevation has been developed by combining the probability of poor performance functions for four failure modes; underseepage, through-seepage, slope instability, and judgment.

3.6 PERFORMANCE CURVES

The results of the geotechnical risk and uncertainty analyses are briefly discussed in the following sections. As previously discussed, underseepage, through-seepage, and slope stability probabilities of failure were calculated analytically based on site specific subsurface information used to select material parameters and coefficients of variation. Included as Enclosure 3 are the spreadsheet analyses used to calculate the probabilities of poor performance. These spreadsheets include data from borings used to select parameters, the selected parameters, and the calculated results including the combined performance curve. The judgment curve remains as the non-analytical component to the curve; those probabilities of poor performance were based on site specific conditions regarding vegetation, penetrations, encroachments, erosion, and animal burrows. The Reach Description section (Section 3.2) of this report describes in general terms the levee conditions regarding vegetation, penetrations, encroachments, and animal burrows.

3.6.1 RD-17 – Lower San Joaquin River, East Bank

The subsurface explorations for LR-1 used in probabilistic analyses resulted in a mean blanket thickness of 13.0-ft with a coefficient of variation of 46, and a mean aquifer thickness of 28.0-ft with a coefficient of variation 0.57. The levee embankment was comprised of lean clay and silt. The blanket was comprised of predominantly lean clay. The aquifer was comprised of poorly graded sand with silt to silty sand. Past performance indicates the embankment has experienced seepage, sand boils, and cracking.

The underseepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 24.3% and the underseepage curve contributed 49.0% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, animal burrows, and utilities. Figure 3-20 presents the without-project conditions combined curve for LR-1.

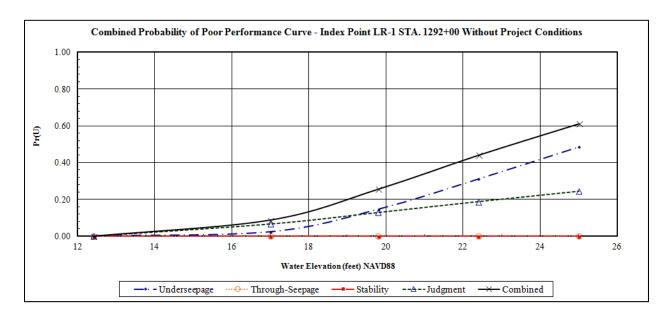


Figure 3-20: Index Point LR-1 Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for LR-2 used in probabilistic analyses resulted in a mean blanket thickness of 7.0-ft with a coefficient of variation of 57, and a mean aquifer thickness of 18.0-ft with a coefficient of variation 0.39. The levee embankment was comprised of lean clay to silty sand. The blanket was comprised of predominantly silty sand. The aquifer was comprised of poorly graded sand with silt to silty sand. Past performance indicates the embankment has experienced seepage, and sand boils.

The underseepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 28.2% and the underseepage curve contributed 56.9% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, vegetation, utilities, and animal burrows. Figure 3-21 presents the without-project conditions combined curve for LR-2.

Figure 3-21: Index Point LR-2 Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for LR-3 used in probabilistic analyses resulted in a mean blanket thickness of 11.0-ft with a coefficient of variation of 55, and a mean aquifer thickness of 35.0-ft with a coefficient of variation 0.34. The levee embankment was comprised of poorly graded sand with silt to clayey sand. The thin blanket was comprised of predominantly lean clay to silty sand. The aquifer was comprised of poorly graded sand with silt. Past performance indicates the embankment has experienced seepage, sand boils, and breach conditions.

The underseepage, through-seepage, slope stability, and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 20.2%, the underseepage curve contributed 48.6%, the through-seepage curve contributed 68.0%, and the slope stability curve contributed 99.9% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of vegetation, utilities, and animal burrows. Figure 3-22 presents the without-project conditions combined curve for LR-3.

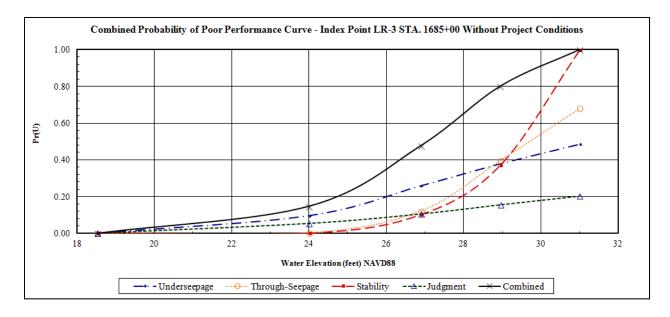


Figure 3-22: Index Point LR-3 Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for LR-4 used in probabilistic analyses resulted in a mean blanket thickness of 23.0-ft with a coefficient of variation of 13, and a mean aquifer thickness of 33.0-ft with a coefficient of variation 0.24. The levee embankment was comprised of clayey sand. The blanket was comprised of lean clay to sandy lean clay. The aquifer was comprised of poorly graded sand with silt. Past performance indicates the embankment has experienced seepage, and sand boils.

The judgment component curve accounted for the majority of the combined without-project curve. The judgment curve contributed 22.7% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of vegetation, encroachments, and animal burrows. Figure 3-23 presents the without-project conditions combined curve for LR-4.

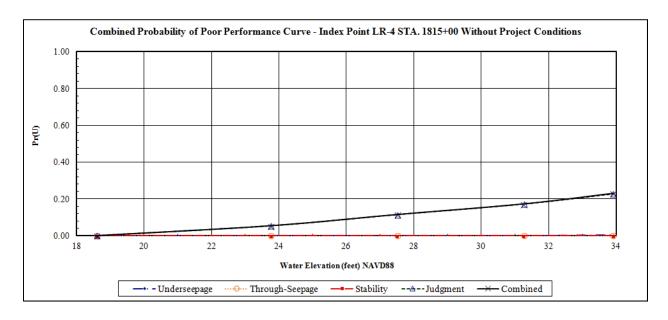


Figure 3-23: Index Point LR-4 Combined Probability of Poor Performance Curve for Without Project Conditions

3.6.2 French Camp Slough, North and South Bank

The subsurface explorations for FL-1 used in probabilistic analyses resulted in a mean blanket thickness of 10.0-ft with a coefficient of variation of 10, and a mean aquifer thickness of 9.0-ft with a coefficient of variation 0.67. The levee embankment was comprised of sandy clay. The blanket was comprised of lean clay to sandy lean clay. The aquifer was comprised of silty sand. Past performance indicates the embankment has experienced seepage, and sand boils.

The judgment component curve accounted for the majority of the combined without-project curve. The judgment curve contributed 23.5% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of vegetation, encroachments, and animal burrows. Figure 3-24 presents the without-project conditions combined curve for FL-1.

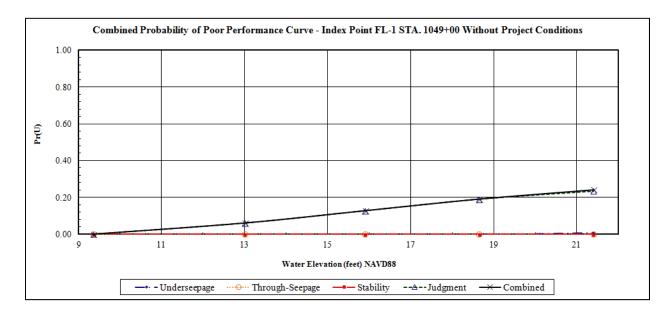


Figure 3-24: Index Point FL-1 Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for FR-1 used in probabilistic analyses resulted in a mean blanket thickness of 7.0-ft with a coefficient of variation of 29, and a mean aquifer thickness of 8.0-ft with a coefficient of variation 0.25. The levee embankment was comprised of lean clay and silt. The thin blanket was comprised of predominantly clayey sand. The aquifer was comprised of silty sand. Past performance indicates the embankment has experienced seepage, sand boils, and bank erosion.

The underseepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 21.9% and the underseepage curve contributed 63.9% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, vegetation, animal burrows, and erosion. Figure 3-25 presents the without-project conditions combined curve for FR-1.

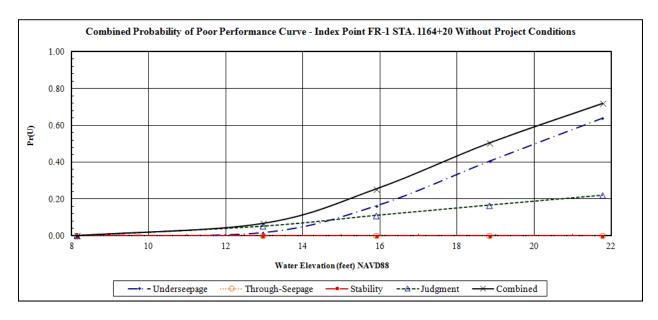


Figure 3-25: Index Point FR-1 Combined Probability of Poor Performance Curve for Without Project Conditions

3.6.3 Stockton Diverting Canal, Left Bank

The subsurface explorations for SL-1 used in probabilistic analyses resulted in a mean blanket thickness of 10.0-ft with a coefficient of variation of 50, and a mean aquifer thickness of 17.0-ft with a coefficient of variation 0.65. The levee embankment was comprised of sandy lean clay. The thin blanket was comprised of predominantly lean clay. The aquifer was comprised of silty sand. Past performance indicates the embankment has experienced no known issues with seepage or stability.

The underseepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 19.3% and the underseepage curve contributed 30.9% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of animal burrows, encroachments, and utilities. Figure 3-26 presents the without-project conditions combined curve for SL-1.

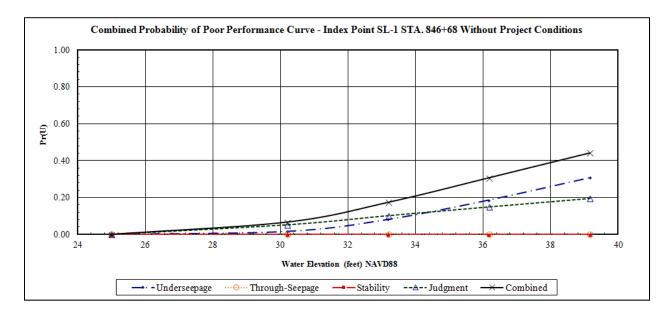


Figure 3-26: Index Point SL-1 Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for SL-2 used in probabilistic analyses resulted in a mean blanket thickness of 7.0-ft with a coefficient of variation of 29, and a mean aquifer thickness of 10.0-ft with a coefficient of variation 0.60. The levee embankment was comprised of sandy silt. The blanket was comprised of predominantly lean clay. The aquifer was comprised of silty sand. Past performance indicates the embankment has experienced no known issues with seepage or stability.

The underseepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 19.3% and the underseepage curve contributed 22.4% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of animal burrows, encroachments, and utilities. Figure 3-27 presents the without-project conditions combined curve for SL-2.

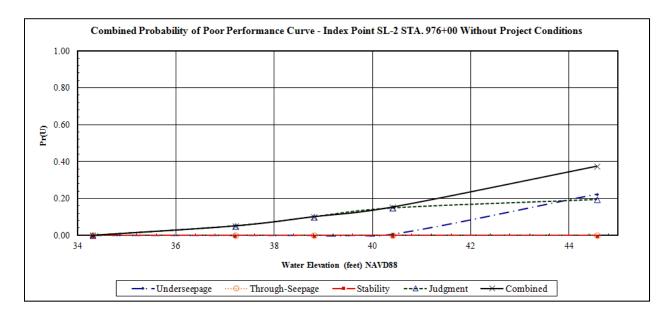


Figure 3-27: Index Point SL-2 Combined Probability of Poor Performance Curve for Without Project Conditions

3.6.4 Calaveras River, North and South Bank

The subsurface explorations for CL-1/CL-2 used in probabilistic analyses resulted in a mean blanket thickness of 19.0-ft with a coefficient of variation of 42, and a mean aquifer thickness of 15.0-ft with a coefficient of variation 0.73. The levee embankment was comprised of sandy silt. The blanket was comprised of predominantly elastic silt. The aquifer was deep and appeared in a few borings as poorly graded sand with silt. Past performance indicates the embankment has experienced seepage, settlement, and bank erosion.

The through-seepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 32.7% and the through-seepage curve contributed 7.7% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, erosion, animal burrows, utilities, and vegetation. Figure 3-28 presents the without-project conditions combined curve for CL-1/CL-2.

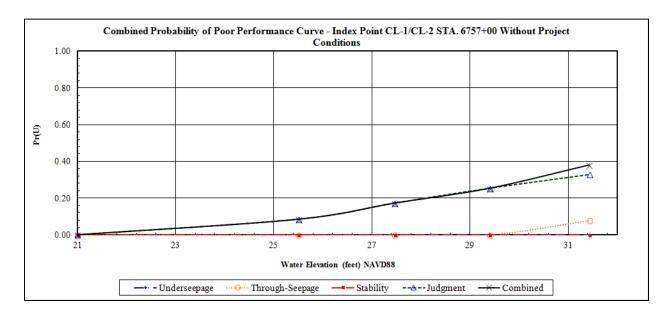


Figure 3-28: Index Point CL-1/CL-2 Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for CR-1/CR-2 used in probabilistic analyses resulted in a mean blanket thickness of 5.0-ft with a coefficient of variation of 40, and a mean aquifer thickness of 14.0-ft with a coefficient of variation 0.57. The levee embankment was comprised of sandy lean clay. The thin blanket was comprised of predominantly sandy lean clay. The aquifer was comprised of sandy silt. Past performance indicates the embankment has experienced seepage, settlement, and bank erosion.

The underseepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 32.0% and the underseepage curve contributed 24.4% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, utilities, erosion, and vegetation. Figure 3-29 presents the without-project conditions combined curve for CR-1/CR-2.

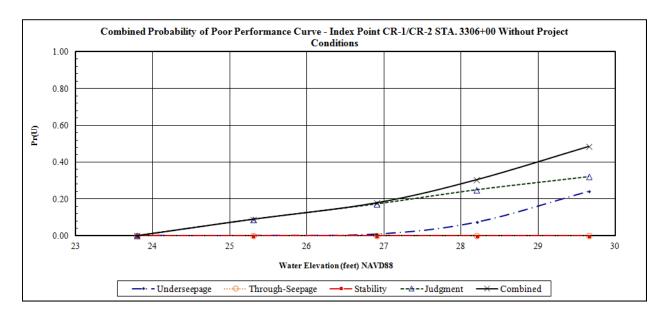


Figure 3-29: Index Point CR-1/CR-2 Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for D-4 used in probabilistic analyses resulted in a mean blanket thickness of 15.0-ft with a coefficient of variation of 47, and a mean aquifer thickness of 30.0-ft with a coefficient of variation 0.07. The levee embankment was comprised of sandy silt and sandy lean clay. The thin blanket was comprised of predominantly sandy fat clay to sandy silt. The aquifer was comprised of poorly graded sand with silt. Past performance indicates the embankment has experienced seepage, settlement, sand boils, and bank erosion.

The underseepage, through-seepage, slope stability, and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 30.5%, the underseepage curve contributed 37.4%, the through-seepage curve contributed 8.5%, and the slope stability curve contributed 66.9% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, vegetation, utilities, and animal burrows. Figure 3-30 presents the without-project conditions combined curve for D-4.

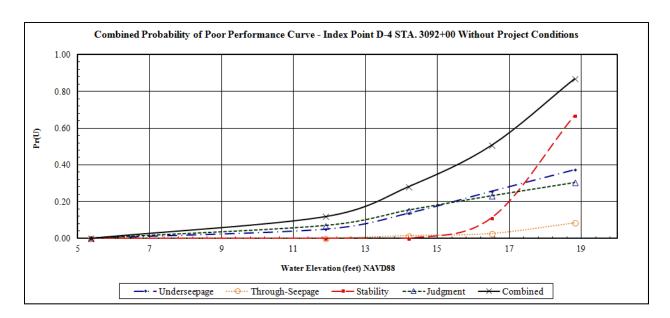


Figure 3-30: Index Point D-4 Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for D-5 used in probabilistic analyses resulted in a mean blanket thickness of 20.0-ft with a coefficient of variation of 45, and a mean aquifer thickness of 15.0-ft with a coefficient of variation 0.67. The levee embankment was comprised of silt. The blanket was comprised of predominantly lean clay. The aquifer was comprised of silty sand. Past performance indicates the embankment has experienced seepage, settlement, and bank erosion.

The through-seepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 31.2% and the through-seepage curve contributed 12.8% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, erosion, utilities, and vegetation. Figure 3-31 presents the without-project conditions combined curve for D-5.



Figure 3-31: Index Point D-5 Combined Probability of Poor Performance Curve for Without Project Conditions

3.6.5 Delta Front Brookside / Delta Lincoln Village

The subsurface explorations for D-BS used in probabilistic analyses resulted in a mean blanket thickness of 18.0-ft with a coefficient of variation of 33, and a mean aquifer thickness of 20.0-ft with a coefficient of variation 0.45. The levee embankment was comprised of lean clay and portions of an older levee constructed of organic clay. The thin blanket was comprised of predominantly organic clay and lean clay. The aquifer was comprised of silty sand. Past performance indicates the embankment has experienced seepage, settlement, bank erosion, and animal burrows.

The underseepage, slope stability, and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 25.9%, the underseepage curve contributed 41.8%, and the slope stability curve contributed 65.9% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, erosion, vegetation, and utilities. Figure 3-32 presents the without-project conditions combined curve for D-BS.

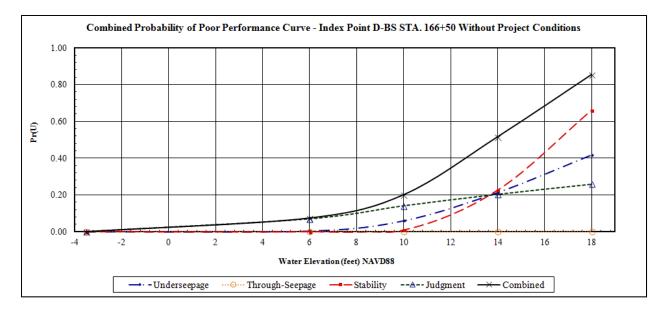


Figure 3-32: Index Point D-BS Combined Probability of Poor Performance Curve for Without Project Conditions

The subsurface explorations for D-LV used in probabilistic analyses resulted in a mean blanket thickness of 12.0-ft with a coefficient of variation of 58, and a mean aquifer thickness of 21.0-ft with a coefficient of variation 0.43. The levee embankment was comprised of lean clay. The thin blanket was comprised of predominantly lean clay. The deep aquifer was comprised of silty sand to poorly graded sand with silt. Past performance indicates the embankment has experienced seepage, and bank erosion.

The underseepage and judgment component curves accounted for the majority of the combined without-project curve. The judgment curve contributed 29.8% and the underseepage curve contributed 23.0% to the combined without-project curve at the levee crest WSE. The without-project judgment curve was primarily comprised of encroachments, vegetation, utilities, and animal burrows. Figure 3-33 presents the without-project conditions combined curve for D-LV.

Figure 3-33: Index Point D-LV Combined Probability of Poor Performance Curve for Without Project Conditions

3.7 SEISMIC PERFORMANCE AND LIQUEFACTION ANALYSIS

The main purpose of seismic vulnerability analyses was to identify the potential seismic performance of a levee. Major concerns during and after seismic events are liquefaction induced settlement and displacement, transverse cracks that may develop between liquefiable and non-liquefiable reaches, and at locations where liquefiable zones abut appurtenant structures with deep rigid foundations. Such zones should be identified and given special consideration.

Seismic analysis was performed for potions of the project that are loaded every day where tides (ranging from elevation 2.5 to 6.5 feet) are higher than the landside levee toe elevation (as low as elevation -1 to -4 feet in some locations). Policy regarding the need for this analysis is contained in ER 1110-2-1150 Engineering and Design for Civil Works Projects C-4.1.7. Feasibility level analysis was performed in accordance with ER 1110-2-1806 Earthquake Design and Evaluation for Civil Works Projects. More detailed analysis and refinement of seismic mitigation measures will be performed during PED in accordance ER 1110-2-1150 D-7.10. This PED effort should be closely coordinated with the geotechnical vertical team due to the unique nature of this analysis and the high cost of mitigation and is required by ER 1110-2-1806 Section 12 for existing projects.

3.7.1 Site Specific Seismic and Liquefaction Analysis

To evaluate the potential to liquefaction resistance of soils, liquefaction triggering analysis was performed based on a procedure from the summary report of the 1996 National Center for Earthquake Engineering Research (NCEER) and 1998 NCEER/National Science Foundation (NSF) Workshops on Evaluation of Liquefaction Resistance of Soils, published as part of the Journal of Geotechnical and Geoenvironmental Engineer, dated October 2001 (Youd, Idriss, Andrus, & Arango, October 2001).

Probabilistic Seismic Hazard Analysis (PSHA) based on the 2008 Next Generation Attenuation (NGA) relationships was used to develop seismic parameters for the LSJRFS area. The deaggregations are from the United States Geologic Society (USGS) developed 2008 Interactive Deaggregations web program. Figure 3-34 and Figure 3-35 presents an example of the interactive input screen and obtained results for index point LR-3 within the LSJRFS area. The following data were input:

- location, through latitude and longitude (up to three decimals each are considered)
- exceedance probability of the seismic event
- desired spectral period
- shear wave velocity of the upper 30 meters (V_S30) of the site

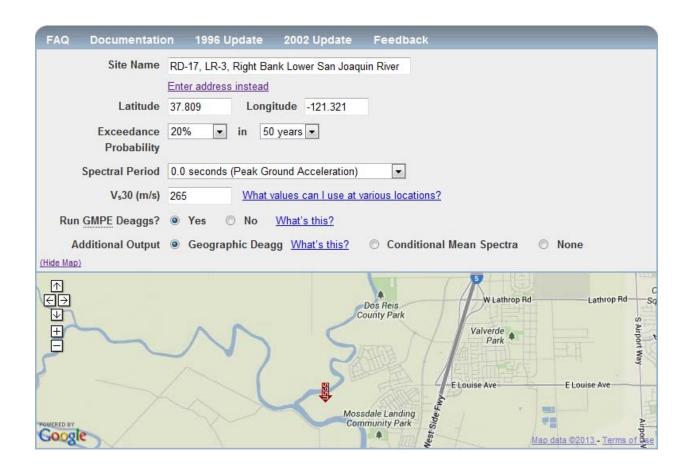


Figure 3-34: USGS 2008 Interactive Deaggregations (Beta) Input

The peak horizontal ground horizontal acceleration (PGA) for 20% exceedance in 50 years (224 -year average return period) at index point LR-3 was found to be 0.49g. The 20% probability of exceedance in 50 years (or 224 year average return period) was used in this study to be consistent with flood protection, per DWR. Seismic design is assumed to be based on ground motion probabilities that are equivalent to the high-water event exceedance probabilities that the project will be designed to withstand. For example, the project is expected to be designed for a 200-year high-water event, the expected seismic criteria is based on designing for the 200-year event. Vs30 was estimated as an average from several deep borings in the area through correlation with SPT blow counts. Figure 3-35 shows the peak horizontal ground acceleration and the contributions of various seismic sources based on USGS deaggregations.

Figure 3-35: USGS 2008 Interactive Deaggregations (Beta) Output

The mean magnitude or the weighted average considering the percent contribution to the total hazard for the study levees is 6.4. The most significant contributions are induced by The Great Valley 7 Char Fault System and the Great Valley 7 GR Fault System. The Great Valley 7 Char Fault System is capable of M=6.7 and located approximately 20 km from the site, while the Great Valley 7 GR Fault System is capable of M=6.6 and located approximately 21 km from the site.

3.7.2 Liquefaction And Ground Deformation

Many of the levees within the LSJRFS area are constructed over alluvial deposits and may be susceptible to liquefaction or degradation due to a seismic event. Levees meeting static stability criteria likely have sufficient factors of safety to resist the additional loading from earthquakes unless the levee or foundation materials lose significant strength due to liquefaction. The LSJRFS area is unusual in that it contains infrequently loaded levees in Central and South Stockton, but also frequently loaded levees in North Stockton. Infrequently loaded levees are likely to be unsaturated at the time of a large seismic event; the material in the levee often can be considered non-liquefiable due to lack of saturation. Frequently loaded levees are tidally influenced and experience a water surface elevation at least one foot above the landside toe elevation at least once a day. Frequently loaded levees are likely to be sensitive to seepage leading to breach with seismic-event induced transverse cracking or displacement.

The seismic and liquefaction evaluation for the LSJRFS area primarily focused on examining potential layers that could experience liquefaction and their associated impact to global slope stability of the levee section. In most of the cases/Reaches it was determined that liquefaction was primarily isolated to the deeper foundation layers and that it had minimal effect on the global stability of the levee and foundation. In six (6) cases within RD-17, RD-404, Delta Brookside, and the Deep Water Ship Channel, the liquefiable layers were shallow enough such that they could pose a significant effect on the stability of the levee.

Even though global instability resulting from liquefaction does not appear to be a primary concern when the liquefiable layers are located at greater depths, there could be other seismic performance concerns given the geologic nature of the area and the potential for differential settlement. The foundations for many of the segments, especially in the North Stockton areas underlain by unconsolidated organic-rich silts, clays, peat, and mud deposits, consist of numerous geomorphologic braided channels that run orthogonal to the levee axis. As a result, there are variable foundation conditions along the axis of these levees. The variability of the foundation coupled with the potential for transverse cracking due to liquefaction, differential settlement, and areas that are frequently loaded that are protecting dense populations, are a concern and should be carefully considered in the alternatives. The results of the Seismic and liquefaction analysis for the LSJRFS are included as Enclosure 4.

4. WITH PROJECT CONDITIONS DESCRIPTION

The LSJRFS is evaluating Federal interest in alternatives to reduce flood risk in the study area. The geotechnical analyses performed have identified several technical deficiencies associated with the flood risk management system protecting the study area. There are various alternatives under consideration to address these deficiencies and the geotechnical components of those alternatives are discussed in the following sections of this report. Most of the alternatives consist of various structural measures to remediate existing levees for seepage, slope stability, and/or erosion, and some alternatives include measures to improve conveyance.

4.1 TYPICAL LEVEE IMPROVEMENT MEASURES

Where levee height, geometry, erosion, access, vegetation, seepage, and/or slope stability deficiencies were identified (criteria not met), improvement measures were assigned to the affected reaches of levees. Improvement measures for geotechnical deficiencies consisting primarily of cutoff walls, seepage berms, stability berms, and slope flattening were included in development of conceptual alternative cross-sections. This section of the report discusses the various improvement measures considered at a conceptual level, and not as applied to a specific reach.

4.1.1 Cutoff Walls

Seepage cutoff walls are vertical walls of low hydraulic conductivity material constructed through the embankment and foundation to cut off potential through-seepage and underseepage. In order to be effective for underseepage mitigation, cutoff walls usually tie into an impervious sub-layer. Cutoff walls generally require no additional permanent levee footprint. The levee typically is degraded by one half the levee height to provide a sufficient working surface (minimum about 30 feet) and prevent hydraulic fracture of the levee. Following construction of the cutoff wall, the levee is then rebuilt either with the existing levee material with an impervious cap above the cutoff wall, or with imported impervious levee fill material. Cutoff walls are typically constructed of either a soil bentonite (SB), soil cement bentonite (SCB), or cement bentonite (CB) mixture depending on in-situ soil conditions and desired construction method.

The conventional slurry method for SB or SCB walls is an open trench method that uses an excavator with a long-stick boom to excavate the slurry trench. A bentonite-water slurry is used to keep the trench open and stable prior to backfilling with the permanent wall material. Soil is mixed with bentonite (SB) or with bentonite and cement (SCB) then pushed into the trench, displacing the bentonite-water slurry. Alternatively, the open trench method can be used for CB walls, whereby the trench is backfilled with the self-hardening slurry mixture. The self-hardening slurry backfill is used to keep the trench open and stable, allowing excavation of a new section without waiting for the entire trench to be excavated. The conventional method using a long stick boom excavator has a maximum depth of about 70 to 80 feet.

Deeper cutoff walls can be constructed using the Deep Soil Mixing (DSM) or Deep Mix Method (DMM), jet grouting, and soil cutter mixing. These deeper cutoff walls use specialized construction equipment to mix the soil with low permeability materials, typically bentonite and/or cement, in-situ and are capable of depths of more than 100 feet. DSM and DMM use

augers to mix low permeability materials into the subsurface soils, iteratively performed along a linear layout, to create overlapping columns of treated soil that form a wall within the subsurface soils. Jet grouting uses the injection of grout from vertical holes to create overlapping columns or panels that form a wall within the subsurface soils. Cutter soil mixing uses a cutter head equipped with cutter wheels that allow vertical penetration within the subsurface soils and mixing of bentonite and/or cement slurry that is injected during the penetration and withdrawal of the cutter head; iterative performance along a linear layout creates overlapping panels that form the cutoff wall.

4.1.2 Seepage Berms

Seepage berms are earth structures built along the levee landside toe that provide additional weight to prevent blanket layer heave, reduce exit gradients, and allow for safe exit of underseepage. Seepage berms can be pervious, semi-pervious, or impervious, and may require a significant amount of land. For some sites, due to adjacent property uses, there is not sufficient room along the landside toe for a seepage berm. The required dimensions of a seepage berm (width and thickness) depend on site specific conditions and may vary over the length of a levee. Seepage berm widths commonly range from a few tens of feet to a few hundred feet. Berm thickness typically ranges from a few feet to several feet. It was beyond the scope of the LSJRFS to perform site specific analyses to dimension seepage berms throughout the study area. Instead, typical berm dimensions were used, and levee height was used as a proxy for underseepage demand (indicating needed berm width). For the LSJRFS, the required seepage berm width was taken as ten times the levee height, with a maximum width of 300 feet. The thickness of the berm is 5 feet at the levee toe and 3 feet at the toe of the berm.

4.1.3 Slope flattening

Slope flattening is a mechanical method to repair a slope that may not have stable slopes by reducing the steepness of the slopes. Waterside and landside slopes can be graded using construction equipment to flatten slopes. In most cases, this process requires the removal of all vegetation and encroachments from the levee slope being flattened. Slopes are typically flattened to 3H:1V or flatter; for the LSJRFS, slope flattening was set at 3H:1V.

4.1.4 Stability Berms

Stability berms are earth structures built against the levee landside slope to stabilize unstable slopes, or in some cases to capture seepage through the levee. Stability berms may be constructed of a random fill material placed over blanket and chimney drainage features to capture seepage through the levee. A thin filter sand layer may be placed between the drainage layer and the levee embankment and native soils. Geotextile fabric may be placed between the free drainage layer and the levee fill. Typically, the height of the stability berm is on the order of two-thirds of the height of the levee. Drained stability berms have the benefit of also reducing susceptibility to through-seepage.

4.1.5 Floodwall/Retaining Wall

A floodwall is a structural wall that is constructed either in lieu of a levee or on top of a levee (to raise the elevation of the top) to separate the waterside from the protected side. Floodwalls are

an efficient, space-conserving method for containing unusually high water surface elevations. They are often used in highly developed areas where space is limited. They are primarily constructed from pre-fabricated materials, although they may be cast or constructed in place, and are constructed almost completely upright. Floodwalls consist of relatively short elements (in plan view), making the connections very important to their stability. Floodwalls on top of levees are typically located along a levee hinge point to allow vehicular access along the crown. The drawback is that floodwalls prohibit access to or from the levee slopes, and may inhibit visual inspection of the slope and toe areas from the crown if the wall is of sufficient height.

At the time this report was authored, floodwalls were not part of the proposed alternatives; however, they still remain a topic of consideration.

4.1.6 Embankment Fill/Levee Raise

To address deficiencies found in the required levee height, various methods of raising the existing levee crown elevation may be implemented. Two options are forms of embankment fill placement: a crown-only levee raise, and a full levee raise. A crown-only levee raise is feasible where the levee crown is currently wide enough to support the placement of additional embankment material while maintaining the minimum allowable crown width upon the completion of the raise. A full levee raise includes an embankment raise from the waterside crown hinge point upward at an appropriate waterside slope angle, establishing a new crown width to meet criteria, and placement of fill against the landside slope such that the levee is widened to the landside and the new landside slope extends up to meet the newly established crown.

4.1.7 Bank Protection

In areas that have no or minimal waterside berm, on bank rip-rap is placed on the waterside levee slope to protect against erosion. This entails filling the eroded portion of the bank and installing stone protection along the levee slope from the base of the erosion area to the top of the erosion area. Vegetation would be limited to grass. If there is a natural bank distinct from the levee that requires erosion protection, it would be treated with stone protection. Existing woody vegetation would be removed within the vegetation-free zone. Grass would be allowed in this area.

Additionally, a rip-rap waterside berm may be constructed from the base of the erosion to above the mean summer water level (MSWL) and then placing stone protection on the levee or bank slope above the MSWL. The stone berm may support riparian vegetation and provide a place to anchor in-stream woody material (IWM). This design provides near-bank, shallow-water habitat for fish.

4.1.8 Anticipated Borrow Source

Excavated and borrow material will be sourced from within a 25-mile radius and would be stockpiled at staging areas. To the extent feasible, borrow material would be obtained from a licensed, permitted facility that meets all Federal and State standards and requirements. In addition, many acres of farmland and vacant lands currently exist near the project; borrow could be obtained from these lands. In selecting borrow areas, lands closest to the construction sites

would be evaluated for availability and suitability first before evaluating lands further from the project.

No USACE investigation or laboratory testing has been performed in these areas to verify that the materials meet the requirements for borrow materials as stated in Section 4.3.2. Depending on the selected improvements, it is possible that existing levee material may be used as a source of borrow material. Typically, the existing levee is composed of poorly graded sands, silty sands, and sandy silts on the rivers and streams, while bypass levees were usually constructed of lean to fat clays. This material can be considered suitable for use in the construction of some stability berms, seepage berms, and for reconstructing the levee embankment where a cutoff wall is proposed; however, existing levee material is subject to the material requirements given in Section 4.3.2. Significant quantities of engineered fill of various specifications will be required to construct the proposed project. Refer to other Appendices for the estimated quantities needed for construction.

4.2 OTHER STRUCTURAL MEASURES

Other structural measures proposed for the LSJRFS area include closure structures, weirs, and proposed channel improvements.

4.2.1 Closure Structures/Gates

Some of the current project alternatives utilize closure structures at various locations within the LSJRFS area.

Fourteen Mile Slough would require an operable closure gate with the western-alignment levee configuration (refer to other appendices for description of the western alignment configuration). The closure structure would be operable to passing vessels and rising water surface elevations. With the western alignment configuration, the levees protecting Delta Lincoln Village on its western and southern sides, as well as the levee north of Delta Brookside, would remain both geotechnically and seismically vulnerable if the closure structure were not constructed and appropriately operated.

Excessive encroachments throughout the north and south banks of Smith Canal may necessitate a closure gate for controlling a high water event that may otherwise jeopardize existing levee performance. The gate for Smith Canal would be operable to passing vessels and rising water surface elevations.

The Mormon Slough Bypass would require a closure gate to convey an additional 2000 cfs of flow diverted from the Mormon Channel into the Bypass.

During this feasibility study, no geotechnical investigation or analyses were performed in these areas in support of evaluating or developing designs for closure structures. During the Pre-Construction Engineering and Design phase (PED) of this project, subsurface investigations would need to be performed in the areas of the proposed closure structures to determine foundation conditions for design, the need to mitigate any potential seepage, and further define constraints and requirements.

4.2.2 Channel Improvements/Weirs

Channel improvements are being considered as part of the project alternatives for Mormon Slough Bypass and Paradise Cut.

Currently, Mormon Slough Bypass receives no flow from Mormon Channel as it turns north-west into the Stockton Diverting Canal. The current flows in Mormon Slough Bypass are due to interior drainage with a maximum flow of approximately 1,000 cfs. The current project alternative would propose channel improvements to convey an additional 2,000 cfs of flow diverted from Mormon Channel (instead of that flow entering the Stockton Diverting Canal). Channel improvements would consist principally of channel widening and modification of potential obstructions (e.g., bridges, utilities). A gate would be constructed to divert flows greater than roughly the 5 or 10 year event that flow down the SDC to the Calaveras River.

Channel improvements to Paradise Cut would include dredging and widening to the area to increase flows and reduce stage downstream on the LSJR. Levees along the left bank of Paradise Cut would be set back further from the existing channel location. This process would also include improvements to widen the uncontrolled weir on the LSJR to allow for increased flows into Paradise Cut.

During this feasibility study, no geotechnical investigation or analysis was performed in these areas in support of evaluating or developing designs for weirs/diversion structures. During the Pre-Construction Engineering and Design phase (PED) of this project, subsurface investigations would need to be performed in the areas of the proposed structures to determine foundation conditions for design, the need to mitigate any potential seepage, and further define constraints and requirements.

4.3 LEVEE IMPROVEMENT MEASURES

Levee improvement measures constitute the vast majority of measures that comprise most alternatives for the LSJRFS. The following sections of this report describe the methodology, criteria, and resulting levee improvement templates developed to mitigate for levee performance issues within the LSJRFS area.

4.3.1 Methodology

The without-project conditions were initially characterized by roughly 40 miles of existing levees within the study area. As part of the Planning process of generating Management Measures and Alternatives, additional lengths of existing levees and also potential new levee alignments were added, expanding the project study area to roughly 90 miles. For all of the existing and proposed levee with-project conditions, the original 14 reaches were expanded to capture the added lengths of levees and then were further divided into 124 smaller reaches, the further division into smaller reaches was done to allow for flexibility in assigning mitigation measures and estimating project costs.

For each of the 124 reaches, the reach was assigned mitigation considering two primary factors: (1) the intent of the Management Measure for the reach, and (2) the geotechnical potential failure

modes that need to be mitigated for the reach. For the LSJRFS alternatives, there are four different Management Measure intents for levees:

- Raise existing levee
- Strengthen existing levee
- Raise and Strengthen Existing Levee
- Construct New Levee

For any particular reach of existing levee, different Management Measure intents maybe needed for different alternatives. The geotechnical potential failure modes are the modes discussed in Section 3.1 of this report, mainly: underseepage, through-seepage, slope instability, erosion, and seismicity/liquefaction. The type of mitigation assigned to the reach depended on which potential failure mode(s) had been identified as present at the reach.

Flexibility was designed into the assigned mitigation measures by providing two different template options to mitigate performance issues per reach, not including seismic. For example, the option for a cutoff wall vs. the option for a seepage berm would each mitigate underseepage; the flexibility to choose how a performance issue is mitigated allowed for selection of an option that would minimize costs and/or impacts. Seismic mitigation did not allow for two different options due to the project location and unique soil conditions; the area is constrained on both sides by homes, streets, pump stations and the slough itself and underlain by organic-rich silts, clays, peat, and mud deposits.

Eleven different template options were developed to address a variety of levee performance issues for this project. These templates are part of a Parametric Cost Estimation Tool (PCET) developed for the Urban Levee Evaluation Program (ULE) by URS Inc. The PDT leveraged the PCET's flexibility to incorporate the various USACE design criteria and implement a more efficient method of developing project costs and study execution while following the implementation of 3x3x3. The ground improvement mitigation template within the PCET is the only template with the ability to address seismic issues. The template is versatile and addresses seismic as well as a combination of other possible failure modes, such as through-seepage, underseepage, and slope stability that exist within the project area. Other options such as slope flattening/widening would not address the existing combination of issues (i.e. seismic and underseepage) and the densely populate area cannot provide needed real estate for extended seepage berms.

Discussion of design criteria used to develop the template options follows in Section 4.3.2. The eleven template options assigned as mitigation measures are described in detail in Section 4.3.3 and are included as Enclosure 5. The templates were created following USACE levee design criteria for the purpose of establishing project costs only, the templates are not intended for design.

With-project analyses were not completed on the templates shown in Section 4.3.3. Each of the templates was developed using standard levee criteria, constituents, and configurations. Similar projects with site conditions analogous to this area have used comparable mitigation measures yielding with-project analyses satisfying design requirements and criteria.

4.3.2 Criteria

The following paragraphs present USACE standard levee design and construction criteria as established in both national (HQ) and local (District and Division) policy documents and a discussion of how the PDT has made assumptions in applying those criteria to the LSJRFS area. As stated earlier, it is anticipated that significant quantities of material will be required for construction of the proposed project. Several different performance improvement measures, such as seepage berms, cutoff walls, embankment construction/reconstruction, and erosion protection are proposed. This section describes the proposed minimum material requirements and design criteria for the LSJRFS area.

TYPE I LEVEE FILL (SELECT LEVEE FILL)

The Sacramento District Geotechnical Engineering Branch SOP-03 established the requirements of engineered fill to be used for the construction of levee embankments. This is referred to as either Type I Levee Fill or Select Levee Fill and meets the following requirements:

- 100% passing the 2-inch sieve
- minimum 20% fines content (material passing the #200 sieve, i.e., silt and clay size particles)
- fines must have a liquid limit less than 45 and a plasticity index between 8 and 40
- no organic material or debris may be present

RANDOM FILL

It is acknowledge that not all improvement features will require Type I Levee Fill and that a less stringent material specification is required for some seepage berms, some stability berms, and in some cases reconstructed embankment slopes. The actual specification of this material will be based on the type of material available at project borrow sites, but in general would conform to the following requirements:

- 100% passing the 2-inch sieve
- minimum 12% fines content (material passing the #200 sieve, i.e., silt and clay size particles)
- no organic material or debris may be present

RIP-RAP

Since 1936, the Sacramento District has placed rock erosion protection on the banks and levees and associated tributaries. The Sacramento River Bank Protection Project (SRBPP) uses a standard rip-rap and filter gradation for repair sites which may be appropriate within the LSJRFS area. However, preliminary calculations of rip-rap requirements for a typical channel section with an average channel velocity of 7.0 fps and for 12.0 fps result in a D100 of 18.0 and 36.0 inches with a D15 of 7.1 and 14.3 inches, respectively. If erosion protection is to be part of the LSJRFS area mitigation alternatives, the actual gradations will need to be determined during design. Rip-rap erosion protection would adhere to the following: the rip-rap should be angular in shape, sound, durable, and hard; the rip-rap should also be free from laminations, weak

cleavages, undesirable weather, blasting or handling induced fractures; the rip-rap stone should be of such character that it will not disintegrate from the action of air, water, or conditions of handling and placing and should be free from earth, clay, refuse, or adherent coatings.

GEOMETRY

The typical USACE levee section established by the USACE guidance document EM 1110-2-1913 is nationally considered to have a minimum 10-foot crest width with waterside and landside slopes no steeper than 2H:1V. The Sacramento District guidance document, SOP-03 (Standard Operating Procedure), suggests a minimum crest width of 20 feet for mainline and major tributary levees and 12 feet for minor tributary levees; the levee section should have 3H:1V waterside and landside slopes, except existing levees with good past performance where existing 2H:1V slopes are acceptable. The use of Sacramento District standard sections is generally limited to levees of moderate height, less than 25 feet, in reaches where there are no serious underseepage problems, weak foundation soils, or constructed of unsuitable materials. The standard levee section may have more than the minimum allowable FOS relative to slope stability and seepage, its slopes being established primarily on the basis of construction and maintenance considerations.

For the LSJRFS area, the minimum crest width for mainline or major tributary levees is 20 feet; the minimum crest width for minor tributaries levees is 12 feet. Existing levees with landside and waterside slopes as steep as 2H:1V may be used in rehabilitation projects if slope performance has been good and if the slope stability analyses determined the factors of safety to be adequate. Newly constructed levees should have 3H:1V waterside and landside slopes.

VEGETATION AND ACCESS

Vegetation, encroachment, and access policy includes EM 1110-2-1913, SOP-03, and ETL 1110-2-583 *Guidelines for Landscaping and Vegetation Management at Levees, Floodwalls, Embankments Dams, and Appurtenant Structures*. The vegetation-free zone, as established by ETL 1110-2-583, is a three-dimensional corridor surrounding all levees, floodwalls, and critical appurtenant structures in a flood damage reduction system. The vegetation-free zone applies to all vegetation except grass. The minimum height of the corridor is 8 feet, measured vertically from any point on the ground. The minimum width of the corridor is the width of the flood-control structure (Levee toes or floodwall stem), plus 15 feet on each side, measured from the outer edge of the outermost critical structure. Figure 4-1 taken from Appendix A of ETL 1110-2-583 shows a two dimensional representation of the vegetation-free zone of a basic levee cross-section.

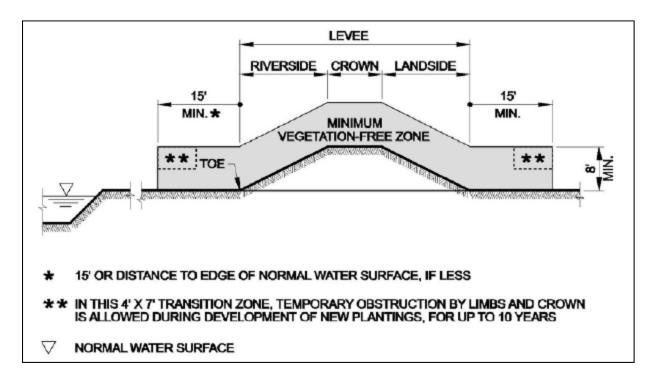


Figure 4-1: Vegetation-Free Zone of Basic Levee

The primary purpose of the vegetation-free zone is to prevent any damages of the levee embankment due to vegetation (including seepage along the woody vegetation root system, additional scouring of the waterside slope due to trees uprooting, and attraction of rodents) and to provide a reliable corridor of access to and along the flood-control structure for flood fighting, inspection, and maintenance of the flood control structures. The access corridor must be an all-weather corridor free of obstructions to assure adequate access by personnel and equipment for surveillance, inspection, maintenance, monitoring, and flood-fighting. In the case of flood-fighting, this access corridor must also provide the unobstructed space needed for the construction of temporary flood-control structures. Access is typically by four-wheel-drive vehicles, but for some purposes, such as maintenance and flood-fighting, access is required for larger equipment, such as tractors, bulldozers, dump trucks, and helicopters. Accessibility is essential to the reliability of flood damage reduction systems. The Sacramento District guidance document, SOP-3, suggest easements consist of a minimum 20 foot landside clear access easement and a minimum 15 foot waterside easement.

For new levees constructed in the LSJRFS area, a minimum landside toe clear access easement of 20 feet is required; for existing levees within the LSJRFS area, a minimum landside toe clear access easement of 10 feet is required. For both new and existing levees in the LSJRFS a minimum waterside toe vegetation-free zone of 15 feet is required.

For a levee section to be considered compliant with USACE vegetation policy it must either have been cleared of vegetation within the vegetation-free zone or eligible for a variance from USACE policy on vegetation in ETL 1110-2-583. The variance must be necessary, and the only feasible means to preserve, protect, and enhance natural resources, and/or protect the rights of

Native Americans, pursuant to treaty, statute, or executive order. The variance must assure that safety, structural integrity, and functionality are retained, and accessibility for maintenance, inspection, monitoring, and flood-fighting are retained. The variance may require structural measures to mitigate vegetation, such as overbuilt sections, to improve levee system reliability, redundancy, or resiliency with respect to the detrimental impacts of the vegetation.

SEEPAGE AND STABILITY

Seepage and slope stability criteria for geotechnical analysis were established based on ETL 1110-2-569 Design Guidance for Levee Underseepage, EM 1110-2-1913 Design and Construction of Levees, and the Sacramento District's SOP-03. Steady state seepage analysis for a design water surface elevation considered a maximum allowable vertical exit gradient at the toe of the levee to be 0.5. In general, this provides a FOS against uplift failure of about 1.6, considering an impervious blanket saturated unit weight of 112 pcf. Steady state seepage analysis for a top-of-levee water elevation considered a maximum allowable vertical exit gradient at the toe of the levee to be 0.8. In general, this provides a FOS against uplift failure of about 1.0, considering the impervious blanket saturated unit weight of 112 pcf. The minimum required FOS for the design water surface elevation for the landside steady state slope stability analysis is 1.4. The minimum required FOS for the top-of-levee water surface elevation for the landside steady state slope stability analysis is 1.2. For landside seepage berms, a maximum allowable vertical exit gradient at the toe of the berm is considered to be 0.8. The analysis cases of during construction, post construction, rapid drawdown, and waterside partial pool were considered to be design level analyses and were not performed for this feasibility study.

As discussed in Section 4.3.1, geotechnical seepage and stability analyses were not performed in this study for the with-project template configurations. The template configurations were developed using standard levee criteria, constituents, and configurations. Configurations similar to the templates have been used in many previous projects and been shown to meet the seepage and stability criteria listed here. Some refinements to the configurations may be needed and should be expected; such refinements are design-level analysis and are beyond the scope of this feasibility study.

SEISMICITY AND LIQUEFACTION

As stated in Section 3.7.2, the LSJRFS area is unlike most levee system locations in that the study area contains both infrequently loaded levees (Central and South Stockton) and frequently loaded levees (North Stockton). The presence of frequently loaded levees in the study area creates special concern with respect to seismic events. In particular, the presence of frequently loaded levees means that it is not unlikely that a seismic event will occur concurrently with a high-water event. For most other study areas, it is very unlikely to have a concurrent seismic event and a high-water event. For such areas, a seismic event may damage levees, but since there is no water high on the levees when the damage occurs, flooding due to breach of the levees is very unlikely. For areas like North Stockton, the levees are loaded daily due to the tidal cycle; therefore, it is feasible that a seismic event and a high-water event could occur concurrently. During such an event, if the seismic event damages the levees, the damage may indeed cause flooding due to breaching of the levees.

For the LSJRFS levees, the most likely damage inducing mechanism during a seismic event is

liquefaction. The consequences of triggering liquefaction may include flow slide or post-earthquake instability and lateral spreading. Where static driving shear stress is greater than the resisting strengths after liquefaction (residual strength), a global or structural failure can occur leading to loss of freeboard, cracking, and increased vulnerability to piping. Lateral deformation can also develop as a consequence of instability due to partial loss of shear strength or accumulation of shear strains throughout the soil profile. Lateral spreading towards any open channel or face can occur in mildly sloping ground and extend to very large distances away from the open face. Vertical displacement can develop as a consequence of reconsolidation of the liquefied soil. Areas of concern during and after a seismic event would include those where transverse cracking might develop between liquefiable and non-liquefiable reaches and where these zones may abut infrastructure.

As stated in Section 3.7.1, seismic loading parameters are developed using the USGS 2008 PSHA Interactive Deaggregation web program, and analyses to determine liquefaction potential are based on a procedure from the summary report of the 1996 National Center for Earthquake Engineering Research (NCEER) and 1998 NCEER/National Science Foundation (NSF) Workshops on Evaluation of Liquefaction Resistance of Soils; published as part of the Journal of Geotechnical and Geoenvironmental Engineer, dated October 2001 (Youd, Idriss, Andrus, & Arango, October 2001).

For the LSJRFS study, global or structural stability was evaluated where liquefiable layers with factors of safety less than 1.0 were found. Lateral spreading and post-liquefaction reconsolidation settlement were considered only when structural stability had a FOS greater than 1.0 but not greater than 1.2. Where liquefiable layers were found to have a FOS less than 1.0, static limit equilibrium stability analysis using UTEXAS4 based on Spencer's method was performed; if an adjacent zone had a FOS less than 1.4, it was included with the zone containing liquefiable layers. Automatic circular shear surface search and non-circular or wedge shear surface search were performed for both the landside and waterside in UTEXAS4. Postearthquake residual shear strength was used for the liquefiable layers. The residual strength was estimated per Seed and Harder, 1990.

A more detailed description of the design criteria used for the LSJRFS area is displayed in the graphics in Section 4.3.3 and included as Enclosure 5.

4.3.3 Mitigation Measure Templates

The eleven (11) templates described below were developed to address a variety of levee performance issues while following current USACE levee design criteria as described in the preceding sections of this report. For the LSJRFS, the purpose of the assigned template was to develop quantities for establishing project costs. The templates are not intended for design or construction.

Template Option 1, Landside Slope Reconstruction, has a reconstructed landside slope and includes an internal drainage layer to mitigate for through-seepage of the levee embankment and/or seepage-related landside slope instability. This template has the flexibility to accommodate varying levee heights and crest widths. The variables shown in Figure 4-2 were assigned values when submitted as a mitigation measure based on location (e.g., geotechnical conditions within the reach, geometry of existing levees within and adjacent to the reach, etc.) and USACE levee design criteria. This template would be assigned in areas where the landside of the embankment was identified as having potential deficiencies of landside slope instability and/or through-seepage, but without an underseepage deficiency.

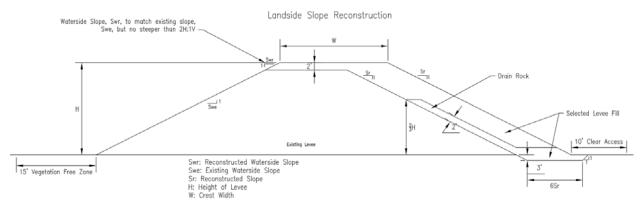


Figure 4-2: Template Option 1 – Landside Slope Reconstruction

Template Option 2, Centerline Cutoff Wall, contains a cutoff wall (usually SB or SCB) to mitigate for through-seepage and underseepage. This template provides secondary benefits by reducing pore pressures that could lead to internal erosion, and improved landside slope stability. This template has the flexibility to accommodate varying levee heights, and depth of cutoff wall. Traditional methods of cutoff wall excavation involve a long-arm excavator with maximum depths of excavation between 75 to 80 feet below ground surface (BGS) of the working platform; depths beyond 75 to 80 feet BGS would require a DSM method with increased associated costs. The variables shown in Figure 4-3 were assigned values when submitted as a mitigation measure based on location and USACE levee design criteria. This template would be assigned in areas that were identified as having an underseepage and/or through-seepage deficiency. If crest width (W) does not meet USACE levee design criteria, Template Option 3, Cutoff Wall with Landside Slope Reconstruction, would supersede this template option.

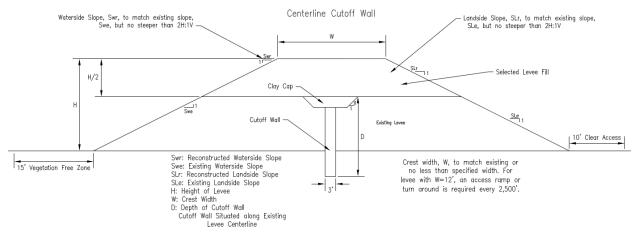


Figure 4-3: Template Option 2 – Centerline Cutoff Wall

Template Option 3, Cutoff Wall with Landside Slope Reconstruction, has a reconstructed landside slope and contains a cutoff wall (usually SB or SCB) to mitigate for through-seepage and underseepage. This template provides secondary benefits by reducing pore pressures that could lead to internal erosion, and improved landside slope stability. The presence of the cutoff wall negates the need for the internal drainage layer at the reconstructed landside slope. The template includes a half-levee degrade/reconstruction, as described in Section 4.1.1. This template has the flexibility to accommodate varying levee heights, crest widths, and depth of cutoff wall. Traditional methods of cutoff wall excavation involve a long-arm excavator with maximum depths of excavation between 75 to 80 feet below ground surface (BGS) of the working platform; depths beyond 75 to 80 feet BGS would require a DSM method with increased associated costs. The variables shown in Figure 4-4 were assigned values when submitted as a mitigation measure based on location and USACE levee design criteria. This template would be assigned in areas that were identified as having an underseepage and/or through-seepage deficiency along with a levee crest that is narrow (i.e., that needs to be widened).

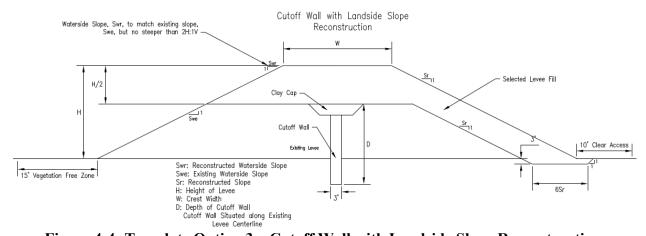


Figure 4-4: Template Option 3 – Cutoff Wall with Landside Slope Reconstruction

Template Option 4, Levee Raise with Cutoff Wall, is similar to Template Option 3 (Cutoff Wall with Landside Slope Reconstruction) but also includes components to raise the height of the levee to address height deficiency. The variables shown in Figure 4-5 were assigned values when submitted as a mitigation measure based on location and USACE levee design criteria. This template would only be assigned in an area with a height deficiency where there was also an underseepage and/or through-seepage deficiency. Template Option 3 would supersede this option if no height deficiency were present.

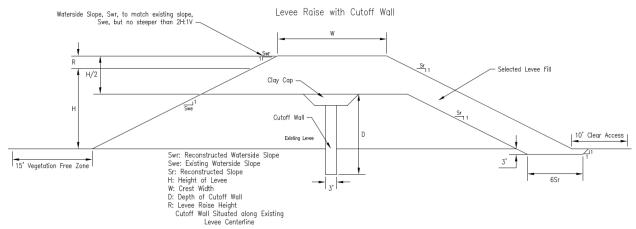


Figure 4-5: Template Option 4 – Levee Raise with Cutoff Wall

Template Option 5, Seepage Berm, includes a landside seepage berm to mitigate for underseepage. This template would be for existing levees with an underseepage deficiency but not through-seepage or landside slope instability. Even though this template has the flexibility to accommodate varying levee heights and crest widths, the width of the seepage berm, W_b, shown in Figure 4-6 follows USACE levee design criteria and adjusts to varying levee heights per site conditions. The seepage berm width, W_b, was set at 10H (where H is the levee height) for cost estimating purposes. Actual seepage berm widths depend largely on site specific geotechnical conditions; calculation of actual widths that would be needed was beyond the scope of this study.

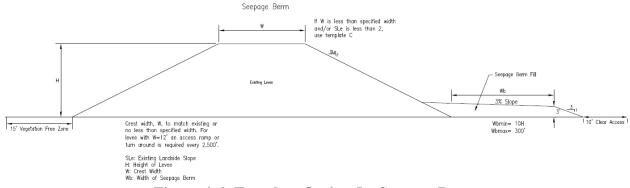


Figure 4-6: Template Option 5 – Seepage Berm

Template Option 6, Combination Berm, has a reconstructed landside slope and includes a landside seepage berm to mitigate for underseepage and also through-seepage and/or landside slope instability and/or crest widening. This template was included as an alternative option to the Cutoff Wall with Landside Slope Reconstruction option, Template Option 3. This template has the flexibility to accommodate varying levee heights, crest widths, and seepage berm widths. The variables shown in Figure 4-7 were assigned values when submitted as a mitigation measure based on location and USACE levee design criteria. The seepage berm width, W_b, was set at 10H (where H is the levee height) for cost estimating purposes. Actual seepage berm widths depend largely on site specific geotechnical conditions; calculation of actual widths that would be needed was beyond the scope of this study. This template would be assigned in areas that were identified as having an underseepage deficiency along with the need for levee crest widening.

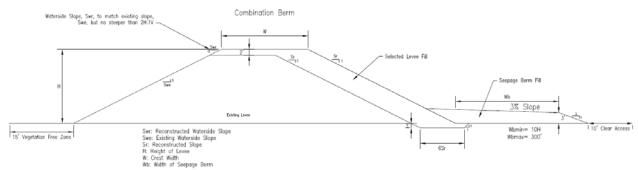


Figure 4-7: Template Option 6 – Combination Berm

Template Option 7, Levee Raise with Combination Berm, is similar to Template Option 6 (Combination Berm) but also includes components to raise the height of the levee to address height deficiency. This template was included as an alternative option to the Levee Raise with Cutoff Wall option, Template Option 4. The variables shown in Figure 4-8 were assigned values when submitted as a mitigation measure based on location and USACE levee design criteria. The seepage berm width, Wb, was set at 10H (where H is the levee height) for cost estimating purposes. Actual seepage berm widths depend largely on site specific geotechnical conditions; calculation of actual widths that would be needed was beyond the scope of this study. This template would only be assigned in areas with a height deficiency where there was also an underseepage deficiency. Template Option 6 would supersede this option if no height deficiency were present.

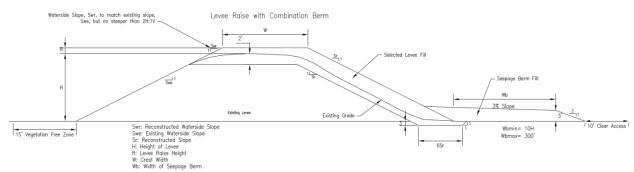


Figure 4-8: Template Option 7 – Levee Raise with Combination Berm

Template Option 8, New Levee, would be for areas where a new levee is proposed and no additional measures are needed to mitigate for underseepage. This template has the flexibility to accommodate varying levee heights and crest widths. The variables shown in Figure 4-9 were assigned values when submitted as a mitigation measure based on location and USACE levee design criteria.

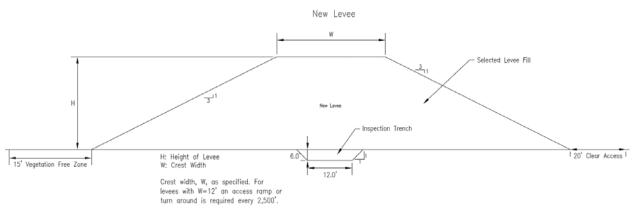


Figure 4-9: Template Option 8 – New Levee

Template Option 9, New Levee with Cutoff Wall, is a template for a new levee (i.e., at a location where no levee currently exists) but that also includes a cutoff wall to mitigate for underseepage. This template was included as an alternative option to the New Levee with Seepage Berm option, Template Option 10. This template has the flexibility to accommodate varying levee heights, crest widths, and depth of cutoff wall. The variables shown in Figure 4-10 were assigned values when submitted as a mitigation measure based on location and USACE levee design criteria.

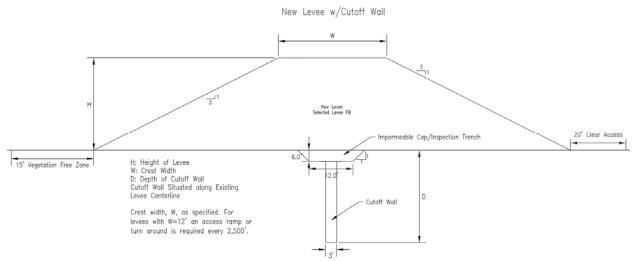


Figure 4-10: Template Option 9 – New Levee with Cutoff Wall

Template Option 10, New Levee with Seepage Berm, is a template for a new levee (i.e., at a location where no levee currently exists), but also includes a landside seepage berm to mitigate for underseepage. This template would be for new levee construction in areas with the potential for underseepage, where the underseepage potential would not be adequately mitigated by the standard levee width. This template has the flexibility to accommodate varying levee heights, crest widths, and seepage berm widths. The variables shown in Figure 4-11 were assigned values when submitted as a mitigation measure based on location and USACE levee design criteria. The seepage berm width, W_b, was set at 10H (where H is the levee height) for cost estimating purposes. Actual seepage berm widths depend largely on site specific geotechnical conditions; calculation of actual widths that would be needed was beyond the scope of this study.

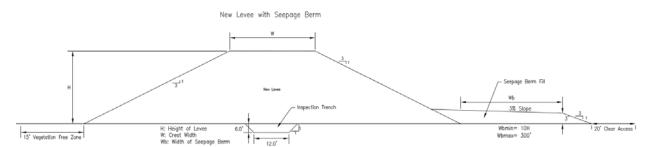


Figure 4-11: Template Option 10 – New Levee with Seepage Berm

Template Option 11, Seismic DSM (Levee Degrade) Seismic Remediation, is an option to remediate areas of special seismic concern, i.e., areas of levee within North Stockton that are frequently loaded (due to slough water surface elevations that are tidally influenced) and that are also subject to potentially significant deformations due to a seismic event. This template incorporates:

- a levee degrade to half its height
- a series of overlapping deep-soil-mixing columns installed at specified longitudinal and transverse spacing that extend just beyond the extents of the levee prism
- reconstructed levee using select levee fill

This template has the flexibility to accommodate varying levee heights, crest widths, and depth of ground improvement. This template provides secondary benefits by reducing pore pressures that could lead to internal erosion, and improved landside slope stability. The variables shown in Figure 4-12 were assigned values when submitted as a mitigation measure based on preliminary seismic analyses, engineering judgment, and USACE levee design criteria. This template would be assigned only in an area of special seismic concern, i.e., areas where the levees are frequently loaded (tidally) and also subject to potentially significant deformations due to a seismic event.

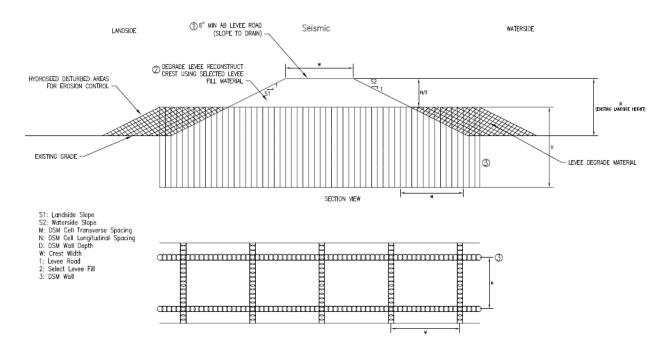


Figure 4-12: Template Option 11 – Seismic DSM (Degrade Levee) Seismic Remediation

4.3.4 Selection of Template Options for Mitigation Measures

As discussed in Section 4.3.1, template options were assigned to each reach considering two primary factors: (1) the intent of the Management Measure for the reach (e.g., strengthen existing levee, raise existing levee); and (2) the geotechnical potential failure modes that need to be mitigated for the reach. Also, to the extent possible, for each reach, two different options were assigned (typically a cutoff wall option and a seepage berm option) to allow for some optimization with respect to costs and impacts. Through this process, Management Measures and their mitigation options were assigned to more than 120 reaches.

Working through the Planning process to the Final Array of Alternatives has yielded six different alternatives. The approximate distribution of the selected template options within the Final Array of Alternatives ranges as follows:

- Template options for cutoff walls and seepage berms were chosen as mitigation between 70-80 percent and 8-10 percent of the time, respectively, to address through-seepage and underseepage.
- The template option for seismic was chosen to represent a smaller percentage of the reaches, roughly 2-4 percent of the time, to address areas with special seismic concerns.
- This template option for new levees was chosen to represent a smaller percentage of the reaches, roughly 6-8 percent of the time, to address areas where a levee did not currently exist.

4.4 WITH PROJECT PERFORMANCE CURVES

Consistent with the evolving Planning process and the implementation of Planning Modernization initiatives, with-project fragility curves were not developed for the LSJRFS. In an effort to develop with-project costs and benefits, the PDT decided that a with-project condition would be sufficiently approximated by a zero fragility assumption for water surface elevations prior-to-overtopping. This assumption would therefore flat-line the through-seepage, underseepage, slope stability, and judgment curves for water surface elevations below the levee crest elevation. Experience of performing analyses on with-project conditions in similar project areas and design configurations for seepage and stability mitigation has shown it to be reasonable to assume the mitigation measures assigned would successfully mitigate poor performing levees to produce such results. However, the judgment curve component of the fragility curve would not completely flatten with implementation of the template options, due to remaining potential for vegetation, encroachments, animal burrows, and/or erosion associated with many of the templates (levee design is not based on fragility, but rather USACE levee design criteria). Therefore, the assumption of the zero-fragility (i.e., flat-line) fragility curve may potentially overestimate with-project benefits and underestimate residual risk. This was recognized by the PDT and included as a Risk Register item. For further explanation of developing with-project fragility for the LSJRFS, refer to the Economics Summary in Appendix A.

5. CONCLUSIONS

This report presented the results of geotechnical analyses and feasibility level geotechnical recommendations to address technical deficiencies in the flood risk management system protecting the LSJRFS area. The recommended measures consist of a combination of structural measures to mitigate deficiencies in levee height, geometry, erosion, access, vegetation, seepage, and slope stability.

The results of the without project seepage and slope stability analyses for South Stockton indicated that the levees represented by index points LR-1, LR-2, and LR-3 in RD-17 did not meet minimum levee design criteria at various flood frequencies. Historical documentation indicates performance-related issues with seepage, slope instability, and erosion. The measures identified in this study to mitigate these performance issues, to create with-project conditions, typically included a cutoff wall and/or seepage berm.

The results of the without project seepage and slope stability analyses for Central Stockton indicated that the levees represented by index points FR-1 in RD-404, and SL-1 and SL-2 along Stockton Diverting Canal did not meet minimum levee design criteria at various flood frequencies. Historical documentation indicates performance-related issues with seepage and erosion along RD-404, erosion along the left bank of the Calaveras River with isolated areas of seepage, and erosion along the left bank of Stockton Diverting Canal. The measures identified in this study to mitigate these performance issues, to create with-project conditions, typically included a cutoff wall and/or seepage berm.

The results of the without project seepage and slope stability analyses for North Stockton indicated that the levees represented by index points CR-1/CR-2 and D-4 along the right bank of the Calaveras River, and index point D-BS along Delta Brookside, did not meet minimum levee design criteria at various flood frequencies. Historical documentation indicates performance-related issues with settlement, seepage, erosion, and animal burrowing activity along the Delta Brookside study area, and seepage and erosion along Delta Lincoln Village study area. The measures identified in this study to mitigate these performance issues, to create with-project conditions, typically included a cutoff wall and/or seepage berm.

The results of seismic and liquefaction evaluation indicated isolated areas throughout the study area that are capable of inducing significant deformation of the levees. Additionally, liquefaction analyses showed two areas within RD-17, and one area within RD-404, that contained zones of material that are susceptible to liquefaction when subjected to a 200-year seismic event. Most of these areas are unlikely to be capable of inducing flow failures and significant deformation of the levees. However, the Delta Brookside levees and the Deep Water Ship Channel levees, south of Delta Brookside, may also be susceptible to significant deformation due to a seismic event. Importantly, these levees are frequently loaded levees underlain by unconsolidated organic-rich silts, clays, peat, and mud deposits. As a result, seismically induced deformation may occur concurrently with a high water condition, which poses a greater risk than is typically the case for levees subject to possible seismic damage. Consequently, a special seismic mitigation measure was identified in this study to mitigate this performance issue to create a with-project condition in these areas. The seismic mitigation measure assumes full mitigation of all areas identified as a seismic concern. As this project

proceeds into its design phase of work, there will be a potential to reduce the extents of the seismic mitigation with further analyses, to include a risk assessment to evaluate the likelihood of breach and flooding due to liquefaction or seismic deformation. Additional information will be gathered for a FLAC analysis to determine better estimates of deformation.

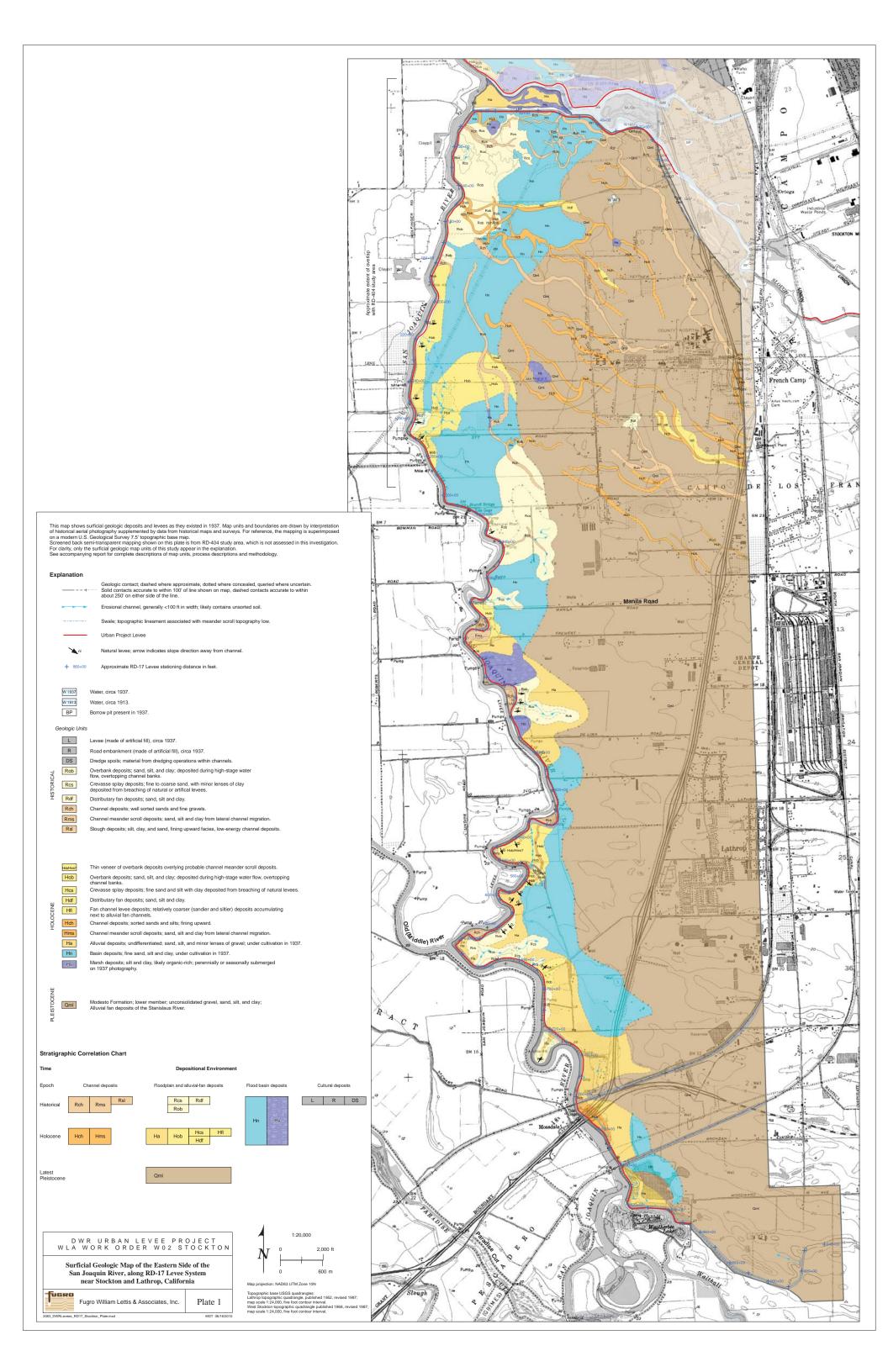
UPDATE 2017: Subsequent to completion of this study, the DWR performed additional site characterization and analysis of this area. Based on this new information it appears seismic ground improvements will not be needed under the alignment west of Lincoln Village (Segments FM_30_L, FM_40_L, and FM_60_L). Seepage mitigation in the form of a 50-feet deep cutoff wall will be required for these segments. Ground conditions for this portion of the project are not well characterized so seismic ground improvement is being added to the Cost and Schedule Risk Assessment (CSRA) risk register.

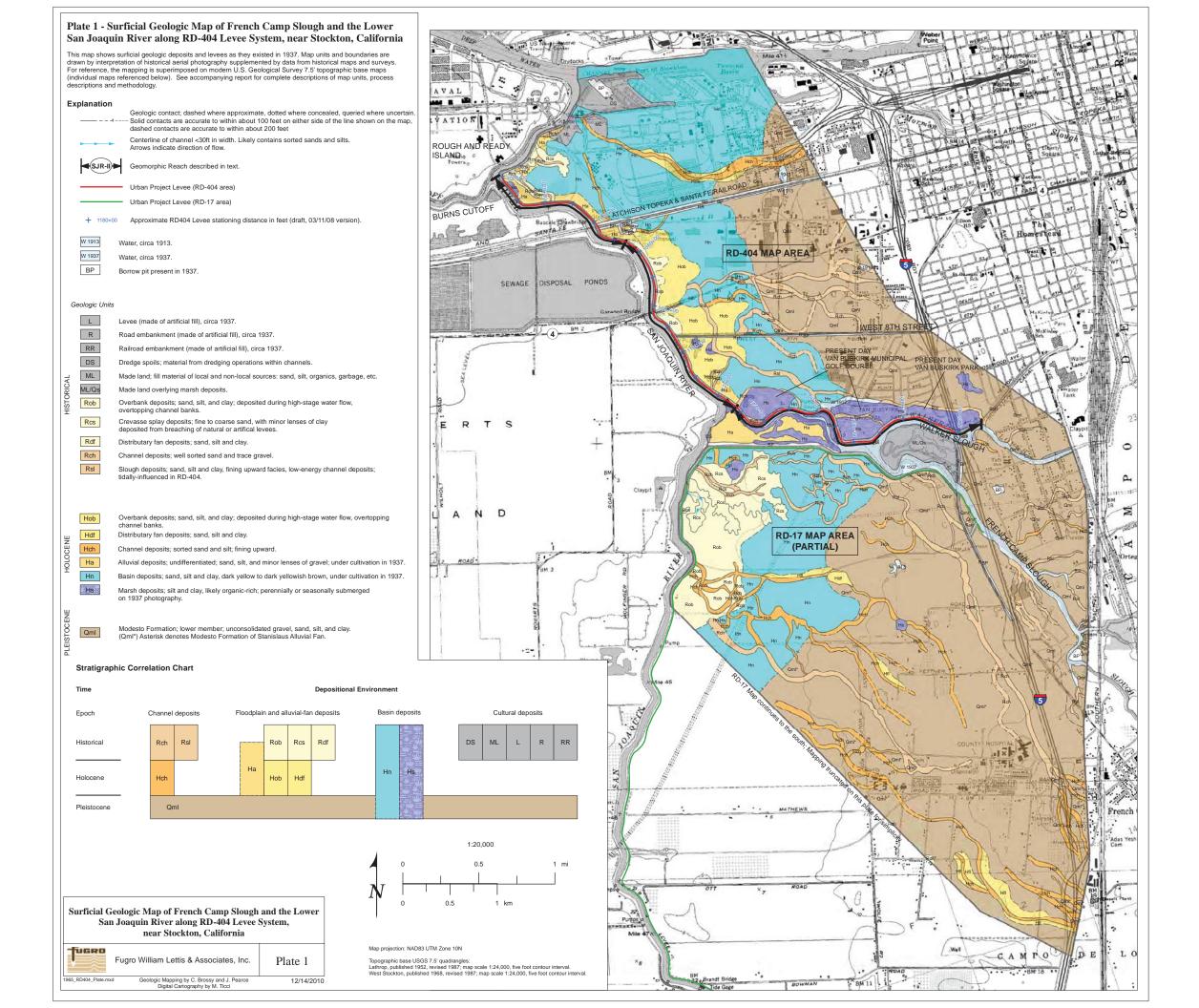
6. REFERENCES

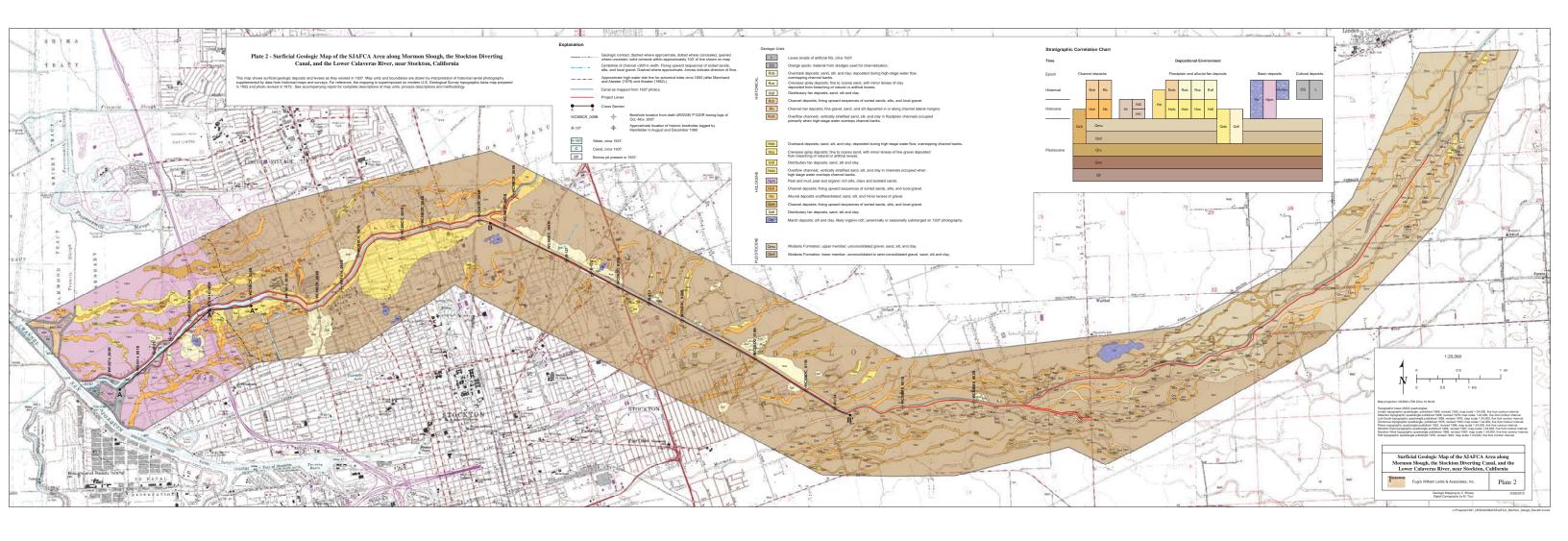
- Atwater, Brian, F. "Attempts to Correlate Late Quaternary Climatic Records Between San Francisco Bay, the Sacramento-San Joaquin Delta, and the Mokelumne River, California." University of Delaware. May 1980. Print.
- Atwater, Brian, F. "Geologic maps of the Sacramento-San Joaquin Delta." California: U. S. Geological Survey Miscellaneous Field Studies MF-1401, scale 1:24,000, 20-21 sheets. 1981. Print.
- Bowles, Joseph E. "Foundation Analysis and Design." McGraw Hill, 5th Ed. 1996. Print.
- Cosby, S.W., and Carpenter, E.J. "Soil Survey of the Lodi Area." California, U.S. Dept. of Agriculture: Bureau of Chemistry and Soils, Series 1932, no. 14, p.52. 1937. Print.
- Duncan, James M. "Manual for Geotechnical Engineering Reliability Calculations." Virginia Polytechnic. 1999. Print.
- State of California, Regional Flood Management Planning, Department of Water Resources. "Mid-San Joaquin River Region Regional Flood Atlas-Draft." http://www.water.ca.gov/cvfmp/regionalplan/docs/05-Mid-SJ-River-Atlas-May2013.pdf. Web.
- Fugro William Lettis & Associates, Inc. "Surficial Geologic Map and Geomorphic Assessment, San Joaquin Area Flood Control Agency (SJAFCA) area, San Joaquin County, California." Prepared for URS Corporation. March 2012. Print.
- Fugro William Lettis & Associates, Inc. "Surficial Geologic Map and Geomorphic Assessment, California Department of Water Resources Urban Levees, Reclamation District 404 (RD-404) Study Area, San Joaquin County, California." Prepared for URS Corporation. August 2010. Print.
- Fugro William Lettis & Associates, Inc. "Surficial Geologic Map and Geomorphic Assessment, California Department of Water Resources Urban Levees, Reclamation District 17 (RD-17) Study Area, San near Stockton, California." Prepared for URS Corporation. June 2010. Print.
- Harr, Milton E. "Reliability-Based Design in Civil Engineering." Dover Publishing. 1997. Print.
- Hosford Scheirer, A., and Magoon, L.B. "Age, Distribution, and Stratigraphy Relationship of Rock Units in the San Joaquin Basin Province, California, in Hosford Scheirer, A., ed., Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California." U.S. Geological Survey Professional Paper 1713, chapter 5, p, 1-107, 2008a. Print.

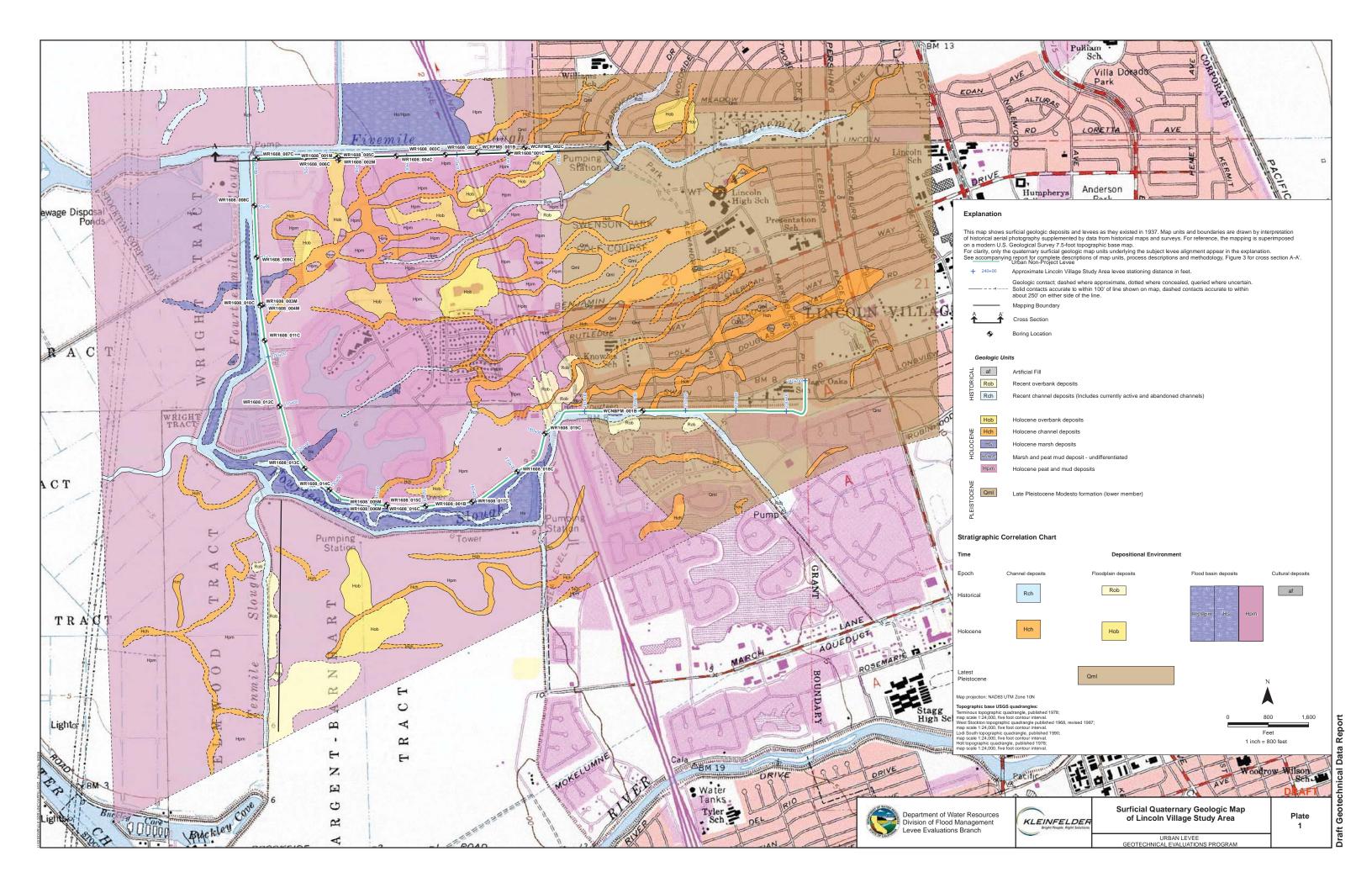
- Kleinfelder. "Draft Geotechnical Data Report, Lincoln Village Study Area." Urban Levee Geotechnical Evaluations Program Contract 4600008102, Lower San Joaquin River. Prepared for Department of Water Resources, Division of Flood Management. June 2012. Print.
- Kleinfelder. "Geotechnical Assessment Report, South NULE Study Area." Volume 2 of 4, Levee Segment Assessment Summaries South NULE Area 1-San Joaquin County – Non-Urban Levee Evaluations Project Contract 4600008102, Task Order K104. Prepared for Department of Water Resources, Division of Flood Management. April 2011. Print.
- Kleinfelder. "Geotechnical Assessment Report, South NULE Study Area." Volume 1 of 4 Non-Urban Levee Evaluations Project Contract 4600008102, Task Order K104. Prepared for Department of Water Resources, Division of Flood Management. May 2011. Print.
- Kleinfelder. "Draft Geotechnical Data Report, Brookside Study Area." Urban Levee Geotechnical Evaluations Program Contract 4600008102, Lower San Joaquin River. Prepared for Department of Water Resources, Division of Flood Management. August 2012. Print.
- Kleinfelder. "Geotechnical Evaluation Report, Volume 1, Existing Conditions, Brookside Study Area." Urban Levee Evaluations Project Contract 4600008102. Prepared for Department of Water Resources, Division of Flood Management. Jan 2015. Print.
- Kleinfelder. "Geotechnical Evaluation Report, Volume 2, Remedial Alternatives, Brookside Study Area." Urban Levee Evaluations Project Contract 4600008102. Prepared for Department of Water Resources, Division of Flood Management. Feb 2015. Print.
- Kleinfelder. "Geotechnical Evaluation Report, Volume 1, Existing Conditions, Lincoln Village Study Area." Urban Levee Evaluations Project Contract 4600008102. Prepared for Department of Water Resources, Division of Flood Management. Jan 2015. Print.
- Kleinfelder. "Geotechnical Evaluation Report, Volume 2, Remedial Alternatives, Lincoln Village Study Area." Urban Levee Evaluations Project Contract 4600008102. Prepared for Department of Water Resources, Division of Flood Management. Feb 2015. Print.
- Kleinfelder. "Technical Memorandum, Surficial Quaternary Geologic Map and Geomorphic Assessment, Brookside Study Area, San Joaquin County, California." Non-Project Urban Levee Geotechnical Evaluations (ULE) Project Contract 4600008102, Take Order K08. Prepared for Department of Water Resources, Division of Flood Management. June 2012. Print.
- Kleinfelder. "Technical Memorandum, Surficial Quaternary Geologic Map and Geomorphic Assessment, Lincoln Village Study Area, San Joaquin County, California." Non-Project Urban Levee Geotechnical Evaluations (ULE) Project Contract 4600008102, Take Order K08. Prepared for Department of Water Resources, Division of Flood Management. June 2012. Print.

- Marchand, D.E., and Atwater, B.F. "Late Cenozoic Stratigraphic Units, Northeastern San Joaquin Valley, California." U.S. Geological Survey Bulletin, v. 1470. 1981. Print.
- Marchand, D.E., and Atwater, B.F. "Preliminary Geologic Map Showing Quaternary Deposits of the Lodi Quadrangle, California." U.S. Geological Survey Open File Report OFR 79-993, scale 1:62,500. 1979. Print.
- Mualchin, L. "A Technical Report to Accompany the CALTRANS California Seismic Hazard Map. Prepared for CALTRANS." Office of Earthquake Engineering, 70 pp. 1996. Print.
- Seed, H.B. and Harder, L.F. "SPT-Based Analysis of Cycle Pore Pressure Generation and Undrained Residual Strength." Bi-Tech Publishing Ltd., Vol. 2. 1990. Print.
- Unruh, J., and Krug, K. "Assessment and documentation of transpressional structures, northeastern Diablo Range, for the Quaternary fault map database: collaborative research with William Lettis & Associates, Inc. and the U.S. Geological Survey." June 2007. Print.
- URS Corporation. "Phase 1 Geotechnical Evaluation Report (P1GER), San Joaquin Area Flood Control Agency Study Area Calaveras River Drainage." Urban Levee Geotechnical Evaluations Program Contract 4600007418, Prepared for Department of Water Resources, Division of Flood Management. July 2011. Print.
- URS Corporation. "Phase 1 Geotechnical Data Report (P1GDR), San Joaquin Area Flood Control Agency (SJAFCA) Study Area Calaveras River Drainage." Urban Levee Geotechnical Evaluations Program Contract 4600007417, Task Order 36, Prepared for Department of Water Resources, Division of Flood Management. January 2010. Print.
- URS Corporation. "Draft Supplemental Geotechnical Data Report (SGDR), San Joaquin Area Flood Control Agency Calaveras River Study Area." Urban Levee Geotechnical Evaluations Program Contract 4600008108, Prepared for Department of Water Resources, Division of Flood Management. March 2013. Print.
- URS Corporation. "Draft Supplemental Geotechnical Data Report (SGDR), Reclamation District 404 Study Area." Urban Levee Geotechnical Evaluations Program Contract 4600007418, Prepared for Department of Water Resources, Division of Flood Management. April 2011. Print.
- URS Corporation. "Phase 1 Geotechnical Evaluation Report (P1GER), Reclamation District 17 (RD 17)." Urban Levee Geotechnical Evaluations Program Contract 4600007418, Task Order 21, Prepared for Department of Water Resources, Division of Flood Management. December 2007. Print.
- URS Corporation. "Phase 1 Geotechnical Data Report (P1GDR), Reclamation District 17 (RD 17) Study Area." Urban Levee Geotechnical Evaluations Program Contract 4600007418, Prepared for Department of Water Resources, Division of Flood Management. September 2008. Print.


- URS Corporation. "Draft Supplemental Geotechnical Data Report (SGDR), Reclamation District 17." Urban Levee Geotechnical Evaluations Program Contract 4600007418, Prepared for Department of Water Resources, Division of Flood Management. December 2010. Print.
- U.S. Army Corps of Engineers, Engineer Manual (EM) 1110-2-1902, "Slope Stability." October 2003. Print.
- U.S. Army Corps of Engineers, Engineer Manual (EM) 1110-2-1913, "Design and Construction of Levees." April 2000. Print.
- U.S. Army Corps of Engineers, Engineer Regulation (ER) 1110-2-1150, "Engineering and Design for Civil Works Projects." August 1999. Print.
- U.S. Army Corps of Engineers, Engineer Regulation (ER) 1110-2-1806, "Engineering and Design Earthquake Design and Evaluation for Civil Works Projects." May 2016. Print.
- U.S. Army Corps of Engineers, Technical Memorandum (TM) No. 3-424, "Investigation of Underseepage and its Control, Lower Mississippi River Levees." October 1956. Print.
- U.S. Army Corps of Engineers, Engineer Technical Letter (ETL) 1110-2-556, "Risk-Based Analysis in Geotechnical Engineering for Support of Planning Studies." May 1999. Print.
- U.S. Army Corps of Engineers, Engineer Technical Letter (ETL) 1110-2-561, "Reliability Analysis and Risk Assessment for Seepage and Slope Stability Failure Modes for Embankment Dams." January 2006. Print.
- U.S. Army Corps of Engineers, Engineer Technical Letter (ETL) 1110-2-569, "Design Guidance for Levee Underseepage." May 2005. Print.
- U.S. Army Corps of Engineers, Engineer Technical Letter (ETL) 1110-2-583, "Guidelines for Landscaping Planting and Vegetation Management at Levees, Floodwalls, Embankments Dams, and Appurtenant Structures." April 2014. Print.
- U.S. Army Corps of Engineers, Sacramento District, "Design Manual for Levee Construction", October 1969.
- U.S. Army Corps of Engineers, Sacramento District, "Geotechnical Levee Practice REFP10L0." April 2008. Print.
- U.S. Army Corps of Engineers, Sacramento District, "Geotechnical Levee Practice SOP-EDG-03." July 2004. Print.
- Weight, Willis D. and Sonderegger, John L. "Manual of Applied Field Hydrology." McGraw-Will Professional. 2001. Print.


- Wright, Stephen G. "UTEXAS4, A Computer Program for Slope Stability Calculations." Austin, Texas. May 1999. Print.
- U.S. Department of the Interior, Bureau of Reclamation. Central Valley Project. http://www.usbr.gov/projects/Project.jsp?proj Name=Central+Valley+Project. Web.
- San Joaquin County Resource Conservation District. http://sjcrcd.org/articles/MokP07.pdf. Web.


LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY


GEOTECHNICAL REPORT

ENCLOSURE E1
GEOMORPHOLOGY MAPS

LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY

GEOTECHNICAL REPORT

ENCLOSURE E2
CALCULATION PACKAGE

LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY

WITHOUT PROJECT
STRENGTH PARAMETERS

LOWER SAN JOAQUIN RIVER GEOTECHNICAL ANALYSIS

SJR - REACH LR-1

ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Analy	/sis	Estimated	d Strength Pa	rameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/dav	Vertical kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
m	1	Clay Levee	1.00E-06	4	2.50E-07	0.00284	0.00071	28	50	120
036B	2	Silt Levee	1.00E-05	4	2.50E-06	0.02835	0.00709	28	0	120
0_7	3	Clay Blanket	1.00E-06	4	2.50E-07	0.00284	0.00071	30	100	120
-	4	Silty Sand	1.00E-03	4	2.50E-04	2.83500	0.70875	32	0	125
/R00.	5	Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	30	100	120
>	6	Sand	5.00E-03	4	1.25E-03	14.17500	3.54375	32	0	125

LOWER SAN JOAQUIN RIVER GEOTECHNICAL ANALYSIS

SJR - REACH LR-2

			Est	imated Perme	eability for S	eepage Analy	/sis	Estimated	d Strength Pa	rameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/day	Vertical kv (ky) ft/day	Φ'	C' (psf)	γ (pcf)
0	1	Levee Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	28	100	120
0017 52B	2	Silty Sand Blanket	1.00E-05	4	2.50E-06	0.02835	0.00709	30	0	125
300	3	Poorly Graded Sand wSilt	1.00E-04	4	2.50E-05	0.28350	0.07088	32	0	130
×	4	Foundation Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	28	100	120

LOWER SAN JOAQUIN RIVER GEOTECHNICAL ANALYSIS SJR - REACH LR-3

ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Analy	/sis	Estimated	d Strength Pa	rameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/dav	Vertical kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
	1	Poorly Graded Sand wSilt	5.00E-03	4	1.25E-03	14.17500	3.54375	32	0	125
085B	2	Clayey Sand	5.00E-05	4	1.25E-05	0.14175	0.03544	30	50	125
80	3	Poorly Graded Sand	5.00E-03	4	1.25E-03	14.17500	3.54375	32	0	125
17_	4	Sandy Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	28	140	120
R001	5	Silty Sand	1.00E-04	4	2.50E-05	0.28350	0.07088	30	0	120
W	6	Poorly Graded Sand wSilt	1.00E-02	4	2.50E-03	28.35000	7.08750	32	0	125
	7	Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	30	100	120

LOWER SAN JOAQUIN RIVER GEOTECHNICAL ANALYSIS SJR - REACH LR-4

			Est	imated Perme	eability for S	eepage Anal	/sis	Estimated	d Strength Pa	rameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx)	Anisotropy Ratio	Vertical kv (ky)	Horizontal kh (kx)	Vertical kv (ky)	Φ'	C' (psf)	γ (pcf)
			cm/sec	kh/kv	cm/sec	ft/dav	ft/day		- ()	7 (15-5-7
_	1	Clayey Sand	1.00E-04	4	2.50E-05	0.28350	0.07088	30	50	125
017 _.	2	Lean Clay Blanket	1.00E-06	4	2.50E-07	0.00284	0.00071	28	100	120
900	3	Poorly Graded Sand w/Silt	1.00E-03	4	2.50E-04	2.83500	0.70875	32	0	130
⋚	4	Lean Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	30	100	120

FRENCH CAMP SLOUGH GEOTECHNICAL ANALYSIS FRENCH CAMP - REACH FL-1 ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Analy	/sis	Estimated	d Strength Pa	arameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/dav	Vertical kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
0	1	Levee Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	28	100	120
17 ₇	2	Lean Clay Blanket	1.00E-06	4	2.50E-07	0.00284	0.00071	30	100	120
R00 07	3	Foundation Silty Sand	5.00E-03	4	1.25E-03	14.17500	3.54375	32	0	125
M	4	Foundation Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	30	100	120

FRENCH CAMP SLOUGH GEOTECHNICAL ANALYSIS FRENCH CAMP - REACH FR-1 ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Anal	/sis	Estimated	d Strength Pa	rameters
Boring	Layer ID	Soil Classification	Horizontal	Anisotropy	Vertical	Horizontal	Vertical			
Number			kh (kx)	Ratio	kv (ky)	kh (kx)	kv (ky)	Φ'	C' (psf)	γ (pcf)
			cm/sec	kh/kv	cm/sec	ft/dav	ft/dav			
	1	Clay Levee	1.00E-06	4	2.50E-07	0.00284	0.00071	28	100	120
42B	2	Silt Levee	1.00E-05	4	2.50E-06	0.02835	0.00709	30	0	120
04	3	Clayey Sand Blanket	1.00E-05	4	2.50E-06	0.02835	0.00709	28	50	125
404	4	Silty Sand	1.00E-04	4	2.50E-05	0.28350	0.07088	32	0	125
804	5	Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	30	100	120
WRO	6	Silty Sand	1.00E-03	4	2.50E-04	2.83500	0.70875	32	0	125
	7	Silt and Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	30	100	120

STOCKTON DIVERTING CANAL GEOTECHNICAL ANALYSIS DIVERTING CANAL - REACH SL-1 ANALYSIS PARAMETERS SUMMARY

			Est	imated Permo	eability for S	eepage Analy	/sis	Estimated	d Strength Pa	rameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/dav	Vertical kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
<u>α</u>	1	Sandy Lean Clay Levee	1.00E-05	4	2.50E-06	0.02835	0.00709	34	100	115
900	2	Lean Clay Blanket	1.00E-05	4	2.50E-06	0.02835	0.00709	31	150	120
O_	3	Silty Sand	1.00E-04	4	2.50E-05	0.28350	0.07088	35	0	120
SBD	4	Sandy Silt	1.00E-04	4	2.50E-05	0.28350	0.07088	35	0	120
SO	5	Silty Sand (more permeable)	1.00E-03	4	2.50E-04	2.83500	0.70875	35	0	120
>	6	Lean Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	31	150	120

STOCKTON DIVERTING CANAL GEOTECHNICAL ANALYSIS DIVERTING CANAL - REACH SL-2 ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Analy	ysis	Estimated	d Strength Pa	rameters
Boring	Layer ID	Soil Classification	Horizontal	Anisotropy	Vertical	Horizontal	Vertical			
Number	,		kh (kx)	Ratio	kv (ky)	kh (kx)	kv (ky)	Φ'	C' (psf)	γ (pcf)
			cm/sec	kh/kv	cm/sec	ft/day	ft/day			
Q	1	Sandy Silt Levee	1.00E-04	4	2.50E-05	0.28350	0.07088	34	0	115
025C	2	Lean Clay/Silty Lean Clay Levee	1.00E-05	4	2.50E-06	0.02835	0.00709	31	150	115
\mathcal{S}^{I}	3	Lean Clay/Silty Lean Clay Blanket	1.00E-05	4	2.50E-06	0.02835	0.00709	31	150	115
CSBD	4	Sand to Silty Sand	5.00E-04	4	1.25E-04	1.41750	0.35438	35	0	125
SO	5	Lean Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	31	150	115
≯	6	Sandy Silt	1.00E-04	4	2.50E-05	0.28350	0.07088	35	0	120

CALAVERAS RIVER

GEOTECHNICAL ANALYSIS

CALAVERAS RIVER - REACH CL-1/CL-2 ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Analy	ysis	Estimated	d Strength Pa	rameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/dav	Vertical kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
م ^ا	1	Silt Levee	1.00E-05	4	2.50E-06	0.02835	0.00709	34	100	115
BCF 14B	2	Silt Blanket	1.00E-05	4	2.50E-06	0.02835	0.00709	31	150	115
3SE 00	3	Lean Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	31	150	120
%	4	Sandy Silt Foundation	1.00E-04	4	2.50E-05	0.28350	0.07088	35	0	120

CALAVERAS RIVER GEOTECHNICAL ANALYSIS CALAVERAS RIVER - REACH CR-1/CR-2 ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Analy	/sis	Estimated	d Strength Pa	arameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/dav	Vertical kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
10	1	Lean Clay wSand Levee	1.00E-05	4	2.50E-06	0.02835	0.00709	34	100	120
R_01	2	Sandy Silt	1.00E-05	4	2.50E-06	0.02835	0.00709	31	150	115
BCF A	3	Lean Clay wSand	1.00E-06	4	2.50E-07	0.00284	0.00071	31	150	120
₩ K	4	Pooly Graded Sand wSilt	2.10E-03	4	5.25E-04	5.95350	1.48838	35	0	120
M	5	Silt	1.00E-05	4	2.50E-06	0.02835	0.00709	31	150	115

CALAVERAS RIVER

GEOTECHNICAL ANALYSIS

CALAVERAS RIVER - REACH D-4

ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Analy	/sis	Estimated	d Strength Pa	rameters
Boring Number	Layer ID	Soil Classification		Anisotropy	Vertical	Horizontal	Vertical	×-	OI (f)	(()
Number			kh (kx) cm/sec	Ratio kh/kv	kv (ky) cm/sec	kh (kx) ft/dav	kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
В	1	Sandy Silt Levee	1.00E-04	4	2.50E-05	0.28350	0.07088	31	0	110
003B	2	Lean Clay wSand to CH Levee	1.00E-05	4	2.50E-06	0.02835	0.00709	34	100	110
	3	FAT Clay wSand Blanket	1.00E-05	4	2.50E-06	0.02835	0.00709	27	50	110
BCR	4	Sandy Silt	1.00E-04	4	2.50E-05	0.28350	0.07088	31	0	115
N O	5	Pooly Graded Sand wSilt	6.40E-04	4	1.60E-04	1.81440	0.45360	32	0	120
≥	6	Lean Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	31	150	120

CALAVERAS RIVER GEOTECHNICAL ANALYSIS

CALAVERAS RIVER - REACH D-5

			Est	imated Perme	eability for S	eepage Analy	/sis	Estimated	d Strength Pa	rameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/day	Vertical kv (ky) ft/day	Φ'	C' (psf)	γ (pcf)
4B	1	Silt to Sandy Silt Levee	1.00E-05	4	2.50E-06	0.02835	0.00709	31	0	110
00	2	Lean Clay Levee	1.00E-06	4	2.50E-07	0.00284	0.00071	31	150	115
41	3	Lean Clay Blanket	1.00E-06	4	2.50E-07	0.00284	0.00071	31	150	115
316	4	Silty Sand	1.00E-04	4	2.50E-05	0.28350	0.07088	35	0	120
WF	5	Lean Clay	1.00E-06	4	2.50E-07	0.00284	0.00071	31	150	115

SAN JOAQUIN RIVER

GEOTECHNICAL ANALYSIS

LSJ RIVER - DELTA FRONT BROOKSIDE REACH D-BS

ANALYSIS PARAMETERS SUMMARY

			Est	imated Perme	eability for S	eepage Anal	ysis	Estimate	d Strength Pa	arameters
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/dav	Vertical kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
	1	Clay Levee	4.00E-06	4	1.00E-06	0.01134	0.00284	30	50	120
	2	Farm Levee	4.00E-06	4	1.00E-06	0.01134	0.00284	30	50	110
15C	3	Organic Soil	4.00E-06	4	1.00E-06	0.01134	0.00284	26	50	80
011	4	Blanket	4.00E-06	4	1.00E-06	0.01134	0.00284	30	100	120
74_	5	Silty Sand	4.00E-04	4	1.00E-04	1.13400	0.28350	32	0	125
WR207	6	Clay	4.00E-06	4	1.00E-06	0.01134	0.00284	30	100	120
W	7	Poorly graded Sand w/silt	1.00E-03	4	2.50E-04	2.83500	0.70875	34	0	125
	8	Silt	4.00E-06	4	1.00E-06	0.01134	0.00284	32	0	120
	9	Silty Sand	4.00E-04	4	1.00E-04	1.13400	0.28350	32	0	125

SAN JOAQUIN RIVER

GEOTECHNICAL ANALYSIS

LSJ RIVER - DELTA FRONT LINCOLN VILLAGE REACH D-LV

			Est	imated Perme	eability for S	eepage Analy	/sis	Estimated Strength Parameters		
Boring Number	Layer ID	Soil Classification	Horizontal kh (kx) cm/sec	Anisotropy Ratio kh/kv	Vertical kv (ky) cm/sec	Horizontal kh (kx) ft/dav	Vertical kv (ky) ft/dav	Φ'	C' (psf)	γ (pcf)
	1	Clay Levee	4.00E-06	4	1.00E-06	0.01134	0.00284	27	50	120
0018	2	Organic Soil	1.00E-04	10	1.00E-05	0.28350	0.02835	28	25	80
00	3	Blanket	4.00E-06	4	1.00E-06	0.01134	0.00284	28	50	120
1608	4	Silty Sand	4.00E-04	4	1.00E-04	1.13400	0.28350	32	0	125
316	5	Poorly graded Sand w/silt	1.00E-03	4	2.50E-04	2.83500	0.70875	34	0	125
WR	6	Foundation Clay	4.00E-06	4	1.00E-06	0.01134	0.00284	30	100	120
	7	Deep Clay Layer	4.00E-06	4	1.00E-06	0.01134	0.00284	30	100	120

LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY

RESULTS OF WITHOUT PROJECT SEEPAGE AND STABILITY ANALYSES

		SEI	EPAGE/STABILITY AN	ALYSES LOWER S STA. 1292+0		VER REACH LR-1		
				USACE Pre-Project (Notes
Water Level		Point Gradient at Toe	Average Vertical Exit Gradient at Toe of Berm	Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Circular Failure Surface FOS UTexas4	Seepage Comple
Crest	25.0	0.33	1.00	0.30	0.44	8.02	1.33	12/18/12 Stability
Elev.	22.4	0.33	0.85	0.20	0.43	7.22	1.56	Completed 12/18/12
200 yr	19.8	0.32	0.70	0.10	0.41	6.42	1.66	12/10/12
Elev.	17.0	0.29	0.54	<0.1	0.37	1.10	1.83	
			URS R	esults P1GER RD 17	December 2007			
				Pre-Project Cond	ditions			Notes
	Water Level Point Gradient at Toe Gradient at Toe Gradient at Toe of Berm Average Vertical Exit Gradient at Toe of Berm Horizontal Gradient Breakout Above Landside Toe (ft) Circular Failure Surface FOS UTexas4						URS data differ in material properties and absence of	
00 yr +3	22.80		0.90				1.90	waterside
200 yr	19.80		0.80				2.10	Bathymetry and
100 yr	18.90		0.80				2.00	landside LIDAI
								data.

		SEI	EPAGE/STABILITY AN			VER REACH LR-2		
				STA. 1417+0				
				USACE Pre-Project C	Conditions			Notes
Wat Lev		Point Gradient at Toe	Point Gradient at Toe Gradient at Toe of Berm Average Vertical Exit Average Vertical Exi		Horizontal Gradient	Breakout Above Landside Toe (ft)	Circular Failure Surface FOS UTexas4	Seepage Complete
Crest	27.8	0.83	0.90	0.11	0.24	5.06	1.94	11/26/12 Stability
Elev.	24.6	0.70	0.76	<0.1	0.19	4.44	2.20	Completed 12/06/12
200 year	21.5	0.54	0.60	<0.1	0.14	2.12	2.48	12/00/12
Elev.	17.0	0.28	0.33	<0.1	0.09	1.00	2.88	
•			URS R	esults P1GER RD 17	December 2007			
				Pre-Project Cond	litions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe of Berm		Horizontal Gradient	Breakout Above Landside Toe (ft)	Circular Failure Surface FOS UTexas4	2007 URS report used method not used by Corps,
200 yr +3	24.50		0.80				2.60	Corps uses
200 yr	21.50		0.60				2.90	different range of
100 yr	20.30		0.50		_		2.90	WSE to create
								curve.

		SE	EPAGE/STABILITY AN			VER REACH LR-3		
		Ι		STA. 1685+0 USACE Pre-Project (Notes
Wate Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe of Berm	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Circular Failure Surface FOS UTexas4	Seepage Complete
Crest	31.0	3.18	3.36	1.34	1.37	7.83	0.77	12/20/12 Stability
Elev.	28.9	2.79	2.94	1.11	1.19	6.97	1.03	Completed 12/21/12
200 year	26.9	2.39	2.52	0.89	1.00	0.00	1.20	12/21/12
Elev.	24.0	1.83	1.94	0.57	0.73	0.00	1.35	
			URS R	esults P1GER RD 17	December 2007			
				Pre-Project Cond	ditions			Notes
Water Level Point Gradient at Toe Gradient Toe Gradient Toe Gradient Toe Gradient Toe Gradient Toe Gradient G							2007 URS report used method not used by Corps,	
200 yr +3	29.90			1.10			0.70	Corps uses
200 yr	26.90			0.90			1.20	different range of
100 yr	23.80			0.60			1.40	WSE to create
								curve.

		SEEPAG	GE/STABILITY ANALYS	SES LOWER SAN STA. 1815+00	I JOAQUIN RIVER R	EACH LR-4	
		I	Pre-Pr	oject Conditions			Notes
Wat Lev			Point Gradient at Toe Average Vertical Exit Gradient at Toe		Breakout Above Landside Toe (ft)	Global Failure Surface FOS UTexas4	Communication 40/00/40
Crest	33.9	0.47	0.22	0.59	5.87	1.63	Seepage Complete 12/09/12
200 year	31.3	0.40	0.18	0.53	3.20	1.78	Stability Completed 12/10/12
Elev.	27.5	0.28	0.12	0.41	1.69	1.98	
Elev.	23.7	0.16	0.06	0.19	0.80	2.14	
			URS Results P10	GER Task Order 2	1 December 2007		
			Pre-Pr	oject Conditions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	The 2007 URS report did not perform analysis on this
-	-						Station.
-	-						Station.
-	-						1

		SEEF	PAGE/STABILITY ANAL	YSES FRENCH C	CAMP SLOUGH REA	ACH FL-1				
				STA. 1049+00						
			USACE Pre-Project Conditions							
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Global Failure Surface FOS UTexas4	Seepage Completed			
Crest	21.4	0.44	0.33	0.38	1.40	2.28	11/19/12 Stability Completed			
Elev.	18.6	0.33	0.26	0.32	0.64	2.41	11/19/12			
200 year	15.9	0.23	0.18	0.22	0.45	2.50	1			
Elev.	13.0	0.14	0.11	0.14	0.22	2.58	1			
			URS Results P1	GER Task Order 2°	December 2007					
			Pre-Pr	oject Conditions			Notes			
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	The 2007 URS report used method not used by Corps,			
200 yr +3	18.90		0.10			1.50	Corps uses different range			
200 yr	15.90		0.10			2.00	of WSE to create curve.			
100 yr	15.30		0.10			2.00	1			

		SEEP	PAGE/STABILITY ANAL	YSES FRENCH C	AMP SLOUGH REA	CH FR-1	
				STA. 1164+20			
			Notes				
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Global Failure Surface FOS UTexas4	Commence Commission 42/42/42
Crest	21.8	0.94	1.11	0.52	8.63	1.52	Seepage Complete 12/12/12 Stability Completed 12/12/12
Elev.	18.8	0.82	0.96	0.44	7.80	1.65	Stability Completed 12/12/12
200 year	15.9	0.69	0.81	0.35	1.89	1.76	
Elev.	12.9	0.56	0.65	0.24	0.94	1.88	1
			URS Results GE	R Volume 1, Apper	ndix B (No date)		
			Pre-Pr	oject Conditions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	Report was not available. Data was obtained from an electronic ULE file:
HTOL	-		1.07			1.71	\\crystal\Dirt\Levee
200 yr	15.90		1.00			1.80	Historical Information\RD
1955/1957	-		0.58			2.07	404\ULE

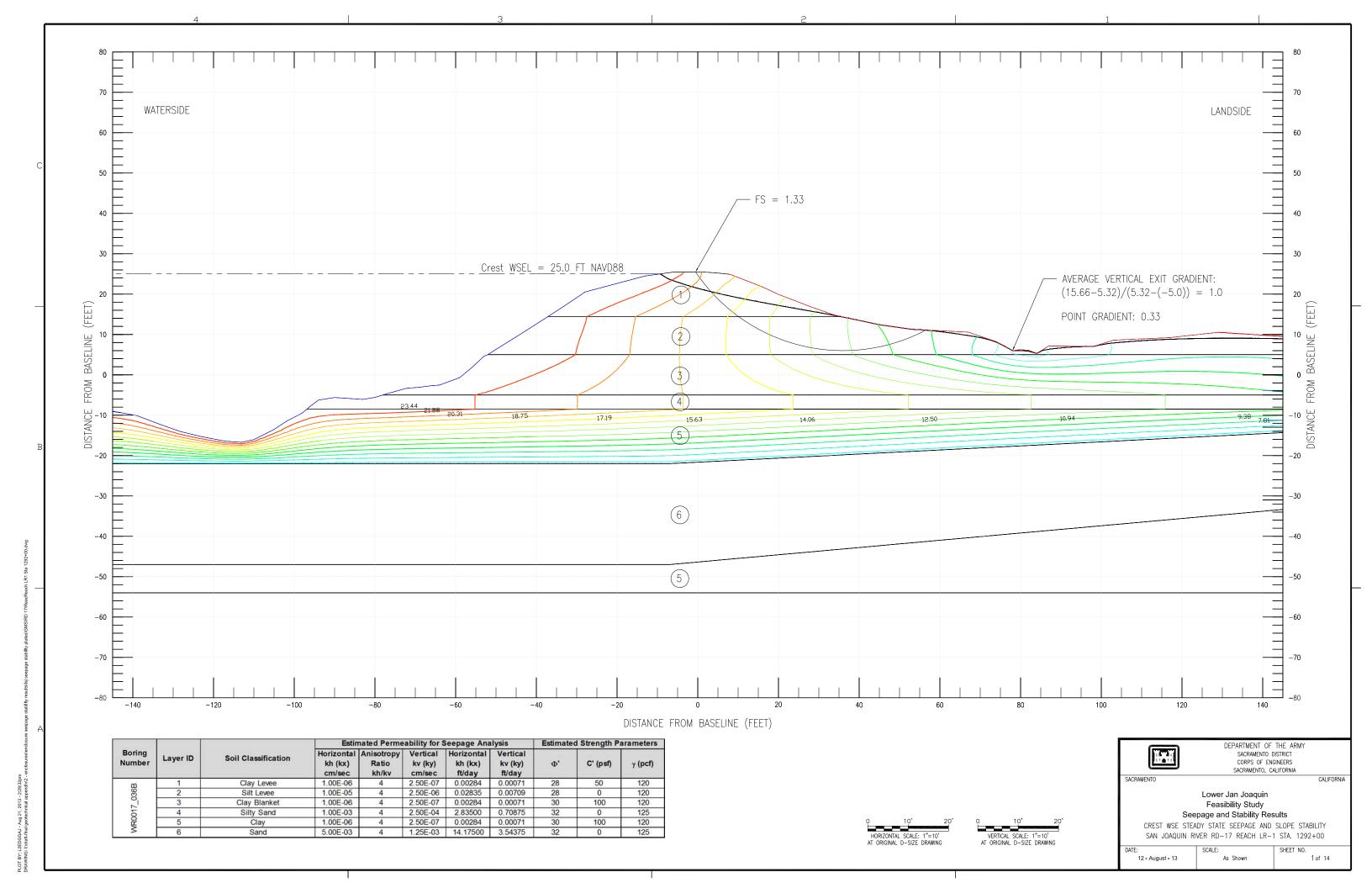
		SEEPAG	E/STABILITY ANALYS	ES STOCKTON D STA. 846+68	IVERTING CANAL I	REACH SL-1	
			Pre-Pr	oject Conditions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Global Failure Surface FOS	
Crest	39.2	1.24	1.10	0.48	5.72	1.40	Seepage Complete 8/27/12
Elev.	36.1	0.99	0.87	0.45	2.87	1.74	Stability Completed 9/19/12
Elev.	33.1	0.74	0.64	0.32	1.92	1.87	1
200 year	30.2	0.48	0.41	0.29	1.44	2.01	1
			URS Results P1	IGER SJAFCA Cala	veras July 2011		
			Pre-Pr	oject Conditions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	Data was obtained from
200 yr +3	33.22		0.68		2.78	1.76	P1GER, P1GDR, AND SGDR
200 yr	30.22		0.43		1.90	1.95	
100 yr	29.91		0.40		1.60	1.97	1

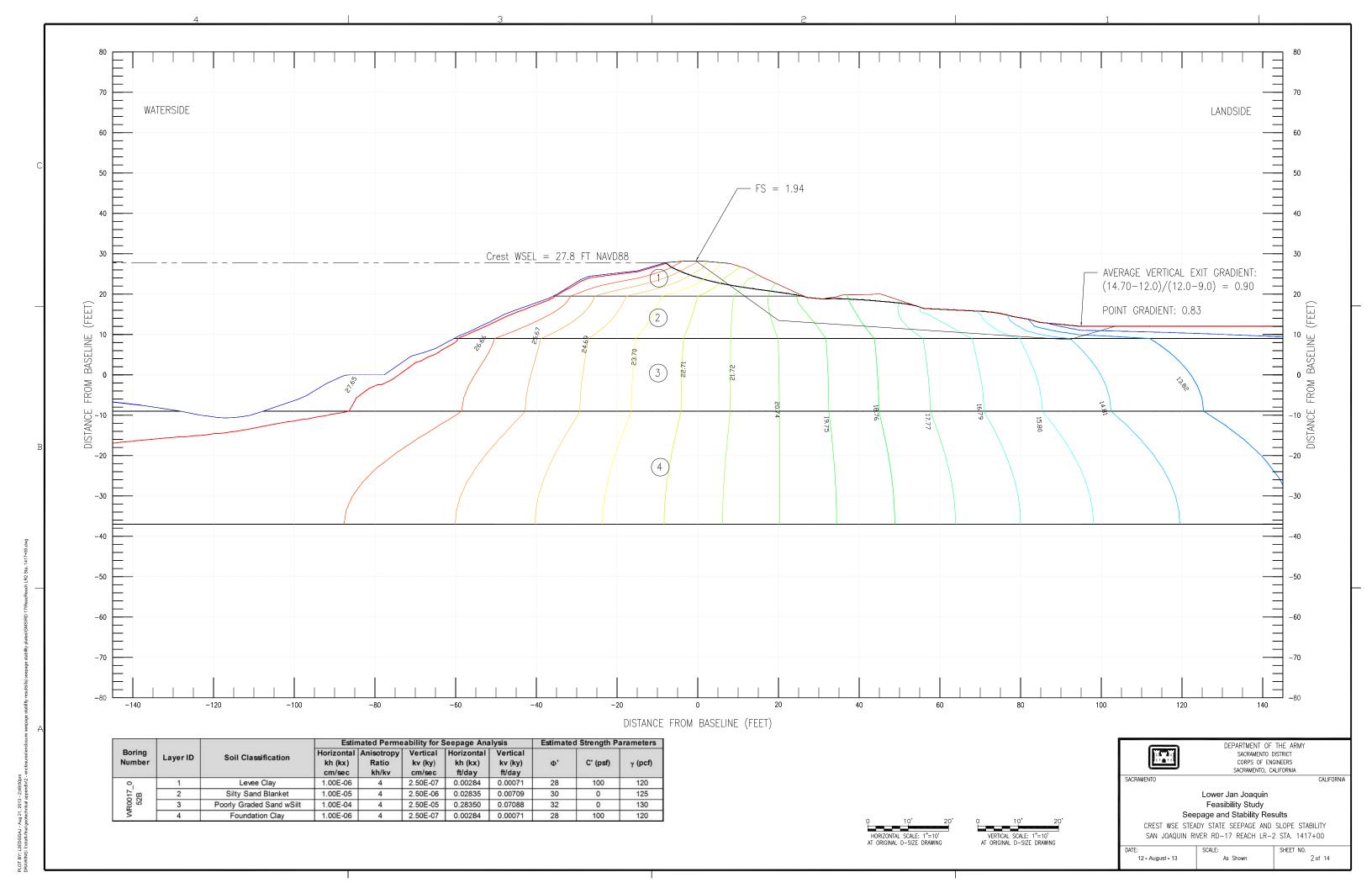
		SEEPAG	E/STABILITY ANALYS	ES STOCKTON D STA. 976+00	IVERTING CANAL I	REACH SL-2	
			Pre-Pr	oject Conditions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Global Failure Surface FOS	
Crest	44.6	1.04	0.99	0.47	4.57	1.68	Seepage Complete 8/27/12
200 year	40.4	0.65	0.62	0.47	2.64	2.02	Stability Completed 9/19/12
Elev.	38.8	0.50	0.48	0.38	0.97	2.13	1
Elev.	37.2	0.33	0.33	0.32	0.14	2.25	1
			URS Results P1	GER SJAFCA Cala	veras July 2011		
			Pre-Pr	oject Conditions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	Data was obtained from
200 yr +3	43.44		0.83		3.90	1.66	P1GER, P1GDR, AND SGDR
200 yr	40.44		0.58		3.00	1.94]
100 yr	40.10		0.56		2.60	1.97	1

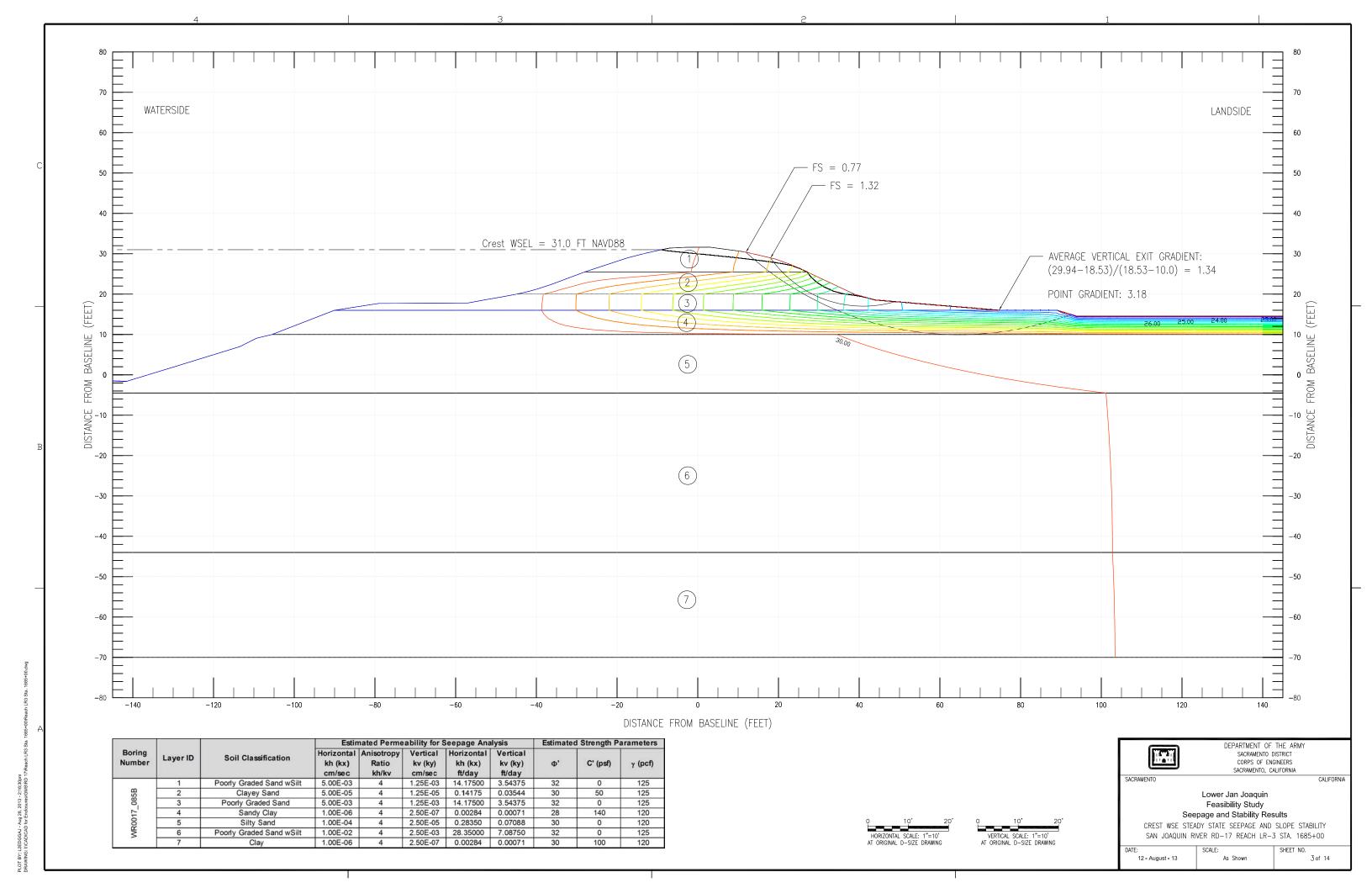
		SEEP	AGE/STABILITY ANAL	YSES CALAVERA	S RIVER REACH C	CL-1/CL-2	
		I	USACE Pro	e-Project Condition	s		Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Global Failure Surface FOS	
Crest	31.4	0.34	0.14	0.38	4.66	2.05	Seepage Completed 8/28/12
Elev.	29.4	0.29	0.12	0.22	2.42	2.28	Stability Completed 9/6/12
Elev.	27.4	0.25	0.09	0.21	1.68	2.46	7
200 year	25.5	0.13	0.05	0.13	0.00	2.71	1
			URS Results P1	IGER SJAFCA Cala	veras July 2011		
			Pre-Pr	oject Conditions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	Analyses Completed By
200 yr +3	28.51		0.12		2.60	2.35	URS
200 yr	25.51		<0.1		0.30	2.69	1
100 yr	25.07		<0.1		0.30	2.72	

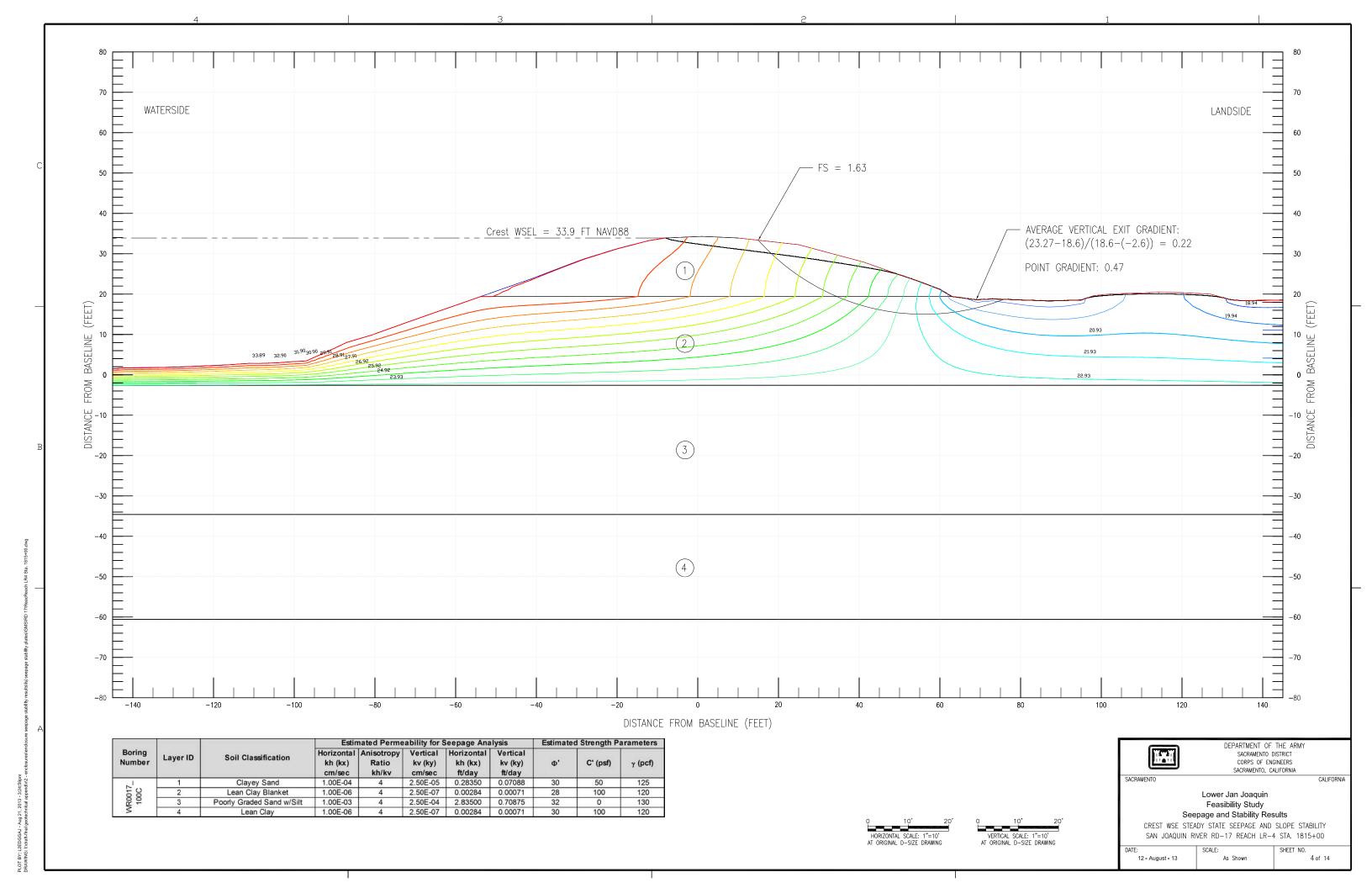
		SEEP	AGE/STABILITY ANAL	YSES CALAVERA STA. 3306+00	S RIVER REACH C	R-1/CR-2	
			USACE Pr	e-Project Condition	ıs		Notes
Wat Lev		Point Gradient at Toe	lient at Toe Average Vertical Exit Gradient at Toe		Breakout Above Landside Toe (ft)	Global Failure Surface FOS	Seepage Completed on
Crest	29.7	0.97	1.57	0.22	1.85	2.91	8/30/12 Stability Completed
Elev.	28.2	0.62	1.10	0.18	0.92	3.13	9/6/12
200 yr		0.19	0.47	0.14	0.21	3.37	
Elev.	25.3	0.00	<0.1	0.00	0.00	3.73	7
		3	URS Results P1	IGER SJAFCA Cala	veras July 2011		
			Pre-Pr	oject Conditions			Notes
Wat Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	URS Results from P1GER July 2011. Exit gradient results appear lower due to
200 yr +3	29.88		0.67		2.20	2.87	the fact URS used the same
200 yr	26.88		0.20		0.40	3.29	permeability for materials 1
100 yr	26.45		0.20		0.20	3.41	& 2 and chose to take the
							gradient inbetween the two layers.

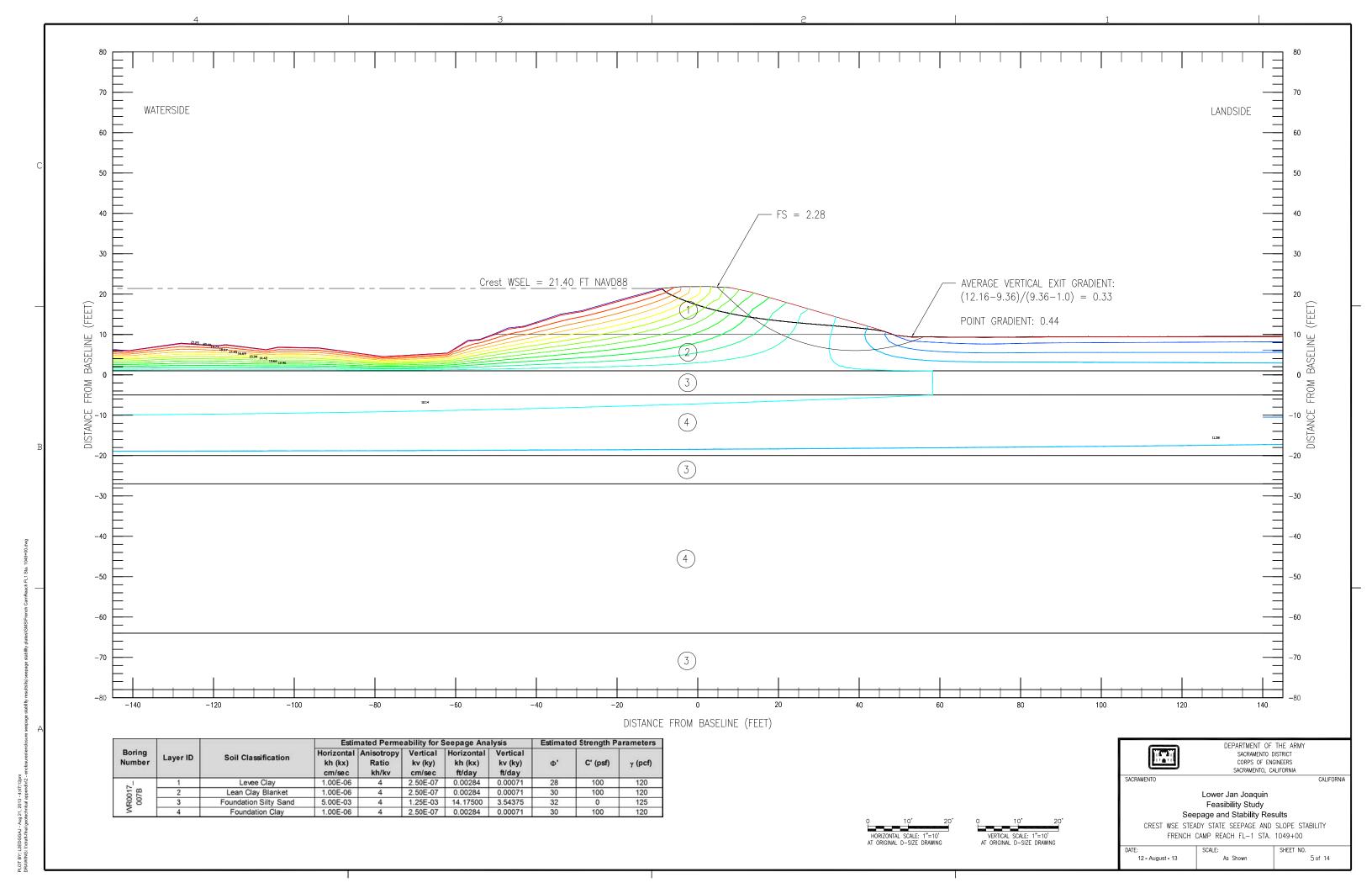
		SI	EPAGE/STABILITY A		RAS RIVER REAC	H D-4	
		T	LICACE D.	STA. 3092+00			Notes
141-4			USACE Pr	e-Project Condition	S		Notes
Wate Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Global Failure Surface FOS	Seepage Completed on
Crest	18.8	1.33	1.21	0.48	9.92	0.95	8/30/12 Stability Completed
Elev.	16.5	1.10	1.00	0.43	4.14	1.18	9/6/12
200 year	14.2	0.87	0.79	0.41	2.83	1.57	
Elev.	11.8	0.63	0.57	0.35	1.65	1.89	
			URS Results P1	IGER SJAFCA Cala	veras July 2011		
			Pre-Pr	oject Conditions			Notes
Wate Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	URS Results from P1GER
200 yr +3	17.16		0.79		8.80	1.10	July 2011
200 yr	14.16		0.55		1.90	1.56	
100 yr	13.77		0.52		1.90	1.60	

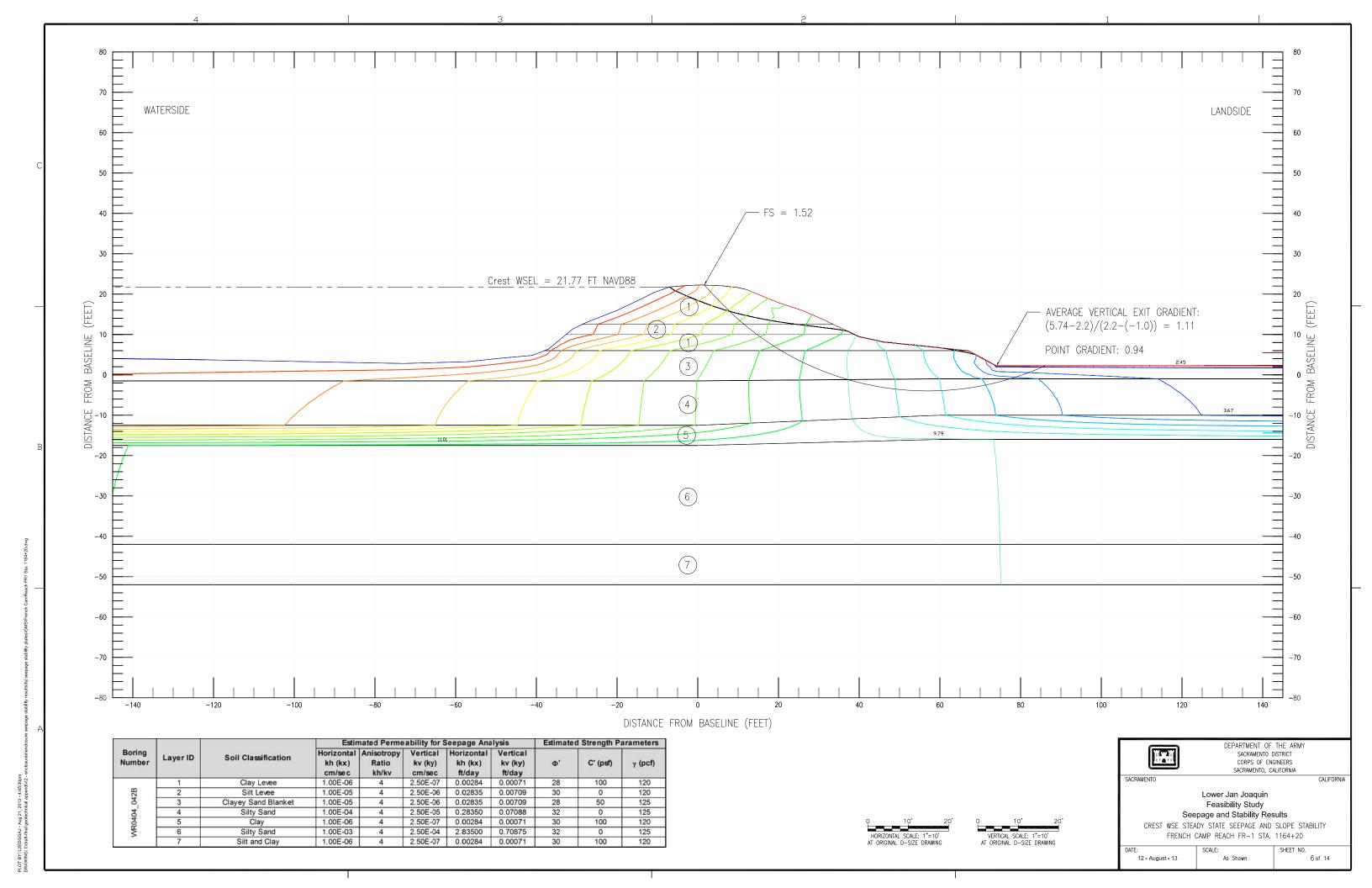

		SE	EPAGE/STABILITY AN	NALYSES CALAVI	ERAS RIVER REAC	H D-5	
				STA. 6535+00			
			USACE Pr	e-Project Condition	ıs		Notes
Water Level		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Global Failure Surface FOS UTexas4	Seenege Complete 9/27/42
Crest	17.5	0.53	0.23	0.33	6.76	1.86	Seepage Complete 8/27/12Stability Completed 9/5/12
200 year	13.2	0.41	0.15	0.29	4.05	2.15	Stability Completed 9/3/12
Elev.	10.0	0.29	0.09	0.28	1.19	2.38	1
Elev.	7.2	0.09	0.04	0.09	0.00	2.60	
			URS Results P1	IGER SJAFCA Cala	veras July 2011		
			Pre-Pr	oject Conditions			Notes
Wate Leve		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Failure Surface FOS	URS and Corps results for FOS are different. After
200 yr +3	16.16		0.18		3.80	1.18	some study of materials
200 yr	13.16		0.13		1.60	1.38	 properties and cross- section obtained from URS,
100 yr	12.81		0.12		1.40	1.40	the FOS generated by
							UTexas4 appear correct.

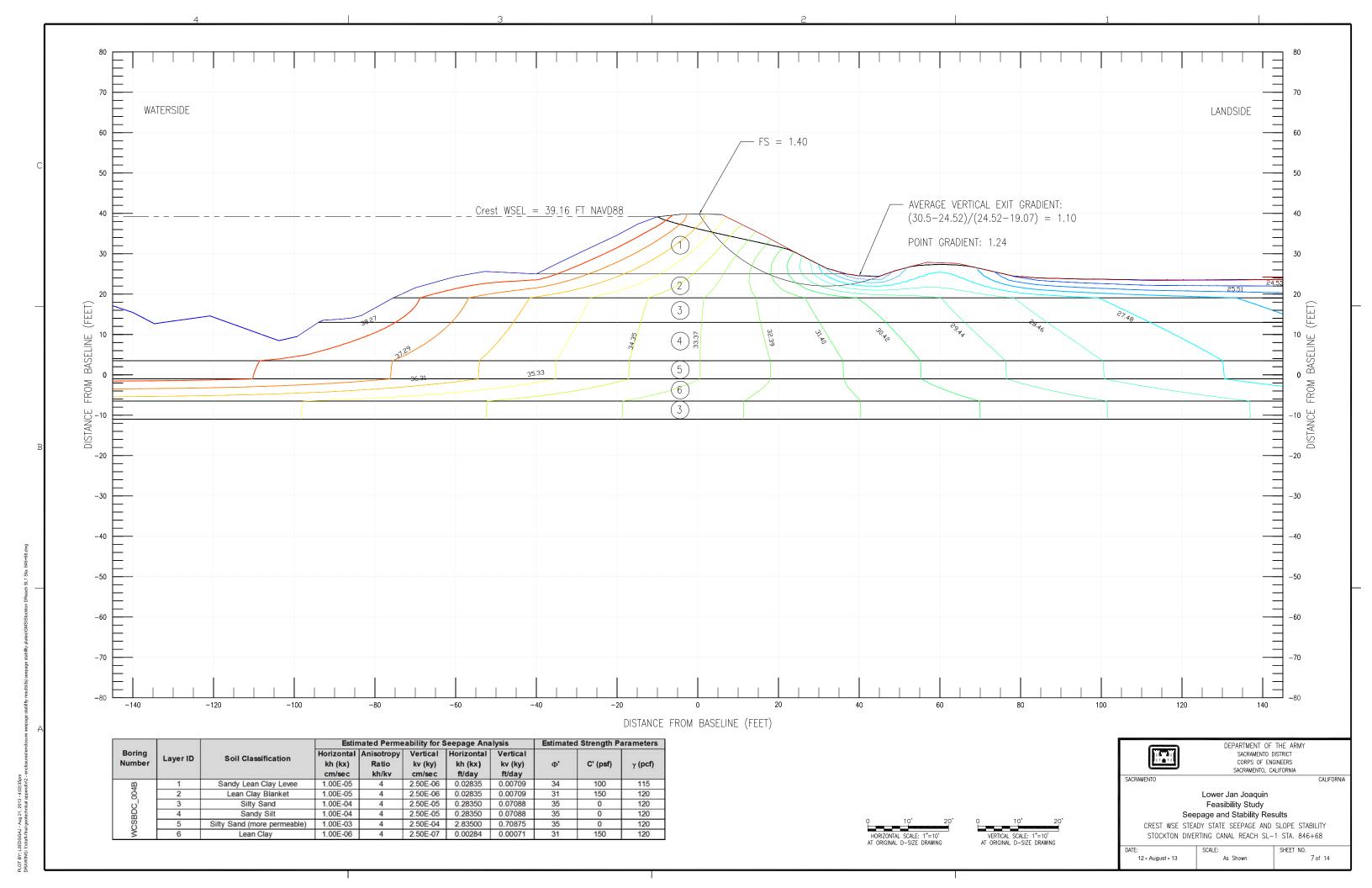

		OLL! A	GE/STABILITY ANALYS	STA. 166+50	NATI BROOKSIDE RE	AON D BO	
			USACE Pre	e-Project Condition	ns		Notes
Wate Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Circular Failure Surface FOS UTexas4	USACE
Crest	18.0	0.99	0.80	0.41	5.21	0.94	Seepage Complete 3/11/13
Elev.	14.0	0.81	0.64	0.30	3.50	1.22	Stability Completed 3/14/13
Elev.	10.0	0.62	0.49	0.26	2.30	1.27	1 '
Elev.	6.0	0.44	0.35	0.21	1.10	1.30	1
			NO RESI	JLTS FROM A-E F	REPORTS		
			Pre-Pro	oject Conditions			Notes
Wate Lev		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Circular Failure Surface FOS UTexas4	No analyses. Historic Kleinfelder data used to generate cross-section in
00 yr +3							USACE analysis. Material
200 yr							properites listed were
100 yr				_			modified based on
							discussions with Levee Safety.

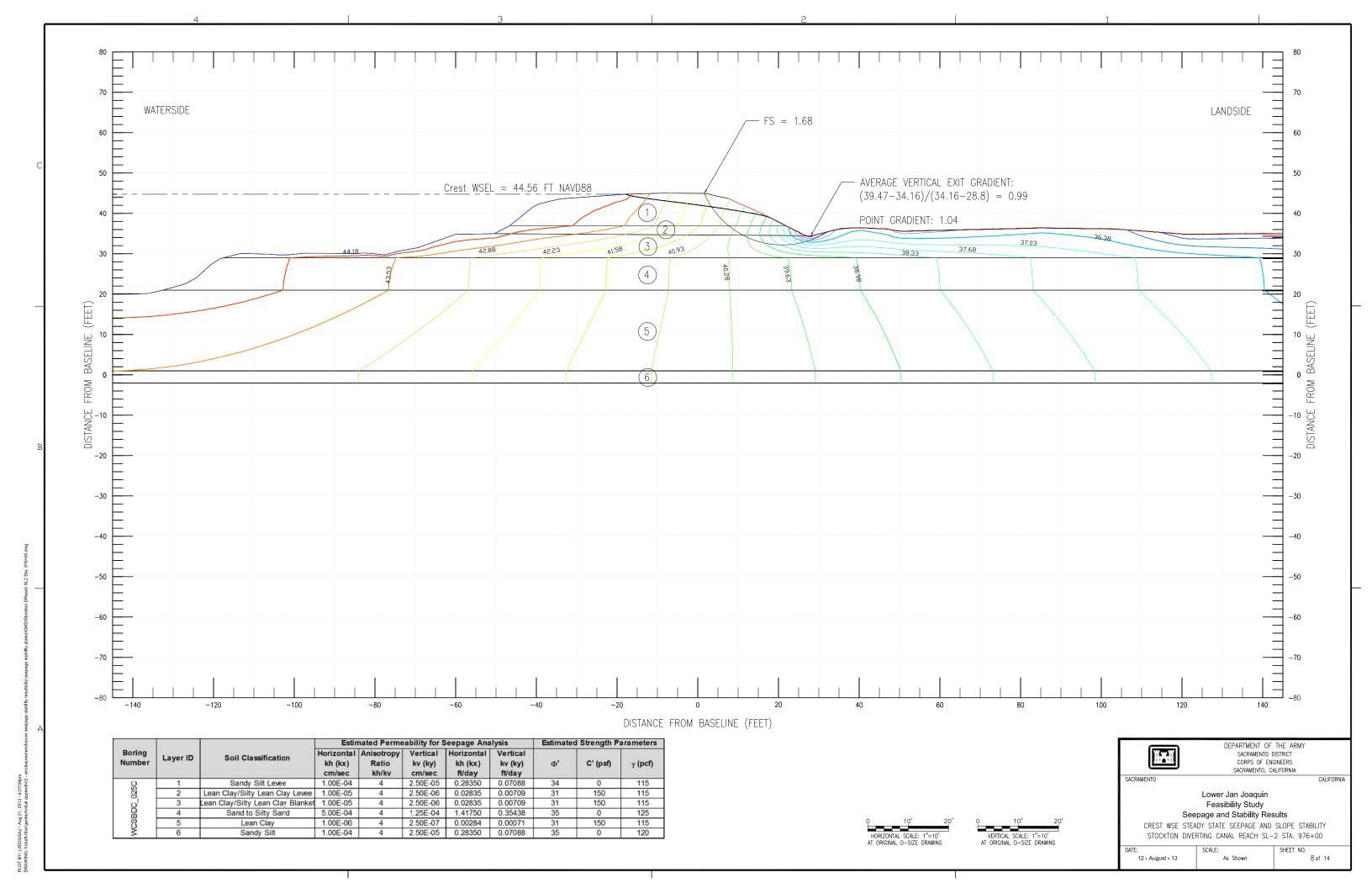

		SEEPAGE/	STABILITY ANALYSES	STA. 162+50	LINCOLN VILLALGE	REACH D-LV	
			USACE Pre	e-Project Conditio	ns		Notes
Wate Leve		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Circular Failure Surface FOS UTexas4	USACE
Crest	13.2	0.51	0.63	0.16	1.00	1.83	Seepage Complete 4/02/13
Elev.	11.0	0.35	0.44	0.14	0.67	1.94	Stability Completed 4/03/13
Elev.	8.5	0.18	0.24	0.10	0.00	2.04	1
Elev.	6.0	0.01	0.01	0.00	0.00	2.13	1
•			NO RES	ULTS FROM A-E F	REPORTS		
			Pre-Pr	oject Conditions			Notes
Wate Leve		Point Gradient at Toe	Average Vertical Exit Gradient at Toe	Horizontal Gradient	Breakout Above Landside Toe (ft)	Circular Failure Surface FOS UTexas4	No analyses. Historic Kleinfelder data used to generate cross-section in
200 yr +3							USACE analysis. Material
200 yr							properites listed were
100 yr							modified based on
							discussions with Levee Safety.

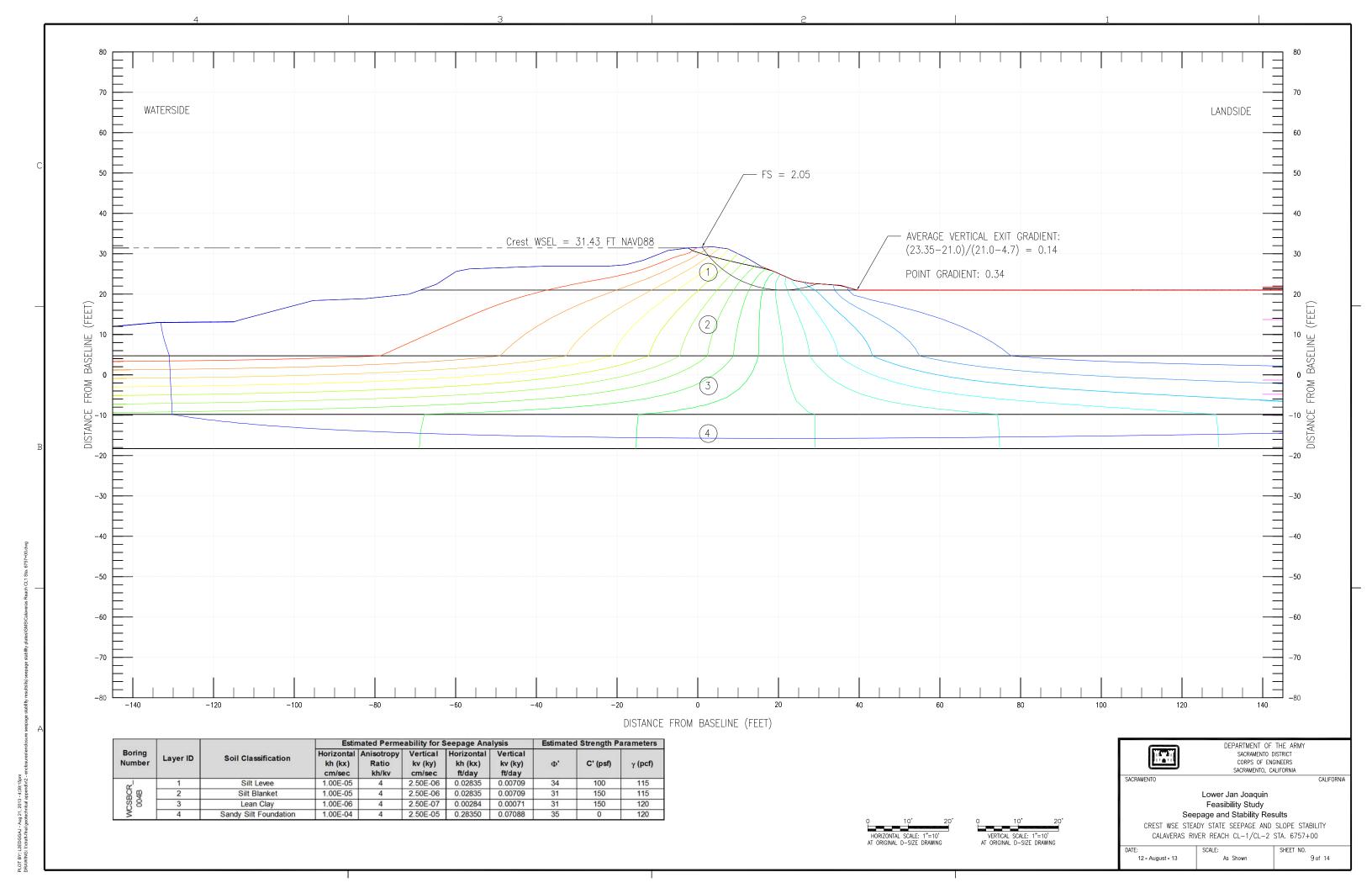

LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY

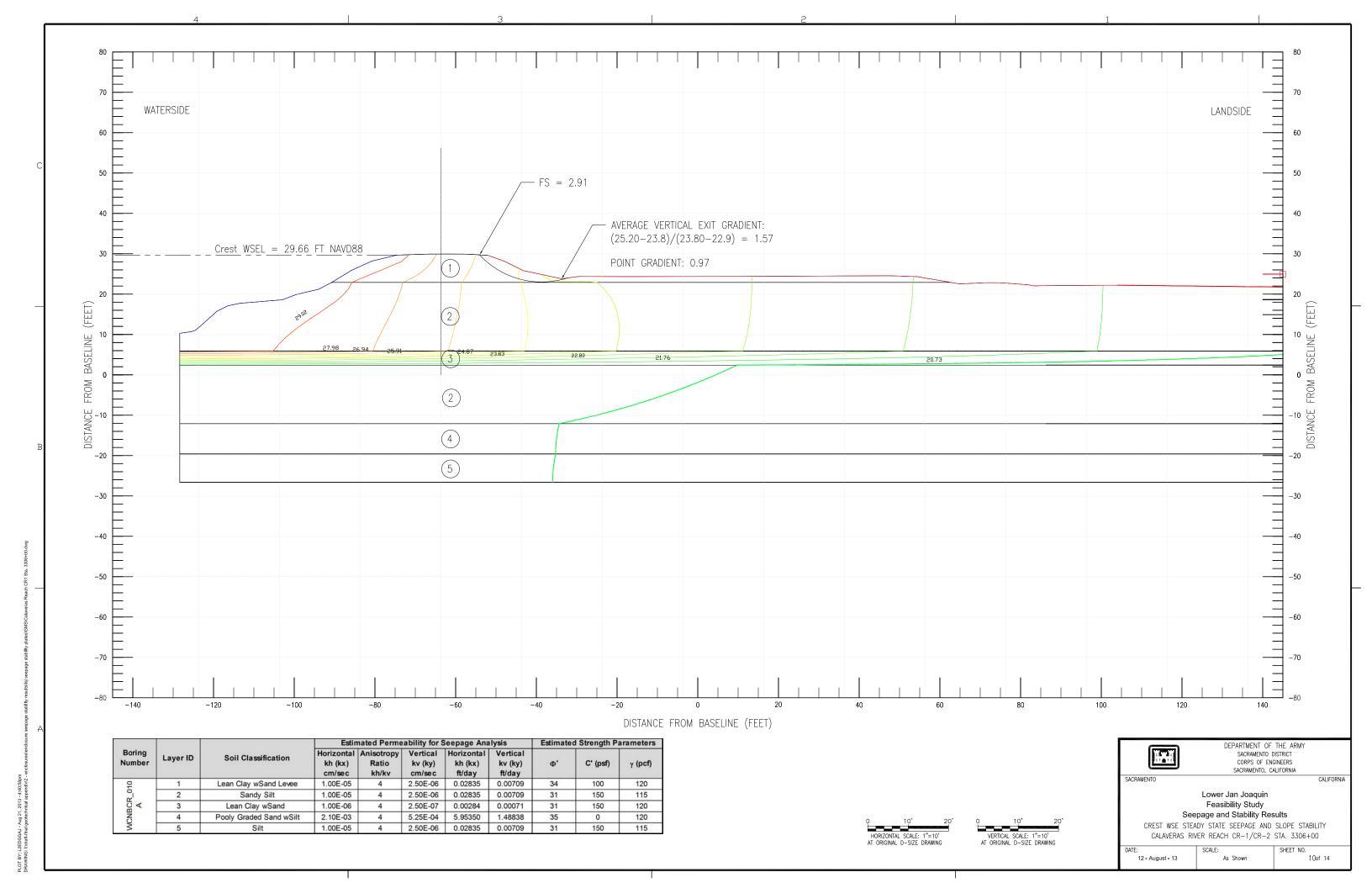

CROSS-SECTIONS WITH STRATIGRAPHY HEAD CONTOURS AND FAILURE SURFACE

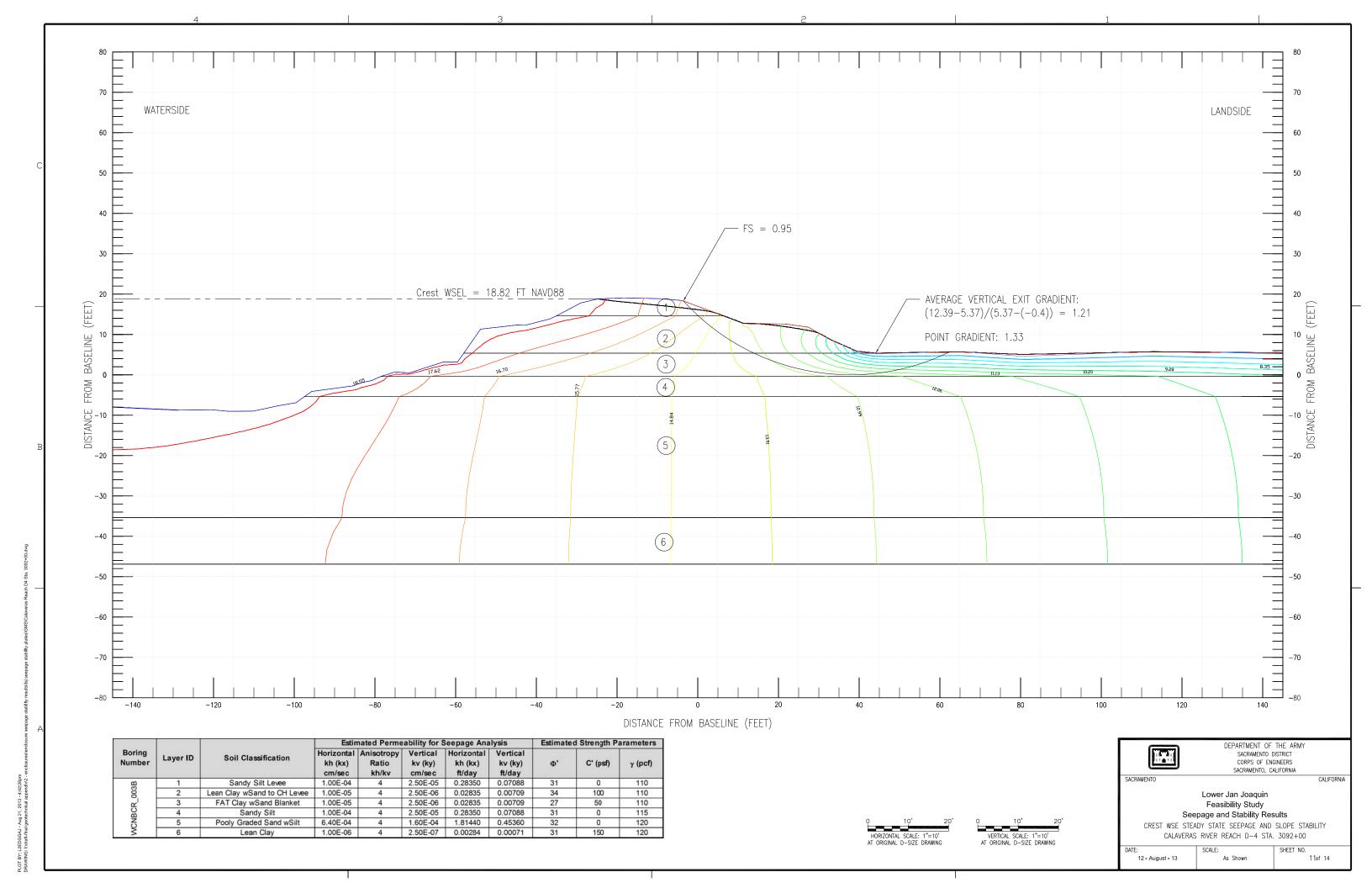


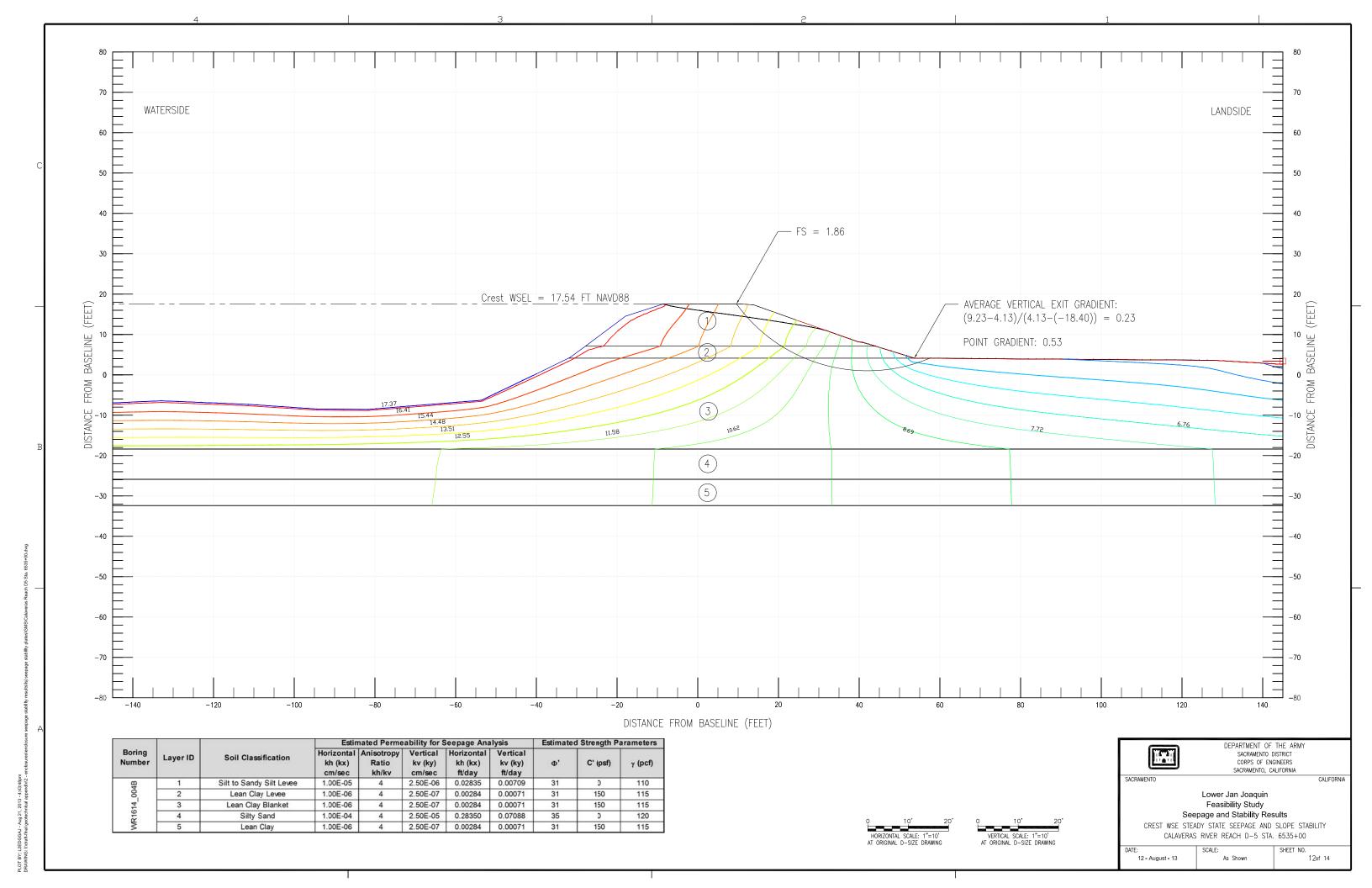


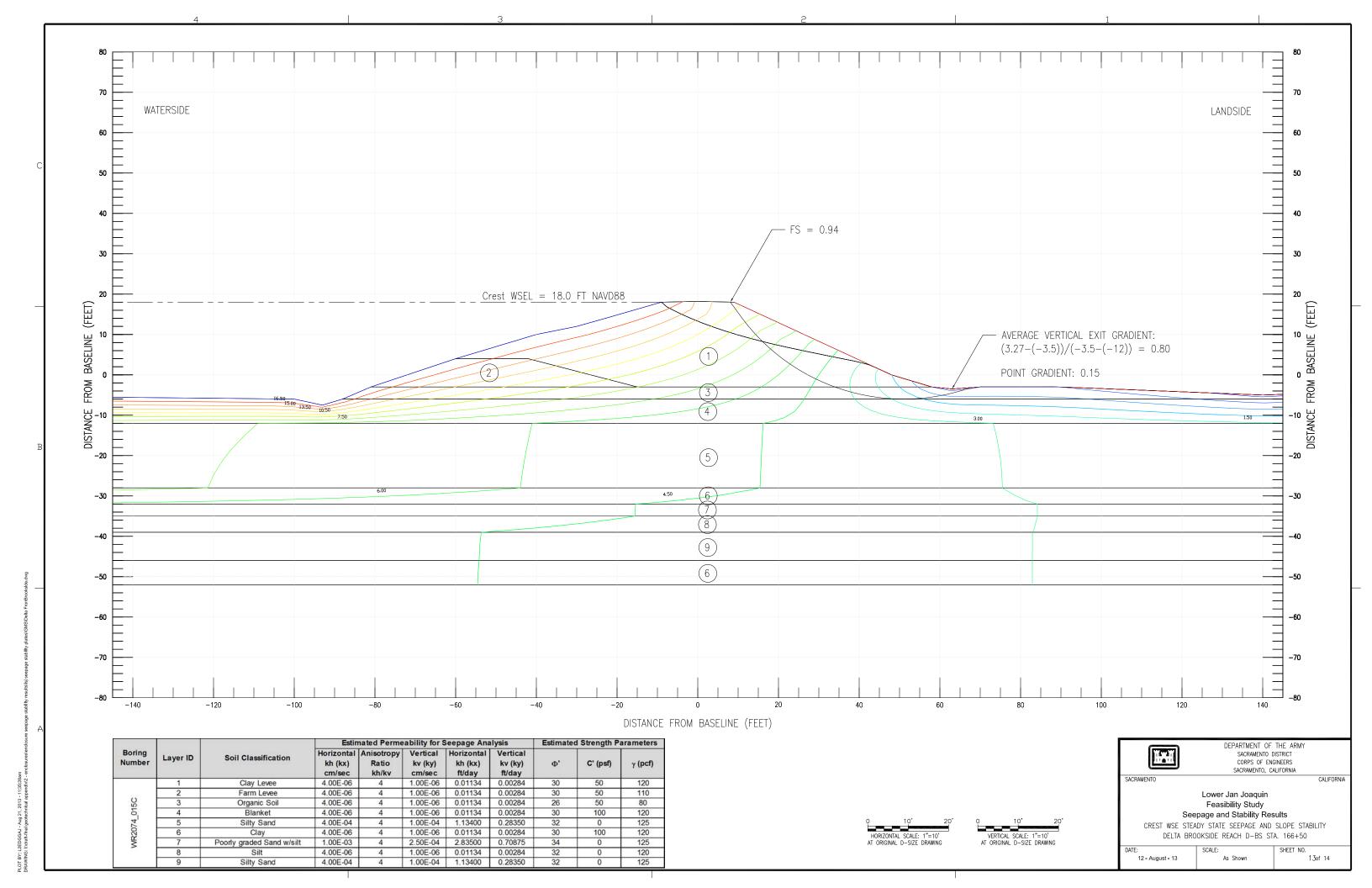


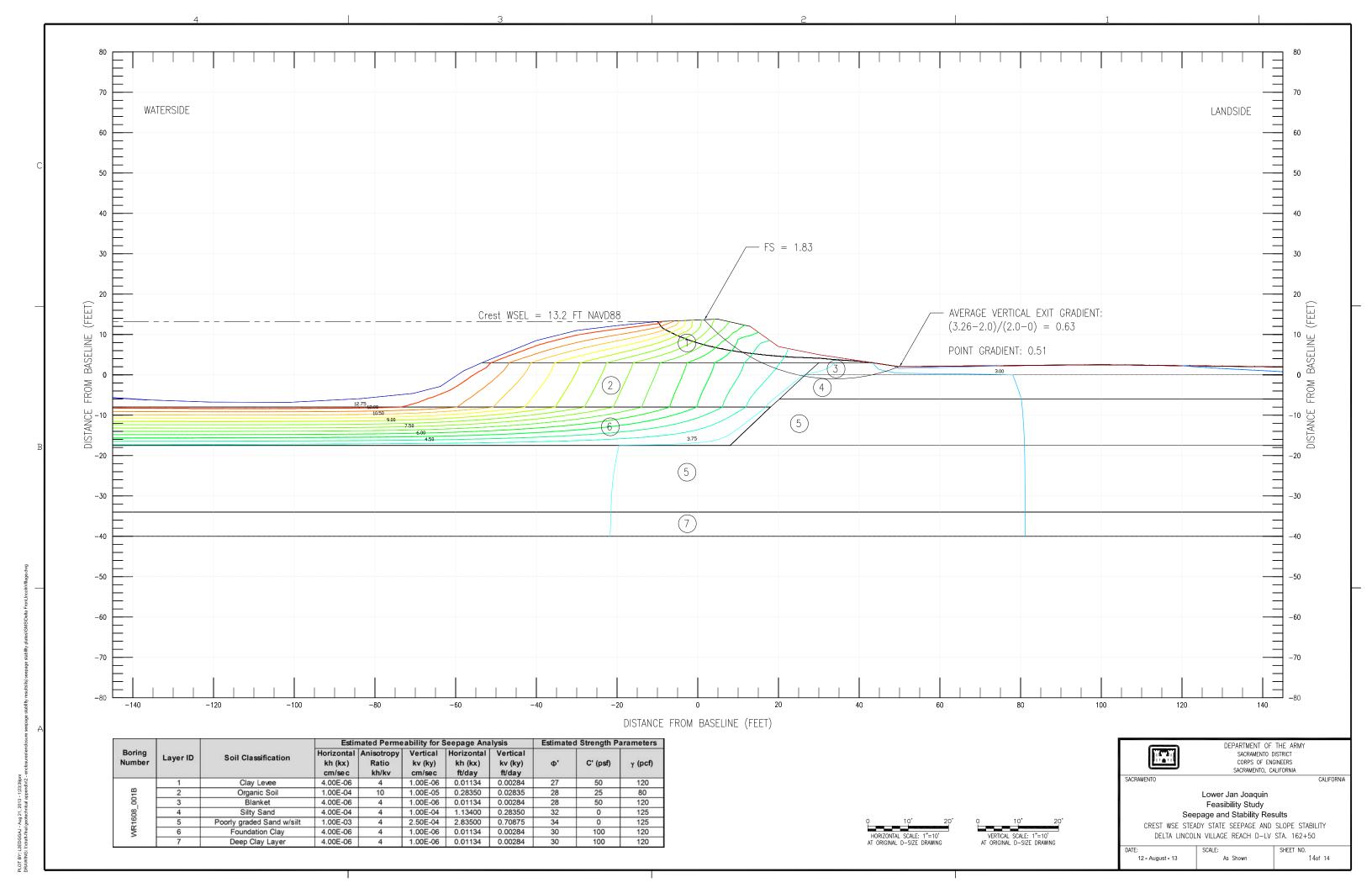












LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY

GEOTECHNICAL REPORT

ENCLOSURE E3 RISK AND UNCERTAINTY ANALYSES

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Determination of Random Variables For Underseepage Reliability Analysis**

Project: Lower San Joaquin Channel: San Joaquin River Basin and Reach: Index Point LR1

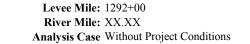
Levee Mile: 1292+00 River Mile: XX.XX

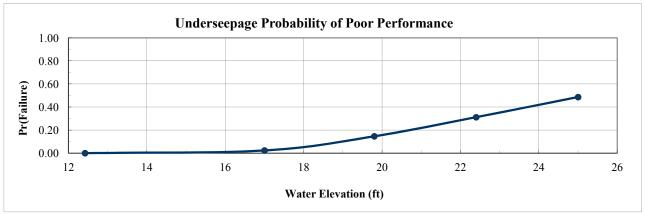
Crest Elev.: 25.00 L/S Toe Elev.: 12.42 Analysis By: G. Johnson

Checked By: J. Hogan, M. Perlea
Date: 12/18/2012 Analysis Case Without Project Conditions **W/S Toe Elev.:** 11.00

		Blanket	Thickness Varia	ble (z)			Aquifer T	hickness Varia	able (d)				H	ydraulic Conduct	ivity Vairable	s (Kb and Kf			
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Blaı	ıket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	Ki/Kb	(MLV)	Deviation	variation	of Variation
WR0017_016C	16					40					CL	0.0007	SP-SM	14.18	20257				
WR0017_017C	22					35					CL	0.0007	SP-SM	14.18	20257				
WR0017_020C	18					38					CL	0.0007	SP-SM	14.18	20257				
WR0017_021C	14					46					CL	0.0007	SP-SM	14.18	20257				
WR0017_025C	14					20					CL	0.0007	SM	2.8	4000				
WR0017_027C	12					28					CL	0.0007	SM	2.8	4000				
WR0017_029B	4	13	6	41	46	12	28	16	288	57	CL	0.0007	SP	14.18	20257	14838	8004	75668237	54
WR0017_031C	12					8					CL	0.0007	SM	2.8	4000				
WR0017_034C	16					54					CL	0.0007	SM	14.18	20257				
WR0017_036B	10					5					CL	0.0007	SM	2.8	4000				
WR0017_041B	2					32					CL	0.0007	SP-SM	14.18	20257				
WR0017_039C	14					14					CL	0.0007	SP-SM	14.18	20257				

	Blanket Mate	rial 1 (lowest	permeability)		Blanket Mater	rial 2	Transformed Blanket		Aquifer Mate	rial 1	1	Aquifer Materia	al 2		Aquifer Mater	rial 3	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	Tillekiless (z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR0017_016C	CL	16	0.0007				16	SP-SM	40	14.18							14.18
WR0017_017C	CL	22	0.0007				22	SP-SM	35	14.18							14.18
WR0017_020C	CL	18	0.0007				18	SP-SM	38	14.18							14.18
WR0017_021C	CL	14	0.0007				14	SP-SM	46	14.18							14.18
WR0017_025C	CL	14	0.0007				14	SM	20	2.8							2.8
WR0017_027C	CL	12	0.0007				12	SM	28	2.8							2.8
WR0017_029B	CL	4	0.0007				4	SP	12	14.18							14.18
WR0017_031C	CL	12	0.0007				12	SM	8	2.8							2.8
WR0017_034C	CL	16	0.0007				16	SM	54	14.18							14.18
WR0017 036B	CL	10	0.0007				10	SM	5	2.8							2.8
WR0017_041B	CL	2	0.0007				2	SP-SM	32	14.18							14.18
WR0017_039C	CL	14	0.0007				14	SP-SM	14	14.18							14.18
	·																


IP LR1.RD 17.LSJ River.xls 8/19/2013


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Underseepage Reliability Analysis With Blanket Theory Analysis

Project: Lower San Joaquin **Study Area:** San Joaquin River **River Section:** Index Point LR1

	Random Variables									
Parameter	Parameter Expected Standard Coefficient of Value Deviation Variation, %									
Permaebility Ratio	14838	8004	54							
Blanket Thickness (z)	13	6	46							
Aquifer Thickness (d)	28	16	57							

	Blanket Theory Analysis Inputs								
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket				
NO	7A	90	95	∞	112				

-0.462569

0.513201

48.679948

F(z) =

Pr(f) % =

Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea Date: 12/18/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	12.42	0.0000
Elev. 17.0	4.58	17.00	0.0234
200 yr	7.38	19.80	0.1465
Elev. 22.4	9.98	22.40	0.3121
Crest	12.58	25.00	0.4868

Cr	Rh					
Head =	Head = 12.58					

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	14838	13.00	28.00	89.96	2324.01	0.0112	11.65	0.90		
2	22842	13.00	28.00	89.97	2883.49	0.0091	11.82	0.91	0.000400	0.16
3	6834	13.00	28.00	89.90	1577.21	0.0159	11.26	0.87	0.000400	0.10
4	14838	19.00	28.00	89.97	2809.59	0.0094	11.80	0.62	0.250000	99.59
5	14838	7.00	28.00	89.92	1705.36	0.0148	11.35	1.62	0.230000	99.39
6	14838	13.00	44.00	89.97	2913.30	0.0142	11.83	0.91	0.000625	0.25
7	14838	13.00	12.00	89.90	1521.42	0.0070	11.22	0.86	0.000023	0.23
		-				-		Total	0.251025	100.00

 $E[I] = 0.900000 E[\ln I] = -0.240339 Var[I] = 0.551025 \sigma[I] = 0.501024 \sigma[\ln I] = 0.519573 V(I) = 0.556693 In(I crit) = -0.223144$

200	yr	Rh
Head =	7.38	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	14838	13.00	28.00	89.96	2324.01	0.0112	6.84	0.53		
2	22842	13.00	28.00	89.97	2883.49	0.0091	6.94	0.53	0.000100	0.11
3	6834	13.00	28.00	89.90	1577.21	0.0159	6.61	0.51	0.000100	0.11
4	14838	19.00	28.00	89.97	2809.59	0.0094	6.92	0.36	0.087025	99.77
5	14838	7.00	28.00	89.92	1705.36	0.0148	6.66	0.95	0.087023	99.11
6	14838	13.00	44.00	89.97	2913.30	0.0142	6.94	0.53	0.000100	0.11
7	14838	13.00	12.00	89.90	1521.42	0.0070	6.58	0.51	0.000100	
		·						Total	0.087225	100.00

Total 0.087225 E[I] =0.530000 E[ln I] = -0.7700900.087225 Var[I]= 0.295339 $\sigma [ln I] = 0.520023$ σ[I]= V(I) =0.557243 -1.480877 F(z) =0.853548 0.80 ln(I crit) = -0.22314414.645160 Pr(f) % =

Elev. 2	Rh	
Head =	9.98	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	14838	13.00	28.00	89.96	2324.01	0.0112	9.24	0.71		
2	22842	13.00	28.00	89.97	2883.49	0.0091	9.38	0.72	0.000225	0.14
3	6834	13.00	28.00	89.90	1577.21	0.0159	8.93	0.69	0.000223	
4	14838	19.00	28.00	89.97	2809.59	0.0094	9.36	0.49	0.160000	99.61
5	14838	7.00	28.00	89.92	1705.36	0.0148	9.00	1.29	0.100000	99.01
6	14838	13.00	44.00	89.97	2913.30	0.0142	9.38	0.72	0.000400	0.25
7	14838	13.00	12.00	89.90	1521.42	0.0070	8.90	0.68	0.000400	
								Total	0.160625	100.00

Crest Elev.: 25.00

L/S Toe Elev.: 12.42

W/S Toe Elev.: 11.00

3 =	-0.914176
F(z) =	0.687894
Pr(f) % =	31.210589

Elev. 1	Rh	
Head =	4.58	

Ic=

0.80

Ic= 0.80

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	14838	13.00	28.00	89.96	2324.01	0.0112	4.24	0.33		
2	22842	13.00	28.00	89.97	2883.49	0.0091	4.30	0.33	0.000025	0.08
3	6834	13.00	28.00	89.90	1577.21	0.0159	4.10	0.32	0.000023	
4	14838	19.00	28.00	89.97	2809.59	0.0094	4.30	0.23	0.032400	99.62
5	14838	7.00	28.00	89.92	1705.36	0.0148	4.13	0.59	0.032400	99.02
6	14838	13.00	44.00	89.97	2913.30	0.0142	4.31	0.33	0.000100	0.31
7	14838	13.00	12.00	89.90	1521.42	0.0070	4.08	0.31	0.000100	
								Total	0.032525	100.00

ln(I crit) = -0.223144

ln(I crit) = -0.223144

E[I] =	0.330000	E[ln I] =	-1.239332
Var[I]=	0.032525		
σ[I]=	0.180347	σ[ln I] =	0.511214
V(I) =	0.546506		

 $\beta = -2.424294$ F(z) = 0.976583 Pr(f) % = 2.341711

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Levee Mile: 1292+00

River Mile: XX.XX

Analysis Case Without Project Conditions

Project: Lower San Joaquin Study Area: San Joaquin River River Section: Index Point LR1

Random Variables										
Parameter Expected Standard Coefficient of Va										
Tractive Stress (Tc)	50	5.0	10.00							
Initial Porosity (n)	0.4	0.04	10.00							
Initial Permeability (Ko)	1.00E-10	3.00E-11	30.00							

1.0	0	Chrough-	-Seepage	Probab	ility of P	oor Perfo	ormance	
0.8	F .				-			
9.0 e	· -							
0.4 0.2	-							
L 0.0				<u> </u>		<u> </u>		
	12	14	16	18 Water El	20 evation (ft)) 22	24	26

FS req'd =

1.00

Crest Elev.: 25.00

L/S Toe Elev.: 12.42

W/S Toe Elev.: 11.00

Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea Date: 12/18/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	12.42	0.0000
Elev. 17.0	4.58	17.00	0.000000
200 yr	7.38	19.80	0.000000
Elev. 22.4	9.98	22.40	0.000000
Crest	12.58	25.00	0.000000

Pr(f)% = 0.000000

I	Pr(f)=0
	NO

Crest		Head =	12.58		Horizontai (Gradient (IX) = 0.440	1
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.40	1.00E-10	1140.21	2591.38		
2	45.00	0.40	1.00E-10	1026.19	2332.25	67152.701113	26.44
3	55.00	0.40	1.00E-10	1254.23	2850.52	0/132./01113	20.44
4	50.00	0.36	1.00E-10	1081.70	2458.40	16830,356890	6.63
5	50.00	0.44	1.00E-10	1195.86	2717.87	10830.330890	0.03
6	50.00	0.40	7.00E-11	1362.81	3097.30	169950.936279	66.93
7	50.00	0.40	1.30E-10	1000.03	2272.79	109930.930279	00.93
E[FS] =	2591.383822		$E[\ln FS] =$	7.841389	Total	253933.994282	100.00
Var[FS]=	253933.994282						
$\sigma[FS]=$	503.918639		$\sigma[\ln FS]=$	0.192658		β =	40.701152
V(FS) =	0.194459					$\mathbf{F}(\mathbf{z}) =$	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	

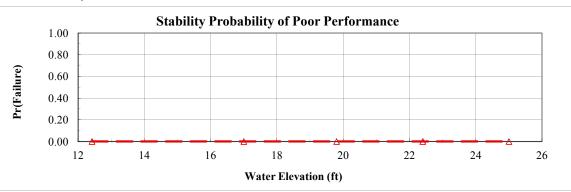
200 yr		Head =	7.38		Horizontal (Gradient (Ix) = 0.410	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.40	1.00E-10	1140.21	2781.00		
2	45.00	0.40	1.00E-10	1026.19	2502.90	77339.458272	26.44
3	55.00	0.40	1.00E-10	1254.23	3059.10	11339.438212	20.44
4	50.00	0.36	1.00E-10	1081.70	2638.29	19383.444936	6.63
5	50.00	0.44	1.00E-10	1195.86	2916.73	19303.444930	0.03
6	50.00	0.40	7.00E-11	1362.81	3323.93	105721 714025	66.02
7	50.00	0.40	1.30E-10	1000.03	2439.10	195731.714835	66.93
E[FS] =	2780.997272		$E[\ln FS] =$	7.912006	Total	292454.618043	100.00
Var[FS]=	292454.618043						
$\sigma[FS]=$	540.790734		σ[ln FS]=	0.192658		β =	41.067696
V(FS) = FS req'd =	0.194459 1.00		ln(FS req'd) =	0.000000		F(z) = Pr(f) % =	

Elev. 22.4		Head =	9.98		Horizontal G	radient (Ix) = 0.430	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.40	1.00E-10	1140.21	2651.65		
2	45.00	0.40	1.00E-10	1026.19	2386.48	70212 400040	26.44
3	55.00	0.40	1.00E-10	1254.23	2916.81	70312.400949	26.44
4	50.00	0.36	1.00E-10	1081.70	2515.57	17622 266507	6.62
5	50.00	0.44	1.00E-10	1195.86	2781.07	17622.266597	6.63
6	50.00	0.40	7.00E-11	1362.81	3169.33	177947.546045	66.02
7	50.00	0.40	1.30E-10	1000.03	2325.65	177947.340043	66.93
E[FS] =	2651.648562		$E[\ln FS] =$	7.864378	Total	265882.213591	100.00
Var[FS]=	265882.213591						
σ[FS]=	515.637677		σ[ln FS]=	0.192658		β =	= 40.820480
V(FS) =	0.194459	-				F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	- 0.000000
							_
Elev. 17.0							
151	ev. 17.0	Head =	4.58		Horizontal G	radient (Ix) = 0.370	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	Horizontal G	Variance Component	% Variance
	Tractive Stress	Initial	Initial Permeability				% Variance
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Gradient (Ic)	FS	Variance Component	
Run 1 (Mean)	Tractive Stress (Tc) 50.00	Initial Porosity (n) 0.40	Initial Permeability (Ko) 1.00E-10	Gradient (Ic) 1140.21	FS 3081.65		% Variance
Run 1 (Mean) 2	Tractive Stress (Tc) 50.00 45.00	Initial Porosity (n) 0.40 0.40	Initial Permeability (Ko) 1.00E-10 1.00E-10	1140.21 1026.19	FS 3081.65 2773.48	Variance Component 94965.397630	26.44
Run 1 (Mean) 2 3	Tractive Stress (Tc) 50.00 45.00 55.00	Initial Porosity (n) 0.40 0.40 0.40	Initial Permeability (Ko) 1.00E-10 1.00E-10 1.00E-10	Gradient (Ic) 1140.21 1026.19 1254.23	FS 3081.65 2773.48 3389.81	Variance Component	
Run 1 (Mean) 2 3 4	Tractive Stress (Tc) 50.00 45.00 55.00 50.00	Initial Porosity (n) 0.40 0.40 0.40 0.36	Initial Permeability (Ko) 1.00E-10 1.00E-10 1.00E-10 1.00E-10	Gradient (Ic) 1140.21 1026.19 1254.23 1081.70	FS 3081.65 2773.48 3389.81 2923.51	Variance Component 94965.397630 23801.001416	26.44
Run 1 (Mean) 2 3 4 5	Tractive Stress (Tc) 50.00 45.00 55.00 50.00 50.00	Initial Porosity (n) 0.40 0.40 0.40 0.36 0.44	Initial Permeability (Ko) 1.00E-10 1.00E-10 1.00E-10 1.00E-10 1.00E-10	Gradient (Ic) 1140.21 1026.19 1254.23 1081.70 1195.86	FS 3081.65 2773.48 3389.81 2923.51 3232.06	Variance Component 94965.397630	26.44
Run 1 (Mean) 2 3 4 5 6 7 E[FS] =	Tractive Stress (Tc) 50.00 45.00 55.00 50.00 50.00 50.00	Initial Porosity (n) 0.40 0.40 0.40 0.36 0.44 0.40	Initial Permeability (Ko) 1.00E-10 1.00E-10 1.00E-10 1.00E-10 1.00E-10 7.00E-11	1140.21 1026.19 1254.23 1081.70 1195.86 1362.81 1000.03	FS 3081.65 2773.48 3389.81 2923.51 3232.06 3683.27	Variance Component 94965.397630 23801.001416	26.44
Run 1 (Mean) 2 3 4 5 6 7 E[FS] = Var[FS]=	Tractive Stress (Tc) 50.00 45.00 55.00 50.00 50.00 50.00 50.00 3081.645626 359106.072265	Initial Porosity (n) 0.40 0.40 0.40 0.36 0.44 0.40	Initial Permeability (Ko) 1.00E-10 1.00E-10 1.00E-10 1.00E-10 1.00E-10 1.00E-11 1.30E-10	1140.21 1026.19 1254.23 1081.70 1195.86 1362.81 1000.03	FS 3081.65 2773.48 3389.81 2923.51 3232.06 3683.27 2702.78	Variance Component 94965.397630 23801.001416 240339.673219	26.44 6.63 66.93
Run 1 (Mean) 2 3 4 5 6 7 E[FS] =	Tractive Stress (Tc) 50.00 45.00 55.00 50.00 50.00 50.00 50.00 3081.645626 359106.072265	Initial Porosity (n) 0.40 0.40 0.40 0.36 0.44 0.40	Initial Permeability (Ko) 1.00E-10 1.00E-10 1.00E-10 1.00E-10 1.00E-10 1.00E-11 1.30E-10	1140.21 1026.19 1254.23 1081.70 1195.86 1362.81 1000.03 8.014661	FS 3081.65 2773.48 3389.81 2923.51 3232.06 3683.27 2702.78	Variance Component 94965.397630 23801.001416 240339.673219	26.44 6.63 66.93 100.00 = 41.600528

0.000000

ln(FS req'd) =

IP LR1.RD 17.LSJ River.xls


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin Study Area: San Joaquin River River Section: Index Point LR1

IP LR1.RD 17.LSJ River.xls

Random Variables										
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,							
Levee Φ	28	4	13.00							
Levee Cohesion	50	20	40.00							
Levee γ	120	8	7.00							
Foundation Φ	30	4	13.00							
Foundation Cohesion	100	40	40.00							

Elev. 22.4

Head =

9.98

Checked By: J. Hogan, M. Perlea Date: 12/18/2012								
Analysis Case	Head	Elevation	Pr(f)					
Toe	0.00	12.42	0.0000					
Elev. 17.0	4.58	17.00	0.000000					

19.80

22.40

25.00

0.000000

0.000000

0.000000

7.38

9.98

12.58

200 yr

Elev. 22.4

Crest

Analysis By: G. Johnson

Cre	est	Head =	12.58	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	50	120	30	100	1.33		
2	24	50	120	30	100	1.30	0.001024	50.28
3	32	50	120	30	100	1.36	0.001024	30.28
4	28	30	120	30	100	1.31	0.000380	18.67
5	28	70	120	30	100	1.35	0.000380	18.07
6	28	50	112	30	100	1.36	0.000240	11.80
7	28	50	128	30	100	1.32	0.000240	11.60
8	28	50	120	26	100	1.36	0.000196	9.62
9	28	50	120	34	100	1.33	0.000190	9.02
10	28	50	120	30	60	1.36	0.000196	9.62
11	28	50	120	30	140	1.33	0.000190	9.02
E[FS] =	1.329000			$E[\ln FS] =$	0.283851	Total	0.002037	100.00
Var[FS]=	0.002037							
$\sigma[FS]=$	0.045128			$\sigma[\ln FS]=$	0.033946		β =	
V(FS) =	0.033956	Ì					$\mathbf{F}(\mathbf{z}) =$	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	- 0.000000
					1			
200	vr	Head =	7.38	Pr(f)=0	YES			

<u>)</u>	V(FS) = FS req'd =	1
	$\sigma[FS] =$	
_	Var[FS]=	
)	E[FS] =	
	11	
1	10	
	9	
1	8	
	7	
1	6	
	5	
	4	
	3	

 $\sigma[FS]=V(FS)=$

1.00

FS req'd =

				(-) *				
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	50	120	30	100	1.56		
2	24	50	120	30	100			
3	32	50	120	30	100			
4	28	30	120	30	100			
5	28	70	120	30	100			
6	28	50	112	30	100			
7	28	50	128	30	100			
8	28	50	120	26	100			
9	28	50	120	34	100			
10	28	50	120	30	60			
11	28	50	120	30	140			
E[FS] =		-		$E[\ln FS] =$	-	Total		-
Var[FS]=								

YES

Pr(f)=0

Elev. 17.0	Head =	4.58	Pr(f)=0	YES
S req'd = 1.00]		ln(FS req'd) =	0.000000
V(FS) =				
$\sigma[FS]=$			σ[m FS]=	

β=	
F(z) =	
Pr(f) % =	0.000000

F(z) =

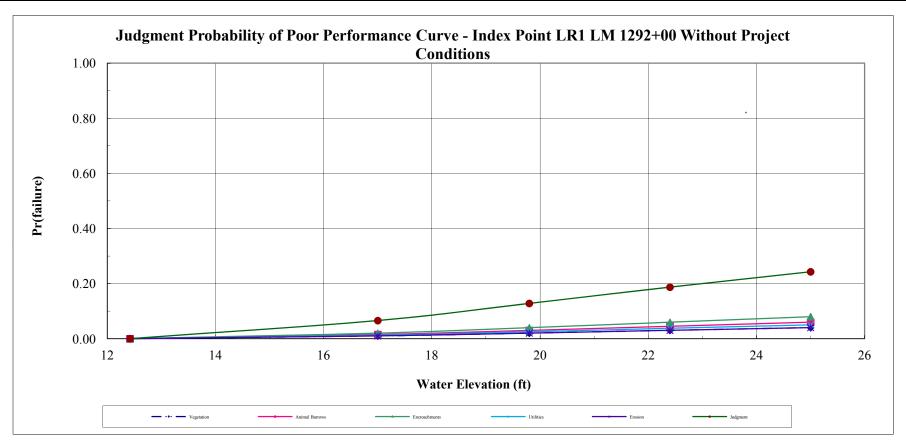
0.000000

Pr(f) % =

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	50	120	30	100	1.66		
2	24	50	120	30	100			
3	32	50	120	30	100			
4	28	30	120	30	100			
5	28	70	120	30	100			
6	28	50	112	30	100			
7	28	50	128	30	100			
8	28	50	120	26	100			
9	28	50	120	34	100			
10	28	50	120	30	60			
11	28	50	120	30	140			

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	50	120	30	100	1.83		
2	24	50	120	30	100			
3	32	50	120	30	100			
4	28	30	120	30	100			
5	28	70	120	30	100			
6	28	50	112	30	100			
7	28	50	128	30	100			
8	28	50	120	26	100			
9	28	50	120	34	100			
10	28	50	120	30	60			
11	28	50	120	30	140			
E[FS] = Var[FS]=				$E[\ln FS] =$		Total		

 $\sigma[\ln FS]=$

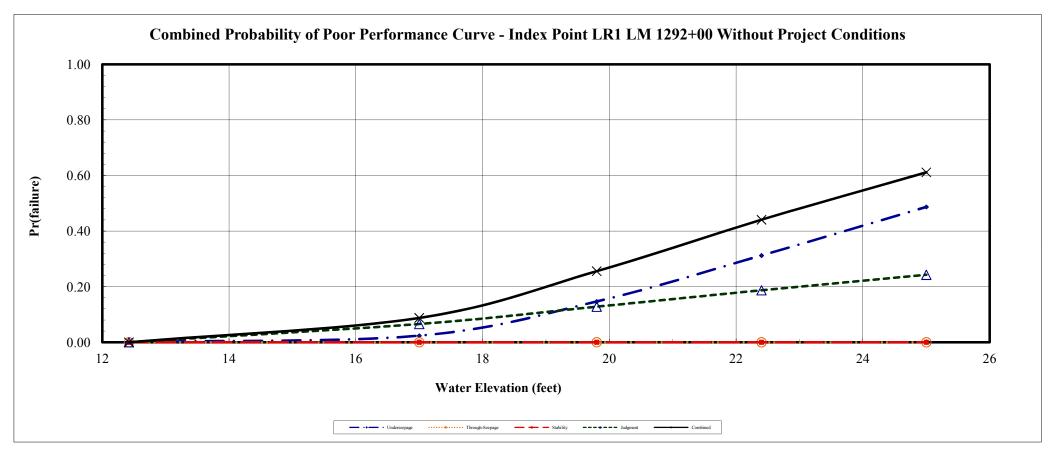

ln(FS req'd) = 0.000000

E[FS] =	$E[\ln FS] =$	Tot	tal	
Var[FS]=			<u></u>	
$\sigma[FS]=$	$\sigma[\ln FS]=$		β =	=
V(FS) =			F(z) =	-
FS req'd = 1.00	ln(FS req'd) =	0.000000	Pr(f) % =	= 0.0
				

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Judgment Probability of Poor Performance Curve

Project: Lower San JoaquinLevee Mile: 1292+00Crest Elev.: 25.00Analysis By: G. JohnsonStudy Area: San Joaquin RiverRiver Mile: XX.XXL/S Toe Elev.: 12.42Checked By: J. Hogan, M. FRiver Section: Index Point LR1Analysis Case: Without Project ConditionsW/S Toe Elev.: 11.00Date: 12/18/2012

Water Surface	Vege	tation	Animal	Burrows	Encroachments		Utilities		Erosion		Judgment	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
12.42	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
17.00	0.0100	0.9900	0.0150	0.9850	0.0200	0.9800	0.0125	0.9875	0.0100	0.9900	0.0657	0.9343
19.80	0.0200	0.9800	0.0300	0.9700	0.0400	0.9600	0.0250	0.9750	0.0200	0.9800	0.1280	0.8720
22.40	0.0300	0.9700	0.0450	0.9550	0.0600	0.9400	0.0375	0.9625	0.0300	0.9700	0.1870	0.8130
25.00	0.0400	0.9600	0.0600	0.9400	0.0800	0.9200	0.0500	0.9500	0.0400	0.9600	0.2429	0.7571



IP LR1.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San JoaquinLevee Mile: 1292+00Crest Elev.: 25.00Analysis By: G. JohnsonStudy Area: San Joaquin RiverRiver Mile: XX.XXL/S Toe Elev.: 12.42Checked By: J. Hogan, M. PerlRiver Section: Index Point LR1Analysis Case: Without Project ConditionsW/S Toe Elev.: 11.00Date: 12/18/2012

Water Surface	Unders	seepage	Through-Seepage		Stability		Judg	ment	Combined		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	
12.42	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
17.00	0.0234	0.9766	0.0000	1.0000	0.0000	1.0000	0.0657	0.9343	0.0876	0.9124	
19.80	0.1465	0.8535	0.0000	1.0000	0.0000	1.0000	0.1280	0.8720	0.2557	0.7443	
22.40	0.3121	0.6879	0.0000	1.0000	0.0000	1.0000	0.1870	0.8130	0.4408	0.5592	
25.00	0.4868	0.5132	0.0000	1.0000	0.0000	1.0000	0.2429	0.7571	0.6114	0.3886	

IP LR1.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Determination of Random Variables For Underseepage Reliability Analysis**

Project: Lower San Joaquin Channel: Right Bank San Joaquin River
Basin and Reach: Index Point LR2 Levee Mile: STA 1417+00 River Mile: XX.XX

Analysis Case Without Project Conditions

Crest Elev.: 27.80 **L/S Toe Elev.:** 12.00 **W/S Toe Elev.:** 12.00

Analysis By: G. Johnson Checked By: M. Perlea 12/03/2012

Date: 11/28/2012

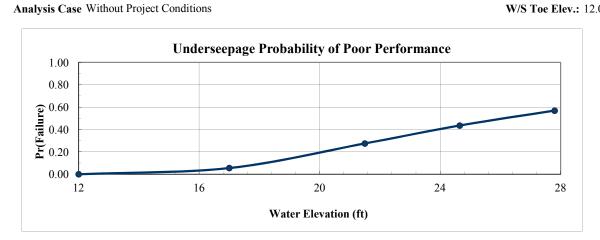
		Blanko	et Thickness Vari	able (z)			Aquifer Thickness Variable (d)						Н	ydraulic Conduct	ivity Vairabl	les (Kb and K	f)		
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Blan	ıket	Aquife	r Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	v ai iation	of Variation
WR0017_047B	10					28					CL	0.0007	SP-SM	0.28	400				
WR0017 049C	12					26					CL	0.0007	SP-SM	0.28	400				
WR0017_052B	8					10					SM	0.007	SP-SM	0.28	40				
WR0017_055C	6					12					SM	0.007	SP-SM	0.28	40				
WR0017_057B	4	7	4	20	57	20	18	7	95	39	SM	0.007	SM	0.028	4	126	170	25246	98
WR0017_063B	11	/	4	20	37	22	18	/	93	39	CL	0.0007	SM	0.028	40	120	170	23246	98
WR0017_064C	3					16					CL	0.0007	SM	0.028	40				
WR0017 065C	2					12					CL	0.0007	SM	0.028	40				

	Blanket Ma	terial 1 (lowest	t permeability)		Blanket Material 2		Transformed Blanket		Aquifer Mater	ial 1	I	Aquifer Materi	ial 2		Aquifer Mate	rial 3	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability		Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	Thickness (z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR0017_047B	CL	10	0.0007				10	SP-SM	28	0.28							0.28
WR0017_049C	CL	12	0.0007				12	SP-SM	26	0.28							0.28
WR0017 052B	SM	8	0.007				8	SP-SM	10	0.28							0.28
WR0017_055C	SM	6	0.007				6	SP-SM	12	0.28							0.28
WR0017_057B	SM	4	0.007				4	SM	20	0.028							0.028
WR0017_063B	CL	11	0.0007				11	SM	22	0.028							0.028
WR0017_064C	CL	3	0.0007				3	SM	16	0.028							0.028
WR0017_065C	CL	2	0.0007		_		2	SM	12	0.028							0.028

IP LR2.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**

Levee Mile: STA 1417+00


River Mile: XX.XX

Project: Lower San Joaquin Study Area: Right Bank San Joaquin River

River Section: Index Point LR2

Random Variables									
Parameter Expected Value Standard Coefficient of Deviation Variation, %									
Permaebility Ratio	126	123	98						
Blanket Thickness (z)	7	4	57						
Aquifer Thickness (d)	Aquifer Thickness (d) 18 7 39								

Blanket Theory Analysis Inputs									
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket				
NO	7A	75	62	∞	112				

Analysis By: G. Johnson **Checked By:** M. Perlea 12/03/2012 **Date:** 11/28/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	12.00	0.0000
Elev. 17.0	5.00	17.00	0.0555
200 year	9.50	21.50	0.2749
Elev. 24.65	12.65	24.65	0.4353
Crest	15.80	27.80	0.5685

Cr	est	Rh
Head =	15.80	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	126	7.00	18.00	67.24	126.00	0.0705	7.80	1.11		
2	249	7.00	18.00	70.82	177.30	0.0580	9.03	1.29	0.193600	29.32
3	3	7.00	18.00	17.81	17.82	0.1844	2.88	0.41	0.193000	29.32
4	126	11.00	18.00	69.83	157.95	0.0621	8.61	0.78	0.455625	69.01
5	126	3.00	18.00	59.45	82.49	0.0883	6.39	2.13	0.433023	09.01
6	126	7.00	25.00	69.21	148.49	0.0894	8.39	1.20	0.011025	1.67
7	126	7.00	11.00	63.23	98.50	0.0492	6.96	0.99	0.011023	1.07
								Total	0.660250	100.00

E[I] =1.110000 $E[\ln I] = -0.110190$

Ic=	0.80	ln(I crit) =	-0.223144	Pr(f) % =	56.845171
				F(z) =	0.431548
V(I) =	0.732034			β=	-0.168214
$\sigma[I]=$	0.812558	σ [ln I] =	0.655057		
Var[I]=	0.660250				
-[-]	1.110000	=[]	0.110190		

200	year	Rh
Head =	9.50	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	126	7.00	18.00	67.24	126.00	0.0705	4.69	0.67		
2	249	7.00	18.00	70.82	177.30	0.0580	5.43	0.78	0.070225	29.52
3	3	7.00	18.00	17.81	17.82	0.1844	1.73	0.25	0.070223	29.32
4	126	11.00	18.00	69.83	157.95	0.0621	5.18	0.47	0.164025	68.96
5	126	3.00	18.00	59.45	82.49	0.0883	3.84	1.28	0.104023	08.90
6	126	7.00	25.00	69.21	148.49	0.0894	5.04	0.72	0.003600	1.51
7	126	7.00	11.00	63.23	98.50	0.0492	4.18	0.60	0.003000	1.31
								Total	0.237850	100.00

E[I] =0.670000 E[ln I] = -0.613063Var[I]= 0.237850 0.487699 $\sigma [\ln I] = 0.652051$ σ[I]= V(I) =0.727908 0.80 ln(I crit) = -0.223144Ic=

β=	-0.940207
F(z) =	0.725076
Pr(f) % =	27.492367

Elev. 24	Rh	
Head =	12.65	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	126	7.00	18.00	67.24	126.00	0.0705	6.24	0.89		
2	249	7.00	18.00	70.82	177.30	0.0580	7.23	1.03	0.122500	29.13
3	3	7.00	18.00	17.81	17.82	0.1844	2.31	0.33	0.122300	29.13
4	126	11.00	18.00	69.83	157.95	0.0621	6.90	0.63	0.291600	69.35
5	126	3.00	18.00	59.45	82.49	0.0883	5.12	1.71	0.291000	09.33
6	126	7.00	25.00	69.21	148.49	0.0894	6.72	0.96	0.006400	1.52
7	126	7.00	11.00	63.23	98.50	0.0492	5.57	0.80	0.000400	1.32
							-	Total	0.420500	100.00

E[I] = 0.890000 $E[\ln I] = -0.329451$ Var[I]= 0.420500 $\sigma[I] = 0.648460$ $\sigma [\ln I] = 0.652560$ V(I) = 0.728606

Crest Elev.: 27.80

L/S Toe Elev.: 12.00

W/S Toe Elev.: 12.00

Ic= 0.80 ln(I crit) = -0.223144

β=	-0.504859
F(z) =	0.564705
Pr(f) % =	43.529528

Elev. 1	17.0	Rh
Head =	5.00	

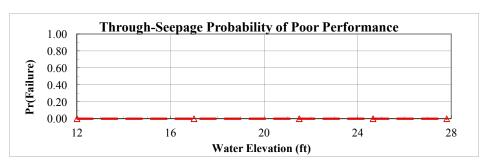
Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	126	7.00	18.00	67.24	126.00	0.0705	2.47	0.35		
2	249	7.00	18.00	70.82	177.30	0.0580	2.86	0.41	0.019600	30.19
3	3	7.00	18.00	17.81	17.82	0.1844	0.91	0.13	0.019000	30.19
4	126	11.00	18.00	69.83	157.95	0.0621	2.73	0.25	0.044100	67.92
5	126	3.00	18.00	59.45	82.49	0.0883	2.02	0.67	0.044100	07.92
6	126	7.00	25.00	69.21	148.49	0.0894	2.65	0.38	0.001225	1.89
7	126	7.00	11.00	63.23	98.50	0.0492	2.20	0.31	0.001223	1.09
							•	Total	0.064925	100.00

E[I] = 0.350000 $E[\ln I] = -1.262456$ Var[I]= 0.064925 $\sigma[I] = 0.254804$ $\sigma [\ln I] = 0.652126$

V(I) = 0.728011

Ic= 0.80 ln(I crit) = -0.223144

β=	-1.935909
F(z) =	0.944502
Pr(f) % =	5.549819


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin Study Area: Right Bank San Joaquin River **River Section:** Index Point LR2

Random Variables									
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,						
Tractive Stress (Tc)	5	0.5	10.00						
Initial Porosity (n)	0.4	0.04	10.00						
Initial Permeability (Ko)	1.00E-10	3.00E-11	30.00						

Pr(f)=0	
NO	

Levee Mile: STA 1417+00 River Mile: XX.XX L/S Toe Elev.: 12.00 Analysis Case Without Project Conditions **W/S Toe Elev.:** 12.00

Crest Elev.: 27.80

Analysis By: G. Johnson **Checked By:** M. Perlea 12/03/2012 **Date:** 11/28/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	12.00	0.0000
Elev. 17.0	5.00	17.00	0.000000
200 year	9.50	21.50	0.000000
Elev. 24.65	12.65	24.65	0.000000
Crest	15.80	27.80	0.000000

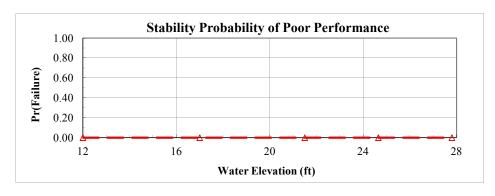
•	Crest Head = 15.80 Horizontal Gradient (1x) = 0.240						1
D.	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability	Critical Gradient (Ic)	FS	Variance Component	% Variance
Run	` ′		(K0)				
1 (Mean)	5.00	0.40	1.00E-10	114.02	475.09		
2	4.50	0.40	1.00E-10	102.62	427.58	2257.076899	26.44
3	5.50	0.40	1.00E-10	125.42	522.60	2237.070899	20.44
4	5.00	0.36	1.00E-10	108.17	450.71	565.686995	6.63
5	5.00	0.44	1.00E-10	119.59	498.28	303.080993	0.03
6	5.00	0.40	7.00E-11	136.28	567.84	5712.239803	66.93
7	5.00	0.40	1.30E-10	100.00	416.68	3/12.239803	00.93
E[FS] =	475.087034		$E[\ln FS] =$	6.144940	Total	8535.003697	100.00
Var[FS]=	8535.003697						
$\sigma[FS]=$	92.385084		$\sigma[\ln FS] =$	0.192658		β =	31.895640
V(FS) =	0.194459		. ,			F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	
•		1	• •				_
20	0 year	Head =	9.50		Horizontal (Gradient (Ix) = 0.140	1

R	un	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (N	Iean)	5.00	0.40	1.00E-10	114.02	814.43		
2	2	4.50	0.40	1.00E-10	102.62	732.99	6633.042314	26.44
3	3	5.50	0.40	1.00E-10	125.42	895.88	0033.042314	20.44
4	4	5.00	0.36	1.00E-10	108.17	772.64	1662.427089	6.63
	5	5.00	0.44	1.00E-10	119.59	854.19	1002.427089	0.03
(6	5.00	0.40	7.00E-11	136.28	973.44	16786.990441	66.93
,	7	5.00	0.40	1.30E-10	100.00	714.31	10/80.990441	00.93
]	E[FS] =	814.434915		$E[\ln FS] =$	6.683936	Total	25082.459843	100.00
Va	ar[FS]=	25082.459843						
	$\sigma[FS]=$	158.374429		$\sigma[\ln FS]=$	0.192658		β =	34.693331
	V(FS) =	0.194459					F(z) =	0.000000
FS	req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	

Ele	v. 24.65	Head =	12.65		Horizontal G	Fradient (Ix) = 0.190	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	600.11		•
2	4.50	0.40	1.00E-10	102.62	540.10	2601 210272	26.44
3	5.50	0.40	1.00E-10	125.42	660.12	3601.319373	26.44
4	5.00	0.36	1.00E-10	108.17	569.31	902.591993	6.63
5	5.00	0.44	1.00E-10	119.59	629.40	902.391993	0.03
6	5.00	0.40	7.00E-11	136.28	717.27	9114.266278	66.93
7	5.00	0.40	1.30E-10	100.00	526.33	9114.200278	00.93
E[FS] = Var[FS]=			E[ln FS] =	6.378554	Total	13618.177643	100.00
$\sigma[FS] = V(FS) =$	116.696948		σ[ln FS]=	0.192658		$\beta = F(z) = F(z)$	
FS req'd =			ln(FS req'd) =	0.000000		Pr(f) % =	
Ele	ev. 17.0	Head =	5.00		Horizontal G	Gradient (Ix) = 0.090]

Run	(Tc)	Porosity (n)	Permeability (Ko)	Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	1266.90		
2	4.50	0.40	1.00E-10	102.62	1140.21	16050.324612	26.44
3	5.50	0.40	1.00E-10	125.42	1393.59	10030.324012	20.44
4	5.00	0.36	1.00E-10	108.17	1201.89	4022.663079	6.63
5	5.00	0.44	1.00E-10	119.59	1328.73	4022.003079	0.03
6	5.00	0.40	7.00E-11	136.28	1514.23	40620.371930	66.93
7	5.00	0.40	1.30E-10	100.00	1111.14	40020.371930	00.93
E[FS] =	1266.898757		$E[\ln FS] =$	7.125769	Total	60693.359621	100.00
Var[FS]=	60693.359621						
$\sigma[FS]=$	246.360223		σ[ln FS]=	0.192658		β =	36.986687
V(FS) =	0.194459	_				F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Initial


IP LR2.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin Study Area: Right Bank San Joaquin River **River Section:** Index Point LR2

	Kandom	Variables	
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,
Levee Φ	28	4	13.00
Levee Cohesion	100	40	40.00
Levee γ	120	8	7.00
Foundation Φ	30	4	13.00
Foundation Cohesion	0	0	40.00

Levee Mile: STA 1417+00 Crest Elev.: 27.80 River Mile: XX.XX L/S Toe Elev.: 12.00 Analysis Case Without Project Conditions **W/S Toe Elev.:** 12.00

Elev. 24.65

Analysis By: G. Johnson Checked By: M. Perlea 12/03/2012 Date: 11/28/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	12.00	0.0000
Elev. 17.0	5.00	17.00	0.000000
200 year	9.50	21.50	0.000000
Elev. 24.65	12.65	24.65	0.000000
Crest	15.80	27.80	0.000000

Crest	Head =	15.80	Pr(f)=0	NO

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	30	0	1.94		
2	24	100	120	30	0	1.90	0.001225	1.86
3	32	100	120	30	0	1.97	0.001223	1.80
4	28	60	120	30	0	1.89	0.002352	3.57
5	28	140	120	30	0	1.98	0.002332	3.37
6	28	100	112	30	0	1.97	0.001296	1.07
7	28	100	128	30	0	1.90	0.001296	1.97
8	28	100	120	26	0	1.70	0.061009	92.60
9	28	100	120	34	0	2.19	0.001009	92.00
10	28	100	120	30	0	1.94	0.000000	0.00
11	28	100	120	30	0	1.94	0.00000	0.00
E[FS] =	1.940000	-	-	$E[\ln FS] =$	0.654011	Total	0.065882	100.00

-[]	1.5 .0000	2[10]	0.00.011	10001	0.005002	100.00
Var[FS]=	0.065882					
$\sigma[FS]=$	0.256675	σ[ln FS]=	0.131733		β=	4.964660
V(FS) =	0.132307				$\mathbf{F}(\mathbf{z}) =$	0.000000
FS req'd =	1.00	ln(FS req'd) =	0.000000		Pr(f) % =	0.000034
					<u>-</u>	

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	30	0	2.48		
2	24	100	120	30	0			
3	32	100	120	30	0			
4	28	60	120	30	0			
5	28	140	120	30	0			
6	28	100	112	30	0			
7	28	100	128	30	0			
8	28	100	120	26	0			
9	28	100	120	34	0			
10	28	100	120	30	0			
11	28	100	120	30	0			
E[FS] =				$E[\ln FS] =$		Total		

0.000000

. ,		Var[FS]=
$\sigma[\ln FS]=$		σ[FS]=
_		V(FS) =
ln(FS reg'd) =	1.00	FS reg'd =

β=	
F(z) =	
Pr(f) % =	0.000000

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	30	0	2.20		
2	24	100	120	30	0			
3	32	100	120	30	0			
4	28	60	120	30	0			
5	28	140	120	30	0			
6	28	100	112	30	0			
7	28	100	128	30	0			
8	28	100	120	26	0			
9	28	100	120	34	0			
10	28	100	120	30	0			İ
11	28	100	120	30	0			

YES

Pr(f)=0

 $E[\ln FS] =$

E[FS] = Var[FS]= σ[FS]= V(FS) = σ[ln FS]= FS req'd = 1.00

Head =

12.65

o[m rs]–		p =	
		F(z) =	
ln(FS req'd) =	0.000000	Pr(f) % =	0.00000

Total

Elev. 17.0 Head = 5.00 Pr(f)=0 YES

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	30	0	2.88		
2	24	100	120	30	0			
3	32	100	120	30	0			
4	28	60	120	30	0			
5	28	140	120	30	0			
6	28	100	112	30	0			
7	28	100	128	30	0			
8	28	100	120	26	0			
9	28	100	120	34	0			
10	28	100	120	30	0			
11	28	100	120	30	0			

E[FS] = Var[FS]= $E[\ln FS] =$ Total σ[FS]= V(FS) = $\sigma[\ln FS]=$ FS req'd = 1.00 ln(FS req'd) =0.000000

β =	
F(z) =	
Pr(f) % =	0.000000

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Judgment Probability of Poor Performance Curve

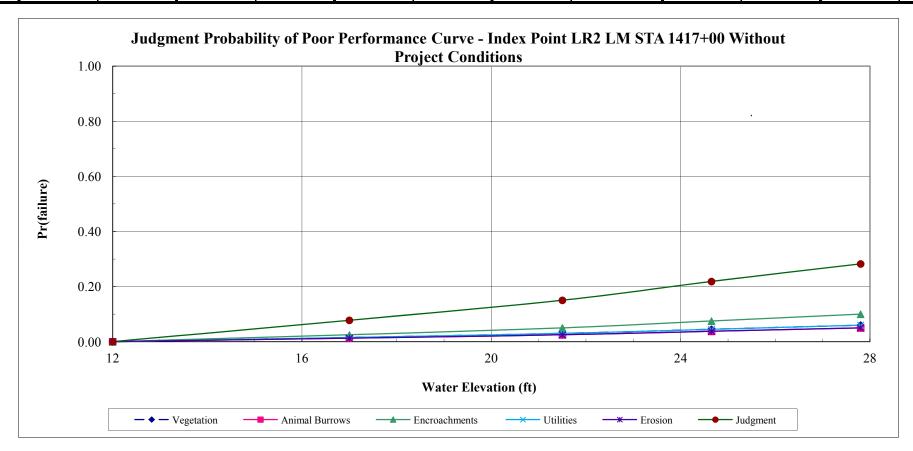
Project: Lower San Joaquin Levee Mile: STA 1417+00 Crest Elev.: 27.80 Analysis By: G. Johnson

Study Area: Right Bank San Joaquin River

River Mile: XX.XX

L/S Toe Elev.: 12.00

Checked By: M. Perlea 12/03/2012


River Section: Index Point LR2

Analysis Case: Without Project Conditions

W/S Toe Elev.: 12.00

Date: 11/28/2012

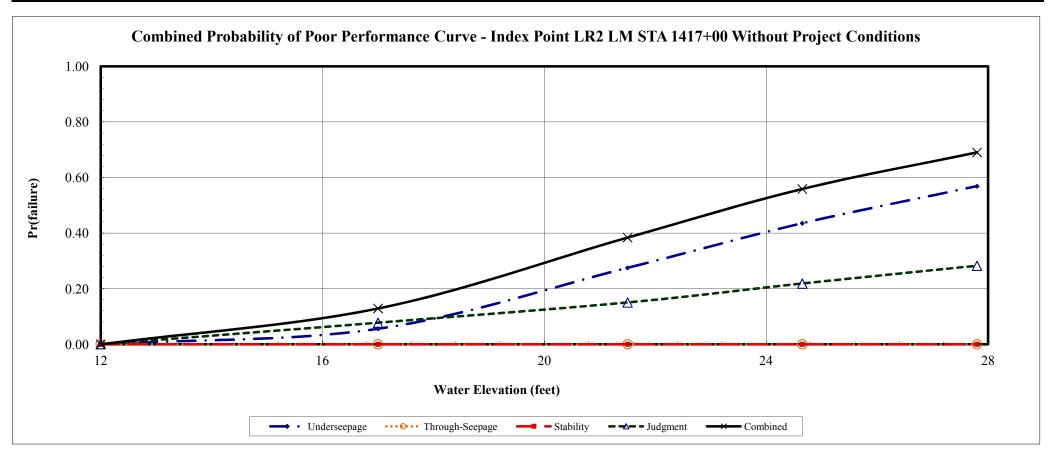
Water Surface	Vege	tation	Animal Burrows		Encroa	chments	Ut	ilities	Ero	sion	Judgment		
Elevation	Pr(f)	R	Pr(f)	Pr(f) R		R	Pr(f)	R	Pr(f)	R	Pr(f)	R	
12.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
17.00	0.0150	0.9850	0.0125	0.9875	0.0250	0.9750	0.0150	0.9850	0.0125	0.9875	0.0775	0.9225	
21.50	0.0300	0.9700	0.0250	0.9750	0.0500	0.9500	0.0300	0.9700	0.0250	0.9750	0.1503	0.8497	
24.65	0.0450	0.9550	0.0375	0.9625	0.0750	0.9250	0.0450	0.9550	0.0375	0.9625	0.2185	0.7815	
27.80	0.0600	0.9400	0.0500	0.9500	0.1000	0.9000	0.0600	0.9400	0.0500	0.9500	0.2823	0.7177	

IP LR2.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San Joaquin Levee Mile: STA 1417+00 Crest Elev.: 27.80 Analysis By: G. Johnson

Study Area: Right Bank San Joaquin River River Mile: XX.XX L/S Toe Elev.: 12.00 Checked By: M. Perlea 12/03/2012


River Section: Index Point LR2

Analysis Case: Without Project Conditions

W/S Toe Elev.: 12.00

Date: 11/28/2012

Water Surface	Unders	seepage	Through	-Seepage	Stab	oility	Judg	ment	Combined		
Elevation	Pr(f) R		Pr(f) R		Pr(f)	Pr(f) R		R	Pr(f)	R	
12.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
17.00	0.0555	0.9445	0.0000	1.0000	0.0000	1.0000	0.0775	0.9225	0.1287	0.8713	
21.50	0.2749	0.7251	0.0000	1.0000	0.0000	1.0000	0.1503	0.8497	0.3839	0.6161	
24.65	0.4353	0.5647	0.0000	1.0000	0.0000	1.0000	0.2185	0.7815	0.5587	0.4413	
27.80	0.5685	0.4315	0.0000	1.0000	0.0000	1.0000	0.2823	0.7177	0.6903	0.3097	

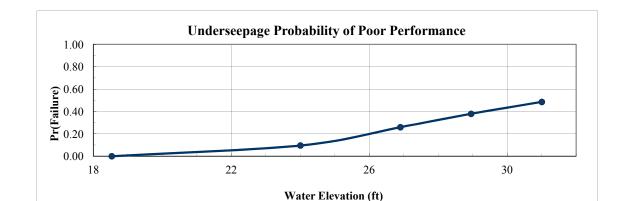
IP LR2.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Determination of Random Variables For Underseepage Reliability Analysis

Project: Lower San JoaquinLevee Mile: 1685+00Crest Elev.: 31.00Analysis By: G. JohnsonChannel: San Joaquin RiverRiver Mile: XX.XXL/S Toe Elev.: 18.53Checked By: J. Hogan, M. PerleaBasin and Reach: Index Point LR3Analysis Case Without Project ConditionsW/S Toe Elev.: 17.80Date: 12/19/2012

		Blanket	Thickness Vari	iable (z)			Aquifer	Thickness Var	iable (d)					Hydraulic Cond	luctivity Vairal	oles (Kb and Kf)		
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	v ai iation	of Variation
WR0017_067C	16					26					CL	0.0007	SM	0.28	400				
WR0017_070C	18					24					CL	0.0007	SM	0.28	400				
WR0017_071C	8					45					CL	0.0007	SM	0.28	400				
WR0017_072C	16					52					CL	0.0007	SM	0.28	400				
WR0017_075C	18	11	6	43	55	18	25	12	239	2.4	CL	0.0007	SP	14	20000	6933	9800	90176000	98
WR0017_076C	10	11	0	43	33	26	33	12	239	34	CL	0.0007	SP	14	20000	0933	9800	901/0000	90
WR0017_080B	3					42					CL	0.0007	SM	0.28	400				
WR0017 081C	10					40					CL	0.0007	SM	0.28	400				
WR0017_085B	4					40					CL	0.0007	SP-SM	14	20000				
													•						

	Blanket Mat	erial 1 (lowest	permeability)	В	lanket Materia	12	Transformed Blanket	A	quifer Materia	ıl 1	A	quifer Materia	12	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	T HICKHESS (Z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR0017_067C	CL	16	0.0007				16	SM	26	0.28							0.28
WR0017_069B	ML	6	0.035				6	SP-SM	16	14							14
WR0017_070C	CL	18	0.0007				18	SM	24	0.28							0.28
WR0017_071C	CL	8	0.0007				8	SM	45	0.28							0.28
WR0017_072C	CL	16	0.0007				16	SM	52	0.28							0.28
WR0017_075C	CL	18	0.0007				18	SP	18	14							14
WR0017_076C	CL	10	0.0007				10	SP	26	14							14
WR0017_080B	CL	3	0.0007				3	SM	42	0.28							0.28
WR0017 081C	CL	10	0.0007				10	SM	40	0.28							0.28
WR0017_085B	CL	4	0.0007				4	SP-SM	40	14							14


IP LR3.RD 17.LSJ River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Underseepage Reliability Analysis With Blanket Theory Analysis

Project: Lower San Joaquin Study Area: San Joaquin River River Section: Index Point LR3

Random Variables							
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %				
Permaebility Ratio	6933	6794	98				
Blanket Thickness (z)	11	6	55				
Aguifer Thickness (d)	35	12.	34				

Blanket Theory Analysis Inputs						
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket	
NO	7A	190	90	∞	112	

Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea Date: 12/19/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	18.53	0.0000
Elev.	5.47	24.00	0.0961
Elev.	8.37	26.90	0.2596
Elev.	10.42	28.95	0.3790
Crest	12.47	31.00	0.4857

Cre	Rh	
Head =	12.47	

Run	Kf/Kb	z	d	x 1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	6933	11.00	35.00	189.15	1633.77	0.0183	10.65	0.97		
2	13727	11.00	35.00	189.57	2298.92	0.0136	11.12	1.01	0.052900	10.39
3	139	11.00	35.00	156.27	231.05	0.0733	6.04	0.55	0.032900	10.39
4	6933	17.00	35.00	189.45	2031.04	0.0151	10.96	0.64	0.455625	89.49
5	6933	5.00	35.00	188.14	1101.49	0.0254	9.96	1.99	0.433623	89.49
6	6933	11.00	47.00	189.36	1893.24	0.0216	10.87	0.99	0.000625	0.12
7	6933	11.00	23.00	188.71	1324.41	0.0143	10.30	0.94	0.000023	0.12
								Total	0.509150	100.00

 $E[\ln I] = -0.246717$

 $\sigma \left[ln \ I \right]$

E[I] = 0.970000 Var[I] = 0.509150 $\sigma[I] = 0.713547$ V(I) = 0.735616

=	0.657660		
		β=	-0.375144
		F(z) =	0.514297
=	-0.223144	Pr(f) % =	48.570294

Levee Mile: 1685+00

River Mile: XX.XX

Analysis Case Without Project Conditions

Ele	Rh	
Head =	8.37	

Run	Kf/Kb	Z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	6933	11.00	35.00	189.15	1633.77	0.0183	7.15	0.65		
2	13727	11.00	35.00	189.57	2298.92	0.0136	7.46	0.68	0.024025	10.39
3	139	11.00	35.00	156.27	231.05	0.0733	4.05	0.37	0.024023	10.39
4	6933	17.00	35.00	189.45	2031.04	0.0151	7.36	0.43	0.207025	89.51
5	6933	5.00	35.00	188.14	1101.49	0.0254	6.68	1.34	0.207023	89.31
6	6933	11.00	47.00	189.36	1893.24	0.0216	7.29	0.66	0.000225	0.10
7	6933	11.00	23.00	188.71	1324.41	0.0143	6.91	0.63	0.000223	0.10
								Total	0.231275	100.00

 $E[\ln I] = -0.649070$

E[I] = 0.650000Var[I] = 0.231275

 $\sigma[I] = 0.480911$ $\sigma[\ln I] = 0.660737$

V(I) = 0.739862

Ic= 0.80 ln(I crit) = -0.223144

 $\beta = -0.982342$ F(z) = 0.740414 Pr(f) % = 25.958586

Elev	Rh	
Head =	10.42	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	6933	11.00	35.00	189.15	1633.77	0.0183	8.90	0.81		
2	13727	11.00	35.00	189.57	2298.92	0.0136	9.29	0.84	0.036100	10.30
3	139	11.00	35.00	156.27	231.05	0.0733	5.04	0.46	0.030100	10.30
4	6933	17.00	35.00	189.45	2031.04	0.0151	9.16	0.54	0.313600	89.52
5	6933	5.00	35.00	188.14	1101.49	0.0254	8.32	1.66	0.313000	89.32
6	6933	11.00	47.00	189.36	1893.24	0.0216	9.08	0.83	0.000625	0.18
7	6933	11.00	23.00	188.71	1324.41	0.0143	8.61	0.78	0.000023	0.16
						-	-	Total	0.350325	100.00

 $\begin{array}{lll} E[I] = & 0.810000 & E[\ln I] = & -0.424644 \\ Var[I] = & 0.350325 & \\ \sigma[I] = & 0.591883 & \sigma\left[\ln I\right] = & 0.654100 \end{array}$

Crest Elev.: 31.00

L/S Toe Elev.: 18.53

W/S Toe Elev.: 17.80

V(I) = 0.730719

Ic=	0.80	

β=	-0.649204
F(z) =	0.620981
Pr(f) % =	37.901906

Elev	Rh	
Head =	5.47	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	6933	11.00	35.00	189.15	1633.77	0.0183	4.67	0.42		
2	13727	11.00	35.00	189.57	2298.92	0.0136	4.88	0.44	0.010000	10.30
3	139	11.00	35.00	156.27	231.05	0.0733	2.65	0.24	0.010000	10.30
4	6933	17.00	35.00	189.45	2031.04	0.0151	4.81	0.28	0.087025	89.60
5	6933	5.00	35.00	188.14	1101.49	0.0254	4.37	0.87	0.087023	89.00
6	6933	11.00	47.00	189.36	1893.24	0.0216	4.77	0.43	0.000100	0.10
7	6933	11.00	23.00	188.71	1324.41	0.0143	4.52	0.41	0.000100	0.10
						-	-	Total	0.097125	100.00

ln(I crit) = -0.223144

E[I] = 0.420000 Var[I] = 0.097125 $\sigma[I] = 0.311649$

V(I) = 0.742021

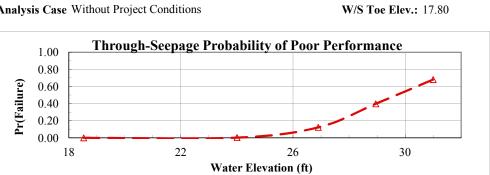
Ic= 0.80

E[ln I] = -1.086820

 $\sigma [\ln I] = 0.662298$

ln(I crit) = -0.223144

 $\beta = -1.640983$ F(z) = 0.903893 Pr(f) % = 9.610659


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin **Study Area:** San Joaquin River **River Section:** Index Point LR3

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %					
Tractive Stress (Tc)	2	0.2	10.00					
Initial Porosity (n)	0.25	0.03	10.00					
Initial Permeability (Ko)	8.00E-08	2.40E-08	30.00					

	Pr(f)=0	
,	NO	•

Levee Mile: 1685+00
River Mile: XX.XX
Analysis Case Without Project Conditions

Crest Elev.: 31.00

Head =

10.42

L/S Toe Elev.: 18.53

Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea Date: 12/19/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	18.53	0.0000
Elev.	5.47	24.00	0.002576
Elev.	8.37	26.90	0.122242
Elev.	10.42	28.95	0.397071
Crest	12.47	31.00	0.680891

Horizontal Gradient (Ix) =

Crest	Head =	12.47	Horizontal Gradient (Ix) =	1.370

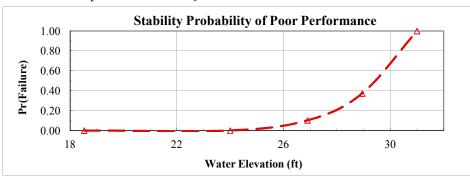
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	2.00	0.25	8.00E-08	1.27	0.93		
2	1.80	0.25	8.00E-08	1.15	0.84	0.008658	26.44
3	2.20	0.25	8.00E-08	1.40	1.02	0.008038	20.44
4	2.00	0.23	8.00E-08	1.21	0.88	0.002170	6.63
5	2.00	0.28	8.00E-08	1.34	0.98	0.002170	0.03
6	2.00	0.25	5.60E-08	1.52	1.11	0.021913	66.93
7	2.00	0.25	1.04E-07	1.12	0.82	0.021913	00.93
E[FS] =	0.930505		$E[\ln FS] =$	-0.090586	Total	0.032741	100.00
Var[FS]=	0.032741						
$\sigma[FS]=$	0.180945		$\sigma[\ln FS]=$	0.192658		β =	-0.470191
V(FS) =	0.194459	_				F(z) =	0.680891
FS req'd =	1.00		ln(FS req'd) =	0.000000		$\Pr(f) \% =$	68.089086

Elev.	Head = 8.37	Horizontal Gradient (Ix) =	1.000

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	2.00	0.25	8.00E-08	1.27	1.27		
2	1.80	0.25	8.00E-08	1.15	1.15	0.016251	26.44
3	2.20	0.25	8.00E-08	1.40	1.40	0.010231	26.44
4	2.00	0.23	8.00E-08	1.21	1.21	0.004073	6.63
5	2.00	0.28	8.00E-08	1.34	1.34	0.004073	0.03
6	2.00	0.25	5.60E-08	1.52	1.52	0.041128	66.93
7	2.00	0.25	1.04E-07	1.12	1.12	0.041128	00.93
E[FS] =	1.274792		E[ln FS] =	0.224225	Total	0.061452	100.00
Var[FS]=	0.061452						
$\sigma[FS]=$	0.247895		$\sigma[\ln FS]=$	0.192658		β =	1.163851
V(FS) =	0.194459	_				$\mathbf{F}(\mathbf{z}) =$	0.122242
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	12.224225

						, , , ,	<u> </u>
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	2.00	0.25	8.00E-08	1.27	1.07		
2	1.80	0.25	8.00E-08	1.15	0.96	0.011476	26.44
3	2.20	0.25	8.00E-08	1.40	1.18	0.011470	20.44
4	2.00	0.23	8.00E-08	1.21	1.02	0.002876	6.63
5	2.00	0.28	8.00E-08	1.34	1.12	0.002870	0.03
6	2.00	0.25	5.60E-08	1.52	1.28	0.029043	66.93
7	2.00	0.25	1.04E-07	1.12	0.94	0.029043	
E[FS] =	1.071254		$E[\ln FS] =$	0.050271	Total	0.043395	100.00
Var[FS]=	0.043395						
$\sigma[FS]=$	0.208315		$\sigma[\ln FS]=$	0.192658		β =	0.260937
V(FS) =	0.194459	_				F(z) =	0.397071
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	

EI	ev.	Head =	5.47		Horizontai C	$\mathbf{bradient}(\mathbf{IX}) = 0.730$	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	2.00	0.25	8.00E-08	1.27	1.75		
2	1.80	0.25	8.00E-08	1.15	1.57	0.030495	26.44
3	2.20	0.25	8.00E-08	1.40	1.92	0.030493	20.44
4	2.00	0.23	8.00E-08	1.21	1.66	0.007643	6.63
5	2.00	0.28	8.00E-08	1.34	1.83	0.007043	0.03
6	2.00	0.25	5.60E-08	1.52	2.09	0.077178	66.93
7	2.00	0.25	1.04E-07	1.12	1.53	0.07/178	00.93
E[FS] =	1.746291		E[ln FS] =	0.538936	Total	0.115316	100.00
Var[FS]=	0.115316					<u> </u>	
$\sigma[FS]=$	0.339582		$\sigma[\ln FS]=$	0.192658		β =	2.797374
V(FS) =	0.194459					F(z) =	0.002570
FS rea'd =	1.00		ln(FS rea'd) =	0.000000		Pr(f) % =	0.257599


IP LR3.RD 17.LSJ River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin **Study Area:** San Joaquin River **River Section:** Index Point LR3

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,					
Levee Φ	30	4	13.00					
Levee Cohesion	50	20	40.00					
Levee γ	125	9	7.00					
Foundation Φ	28	4	13.00					
Foundation Cohesion	100	40	40.00					

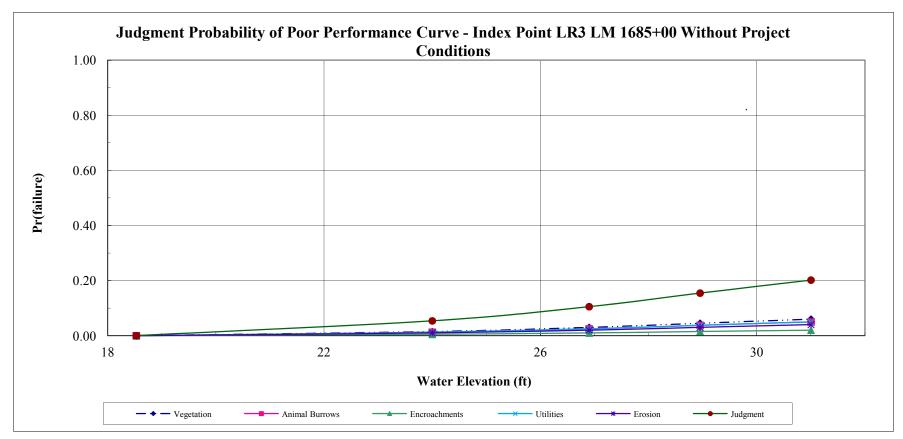
Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea Date: 12/19/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	18.53	0.0000
Elev.	5.47	24.00	0.000272
Elev.	8.37	26.90	0.102531
Elev.	10.42	28.95	0.372477
Crest	12.47	31.00	0.999333

Cr	est	Head =	12.47	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	125	28	100	0.77		
2	26	50	125	28	100	0.73	0.002162	53.37
3	34	50	125	28	100	0.82	0.002162	33.37
4	30	30	125	28	100	0.73	0.000992	24.49
5	30	70	125	28	100	0.80	0.000992	24.49
6	30	50	116	28	100	0.76	0.000121	2.99
7	30	50	134	28	100	0.78	0.000121	2.99
8	30	50	125	24	100	0.76	0.000100	2.47
9	30	50	125	32	100	0.78	0.000100	2.47
10	30	50	125	28	60	0.74	0.000676	16.69
11	30	50	125	28	140	0.79	0.000070	10.09
E[FS] =				$E[\ln FS] =$	-0.264770	Total	0.004052	100.00
Var[FS]=	0.004052							
$\sigma[FS]=$				$\sigma[\ln FS]=$	0.082523		β =	
V(FS) =		•					F(z) =	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	99.933267
							-	
El	ev.	Head =	8.37	Pr(f)=0	NO			

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	125	28	100	1.20		
2	26	50	125	28	100	1.12	0.007310	26.99
3	34	50	125	28	100	1.29	0.007310	20.99
4	30	30	125	28	100	1.16	0.001122	4.14
5	30	70	125	28	100	1.23	0.001122	4.14
6	30	50	116	28	100	1.19	0.000004	0.01
7	30	50	134	28	100	1.20	0.00004	0.01
8	30	50	125	24	100	1.20	0.000020	0.07
9	30	50	125	32	100	1.19	0.000020	0.07
10	30	50	125	28	60	0.93	0.018632	68.78
11	30	50	125	28	140	1.21	0.018032	08.78
E[FS] =	1.200000			$E[\ln FS] =$	0.173003	Total	0.027089	100.00
Var[FS]=	0.027089							
$\sigma[FS]=$	0.164587			$\sigma[\ln FS]=$	0.136518		β =	1.267258
V(FS) =	0.137156						F(z) =	0.102531
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	10.253149

Ele	v.	Head =	10.42	Pr(f)=0 NO				
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	125	28	100	1.03		
2	26	50	125	28	100	0.98	0.004900	70.47
3	34	50	125	28	100	1.12	0.004900	70.47
4	30	30	125	28	100	1.01	0.000441	6.34
5	30	70	125	28	100	1.05	0.000441	0.34
6	30	50	116	28	100	1.06	0.000081	1.16
7	30	50	134	28	100	1.04	0.000081	1.10
8	30	50	125	24	100	1.01	0.000306	4.40
9	30	50	125	32	100	1.05	0.000300	4.40
10	30	50	125	28	60	0.99	0.001225	17.62
11	30	50	125	28	140	1.06	0.001223	17.02
E[FS] = Var[FS]=	1.030000 0.006953			E[ln FS] =	0.026292	Total	0.006953	100.00
σ[FS]= V(FS) =	0.083386 0.080957			$\sigma[\ln FS]=$	0.080825		β = F(z) =	= 0.325300 = 0.37247
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	37.24770
Ele	v.	Head =	5.47	Pr(f)=0	NO			

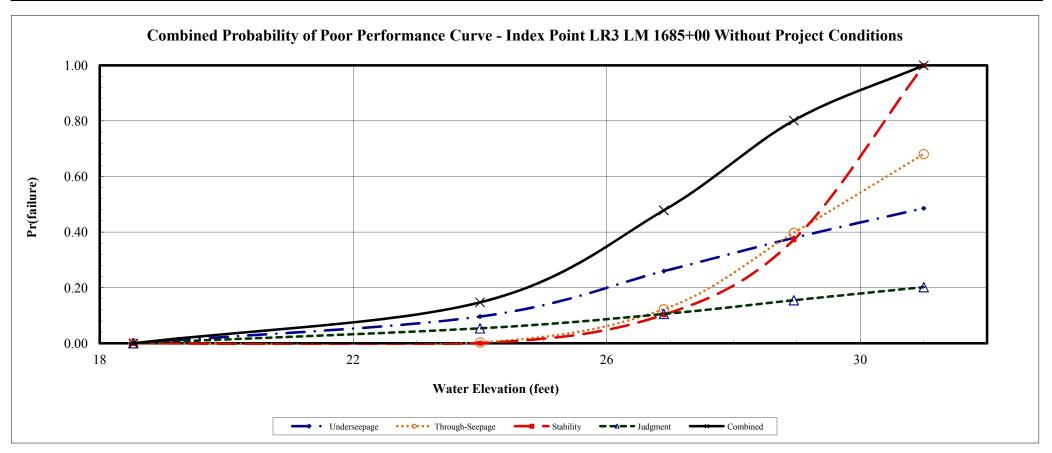

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	125	28	100	1.35		
2	26	50	125	28	100	1.30	0.002916	21.69
3	34	50	125	28	100	1.40	0.002910	21.09
4	30	30	125	28	100	1.30	0.001600	11.90
5	30	70	125	28	100	1.38	0.001000	11.90
6	30	50	116	28	100	1.35	0.000016	0.12
7	30	50	134	28	100	1.34	0.000016	0.12
8	30	50	125	24	100	1.32	0.000900	6.70
9	30	50	125	32	100	1.38	0.000900	0.70
10	30	50	125	28	60	1.31	0.008010	59.59
11	30	50	125	28	140	1.49	0.008010	39.39
E[FS] =	1.350000			$E[\ln FS] =$	0.296430	Total	0.013442	100.00
Var[FS]=	0.013442							
$\sigma[FS]=$	0.115941			$\sigma[\ln FS]=$	0.085724		β =	3.457950
V(FS) =	0.085882						$\mathbf{F}(\mathbf{z}) =$	0.000272
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.027215

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Judgment Probability of Poor Performance Curve**

Project: Lower San Joaquin **Levee Mile:** 1685+00 Crest Elev.: 31.00 Analysis By: G. Johnson Study Area: San Joaquin River **L/S Toe Elev.:** 18.53 Checked By: J. Hogan, M. Perlea **River Mile:** XX.XX **Date:** 12/19/2012

River Section: Index Point LR3 Analysis Case: Without Project Conditions W/S Toe Elev.: 17.80

Water Surface	Vege	tation	Animal Burrows		Encroachments		Utilities		Ero	sion	Judgment	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
18.53	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
24.00	0.0150	0.9850	0.0125	0.9875	0.0050	0.9950	0.0125	0.9875	0.0100	0.9900	0.0538	0.9462
26.90	0.0300	0.9700	0.0250	0.9750	0.0100	0.9900	0.0250	0.9750	0.0200	0.9800	0.1054	0.8946
28.95	0.0450	0.9550	0.0375	0.9625	0.0150	0.9850	0.0375	0.9625	0.0300	0.9700	0.1547	0.8453
31.00	0.0600	0.9400	0.0500	0.9500	0.0200	0.9800	0.0500	0.9500	0.0400	0.9600	0.2019	0.7981



IP LR3.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San JoaquinLevee Mile: 1685+00Crest Elev.: 31.00Analysis By: G. JohnsonStudy Area: San Joaquin RiverRiver Mile: XX.XXL/S Toe Elev.: 18.53Checked By: J. Hogan, M. PerleaRiver Section: Index Point LR3Analysis Case: Without Project ConditionsW/S Toe Elev.: 17.80Date: 12/19/2012

Water Surface	Underseepage		Through	-Seepage	Stal	oility	Judg	ment	Com	bined
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
18.53	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
24.00	0.0961	0.9039	0.0026	0.9974	0.0003	0.9997	0.0538	0.9462	0.1472	0.8528
26.90	0.2596	0.7404	0.1222	0.8778	0.1025	0.8975	0.1054	0.8946	0.4782	0.5218
28.95	0.3790	0.6210	0.3971	0.6029	0.3725	0.6275	0.1547	0.8453	0.8014	0.1986
31.00	0.4857	0.5143	0.6809	0.3191	0.9993	0.0007	0.2019	0.7981	0.9999	0.0001

IP LR3.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Determination of Random Variables For Underseepage Reliability Analysis**

Project: Lower San Joaquin Levee Mile: STA 1815+00 Crest Elev.: 33.90 River Mile: XX.XX L/S Toe Elev.: 18.60

Analysis By: G. Johnson Checked By: M. Perlea 12/13/2012 Date: 12/13/2012 Channel: Right Bank San Joaquin River
Basin and Reach: Index Point LR4 Analysis Case Without Project Conditions **W/S Toe Elev.:** 19.40

		Blanket	Thickness Var	iable (z)			Aquifer Thickness Variable (d)]	Hydraulic Cond	uctivity Vairab	les (Kb and Kf	<u> </u>		
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	v ai iation	of Variation
WR0017_098C	28					20					CL	0.007	SP-SM	14	2000				
WR0017_099C	20					38					CL	0.007	SP-SM	14	2000				
WR0017_100C	22					32					CL	0.0007	SP-SM	2.8	4000				
WR0017_101C	24					38					CL	0.0007	SP-SM	2.8	4000				
WR0017_103C	22	22	2	154	13	36	33	0	324	24	CL	0.0007	SP-SM	2.8	4000	3200	1095	3377778	34
		23	3	134	13		33	٥	324	24						3200	1093	33////8	34

	Blanket Mat	erial 1 (lowest)	permeability)	В	lanket Materia	12	Transformed Blanket	A	quifer Materia	ıl 1	A	quifer Materia	12	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	T mckness (z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR0017_098C	CL	28	0.007				28	SP-SM	20	14							14
WR0017_099C	CL	20	0.007				20	SP-SM	38	14							14
WR0017_100C	CL	22	0.0007				22	SP-SM	32	2.8							2.8
WR0017_101C	CL	24	0.0007				24	SP-SM	38	2.8							2.8
WR0017_103C	CL	22	0.0007				22	SP-SM	36	2.8							2.8
				•													

IP LR4.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**

-4.513507

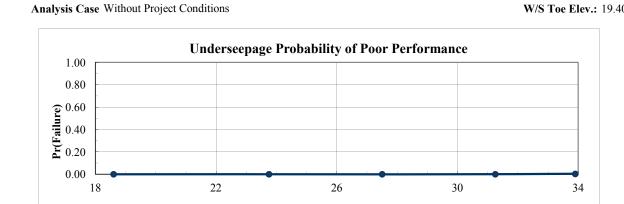
0.996992

0.300847

F(z) =

Pr(f) % =

Levee Mile: STA 1815+00


River Mile: XX.XX

Project: Lower San Joaquin Study Area: Right Bank San Joaquin River

River Section: Index Point LR4

Random Variables							
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %				
Permaebility Ratio	3200	1095	34				
Blanket Thickness (z)	23	3	13				
Aquifer Thickness (d)	33	8	24				

Blanket Theory Analysis Inputs							
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket		
NO	7A	153	110	∞	112		

Water Elevation (ft)

Analysis By:	G. Johnson
Checked By:	M. Perlea 12/13/2012
Date:	12/13/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	18.60	0.0000
Elev. 23.75	5.15	23.75	0.0000
Elev. 27.5	8.90	27.50	0.0000
200 yr.	12.65	31.25	0.0000
Crest	15.30	33.90	0.0030

Cre	est	Rh
Head =	15.30	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	3200	23.00	33.00	152.51	1558.46	0.0181	13.09	0.57		
2	4295	23.00	33.00	152.63	1805.52	0.0160	13.36	0.58	0.000225	4.31
3	2105	23.00	33.00	152.26	1264.00	0.0216	12.67	0.55		
4	3200	26.00	33.00	152.57	1656.99	0.0172	13.21	0.51	0.004900	93.78
5	3200	20.00	33.00	152.44	1453.27	0.0192	12.96	0.65	0.004900	93.78
6	3200	23.00	41.00	152.61	1737.12	0.0205	13.29	0.58	0.000100	1.91
7	3200	23.00	25.00	152.35	1356.47	0.0154	12.82	0.56	0.000100	1.91
								Total	0.005225	100.00

E[I] = 0.570000 $E[\ln I] = -0.570096$ Var[I] = 0.005225 $\sigma[I] = 0.072284$ $\sigma [\ln I] = 0.126309$ V(I) = 0.126814

Ic= 0.80	

Ic= 0.80

Elev.	Rh	
Head =	8.90	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	3200	23.00	33.00	152.51	1558.46	0.0181	7.62	0.33		
2	4295	23.00	33.00	152.63	1805.52	0.0160	7.77	0.34	0.000100	5.56
3	2105	23.00	33.00	152.26	1264.00	0.0216	7.37	0.32	0.000100	3.30
4	3200	26.00	33.00	152.57	1656.99	0.0172	7.68	0.30	0.001600	88.89
5	3200	20.00	33.00	152.44	1453.27	0.0192	7.54	0.38	0.001000	
6	3200	23.00	41.00	152.61	1737.12	0.0205	7.73	0.34	0.000100	5.56
7	3200	23.00	25.00	152.35	1356.47	0.0154	7.46	0.32	0.000100	5.36
								Total	0.001800	100.00

ln(I crit) = -0.223144

E[I] = 0.330000 $E[\ln I] = -1.116860$ Var[I] = 0.001800 $\sigma[I] = 0.042426$ $\sigma [ln I] = 0.128038$ V(I) = 0.128565

		β=	-8.7228
		F(z) =	1.0000
ln(I crit) =	-0.223144	Pr(f) % =	0.0000

200 y	Rh	
Head =	12.65	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	3200	23.00	33.00	152.51	1558.46	0.0181	10.83	0.47		
2	4295	23.00	33.00	152.63	1805.52	0.0160	11.04	0.48	0.000100	2.63
3	2105	23.00	33.00	152.26	1264.00	0.0216	10.48	0.46		
4	3200	26.00	33.00	152.57	1656.99	0.0172	10.92	0.42	0.003600	94.74
5	3200	20.00	33.00	152.44	1453.27	0.0192	10.72	0.54	0.003000	
6	3200	23.00	41.00	152.61	1737.12	0.0205	10.99	0.48	0.000100	2.63
7	3200	23.00	25.00	152.35	1356.47	0.0154	10.60	0.46	0.000100	2.03
							-	Total	0.003800	100.00

E[I] = 0.470000 $E[\ln I] = -0.763551$ Var[I] = 0.003800 $\sigma[I] = 0.061644$ $\sigma [\ln I] = 0.130599$

Crest Elev.: 33.90

L/S Toe Elev.: 18.60

W/S Toe Elev.: 19.40

V(I) = 0.131158Ic= 0.80

Elev. 2	3.75	Rh
Head =	5.15	

	β=	-5.846532
	F(z) =	0.999982
ln(I crit) = -0.223144	Pr(f) % =	0.001752

Total

Run	Kf/Kb	Z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	3200	23.00	33.00	152.51	1558.46	0.0181	4.41	0.19		
2	4295	23.00	33.00	152.63	1805.52	0.0160	4.50	0.20	0.000025	3.85
3	2105	23.00	33.00	152.26	1264.00	0.0216	4.27	0.19	0.000025	3.63
4	3200	26.00	33.00	152.57	1656.99	0.0172	4.45	0.17	0.000625	96.15
5	3200	20.00	33.00	152.44	1453.27	0.0192	4.36	0.22	0.000623	
6	3200	23.00	41.00	152.61	1737.12	0.0205	4.47	0.19	0.000000	0.00
7	3200	23.00	25.00	152.35	1356.47	0.0154	4.32	0.19	0.000000	0.00

E[I] = 0.190000 $E[\ln I] = -1.669654$ Var[I] = 0.000650 $\sigma[I] = 0.025495$ $\sigma [\ln I] = 0.133587$ V(I) = 0.134185

Ic=	0.80	ln(I crit) =	-0.223144

0.000650

100.00

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin
Study Area: Right Bank San Joaquin River

River Section: Index Point LR4

Random Variables					
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %		
Tractive Stress (Tc)	5	0.5	10.00		
Initial Porosity (n)	0.5	0.05	10.00		
Initial Permeability (Ko)	1.00E-08	3.00E-09	30.00		

Pr(f)=0	
NO	

Elev. 27.5

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.50	1.00E-08	12.75	21.61		
2	4.50	0.50	1.00E-08	11.47	19.45	4.668473	26.44
3	5.50	0.50	1.00E-08	14.02	23.77	4.008473	20.44
4	5.00	0.45	1.00E-08	12.09	20.50	1.170051	6.63
5	5.00	0.55	1.00E-08	13.37	22.66	1.170031	0.03
6	5.00	0.50	7.00E-09	15.24	25.82	11.815032	66.93
7	5.00	0.50	1.30E-08	11.18	18.95	11.813032	00.93
E[FS] =	21.606649		$E[\ln FS] =$	3.054443	Total	17.653555	100.00
Var[FS]=	17.653555						
$\sigma[FS]=$	4.201613		$\sigma[\ln FS]=$	0.192658		β =	15.854249
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Horizontal Gradient (Ix) = 0.410

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.50	1.00E-08	12.75	31.09		
2	4.50	0.50	1.00E-08	11.47	27.98	9.667432	26.44
3	5.50	0.50	1.00E-08	14.02	34.20	9.007432	20.44
4	5.00	0.45	1.00E-08	12.09	29.50	2.422931	6.63
5	5.00	0.55	1.00E-08	13.37	32.61	2.422931	0.03
6	5.00	0.50	7.00E-09	15.24	37.16	24.466464	66.93
7	5.00	0.50	1.30E-08	11.18	27.27	24.400404	00.93
E[FS] = Var[FS]=			E[ln FS] =	3.418408	Total	36.556827	100.00
$\sigma[FS] = V(FS) = V(FS)$	6.046224		σ[ln FS]=	0.192658		$\beta = F(z) = F(z)$	2,1,1,10,10,1
FS req'd =			ln(FS req'd) =	0.000000		$\frac{\Pr(z)}{\Pr(f)\%} =$	

8.90

Levee Mile:STA 1815+00Crest Elev.: 33.90River Mile:XX.XXL/S Toe Elev.: 18.60Analysis Case Without Project ConditionsW/S Toe Elev.: 19.40

1.00	,g	obability of Poor		
0.80				
0.60				
0.60 0.40 0.20				
0.20				
0.00				
18	22	26	30	34

Elev. 23.75

Head =

5.15

		G. Johnson M. Perlea 12/1 12/13/2012	13/2012
Analysis Case	Head	Elevation	Pr(f)

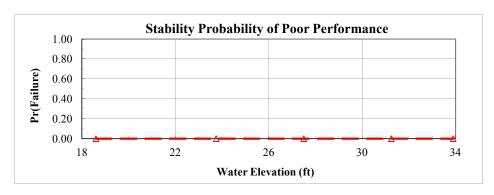
Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	18.60	0.0000
Elev. 23.75	5.15	23.75	0.000000
Elev. 27.5	8.90	27.50	0.000000
200 yr.	12.65	31.25	0.000000
Crest	15.30	33.90	0.000000

20	00 yr.	Head =	12.65		Horizontal G	Gradient (Ix) = 0.530	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.50	1.00E-08	12.75	24.05		
2	4.50	0.50	1.00E-08	11.47	21.65	5.785316	26.44
3	5.50	0.50	1.00E-08	14.02	26.46	3.783310	20.44
4	5.00	0.45	1.00E-08	12.09	22.82	1.449963	6.63
5	5.00	0.55	1.00E-08	13.37	25.23	1.449903	0.03
6	5.00	0.50	7.00E-09	15.24	28.75	14 641554	66.02
7	5.00	0.50	1.30E-08	11.18	21.10	14.641554	66.93
E[FS] =	24.052685		$E[\ln FS] =$	3.161688	Total	21.876834	100.00
Var[FS]=	21.876834						
$\sigma[FS]=$	4.677268		σ[ln FS]=	0.192658		β =	16.410913
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	

Horizontal Gradient (Ix) =

0.190

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.50	1.00E-08	12.75	67.09		
2	4.50	0.50	1.00E-08	11.47	60.38	45.016492	26.44
3	5.50	0.50	1.00E-08	14.02	73.80	43.010492	20.44
4	5.00	0.45	1.00E-08	12.09	63.65	11.282400	6.63
5	5.00	0.55	1.00E-08	13.37	70.37		0.03
6	5.00	0.50	7.00E-09	15.24	80.19	113.928328	66.93
7	5.00	0.50	1.30E-08	11.18	58.85	113.928328	00.93
E[FS] = Var[FS]=	67.094331 170.227221		E[ln FS] =	4.187541	Total	170.227221	100.00
σ[FS]= V(FS) =	13.047115 0.194459		$\sigma[\ln FS]=$	0.192658		$\beta = F(z) = F(z)$	
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	


IP LR4.RD 17.LSJ River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin Study Area: Right Bank San Joaquin River River Section: Index Point LR4

Random Variables					
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,		
Levee Φ	30	4	13.00		
Levee Cohesion	50	20	40.00		
Levee γ	125	9	7.00		
Foundation Φ	28	4	13.00		
Foundation Cohesion	100	40	40.00		

Levee Mile: STA 1815+00	Crest Elev.: 33.90
River Mile: XX.XX	L/S Toe Elev.: 18.60
Analysis Case Without Project Conditions	W/S Toe Elev : 19 40

200 yr.

Elev. 23.75

Analysis By:	G. Johnson
Checked By:	M. Perlea 12/13/2012
Date:	12/13/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	18.60	0.0000
Elev. 23.75	5.15	23.75	0.000000
Elev. 27.5	8.90	27.50	0.000000
200 yr.	12.65	31.25	0.000000
Crest	15.30	33.90	0.000090

Crest	Head =	15.30	Pr(f)=0	NO

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	125	28	100	1.63		
2	26	50	125	28	100	1.57	0.003906	8.87
3	34	50	125	28	100	1.70	0.003900	0.07
4	30	30	125	28	100	1.60	0.001056	2.40
5	30	70	125	28	100	1.66	0.001030	2.40
6	30	50	116	28	100	1.65	0.000144	0.33
7	30	50	134	28	100	1.62	0.000144	0.33
8	30	50	125	24	100	1.50	0.018496	41.99
9	30	50	125	32	100	1.77	0.018490	41.99
10	30	50	125	28	60	1.49	0.020449	46.42
11	30	50	125	28	140	1.77	0.020449	40.42
E[FS] =	1.630000			$E[\ln FS] =$	0.480358	Total	0.044052	100.00
Var[FS]=	0.044052							
$\sigma[FS]=$	0.209884			$\sigma[\ln FS]=$	0.128235		β =	3.745934
V(FS) =	0.128763						F(z) =	0.000090
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f)% =	

46.42	
100.00	
3.745934	
0.000090	
0.008986	

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	125	28	100	1.78		
2	26	50	125	28	100			
3	34	50	125	28	100		1	
4	30	30	125	28	100			
5	30	70	125	28	100			
6	30	50	116	28	100			
7	30	50	134	28	100		1	
8	30	50	125	24	100			
9	30	50	125	32	100		1	
10	30	50	125	28	60			
11	30	50	125	28	140			
E[FS] = Var[FS]=				$E[\ln FS] =$		Total		
LEG3				F1 F203			•	

YES

YES

0.000000

Pr(f)=0

σ[FS]=	σ[ln FS]=	
V(FS) =	1 (77)	0.000000
FS req'd = 1.00	ln(FS req'd) =	0.000000

5.15

Head =

Head =

12.65

6		
	β=	
	F(z) =	
	Pr(f) % =	0.000000

F(z) =

0.000000

Pr(f) % =

Elev.	. 27.5	Head =	8.90	Pr(f)	=0	Y	ES	

 $\sigma[FS]=$

V(FS) =

1.00

FS req'd =

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	125	28	100	1.98		
2	26	50	125	28	100			
3	34	50	125	28	100			
4	30	30	125	28	100			
5	30	70	125	28	100			
6	30	50	116	28	100			
7	30	50	134	28	100			
8	30	50	125	24	100			
9	30	50	125	32	100			
10	30	50	125	28	60			
11	30	50	125	28	140			

 $\sigma[\ln FS]=$

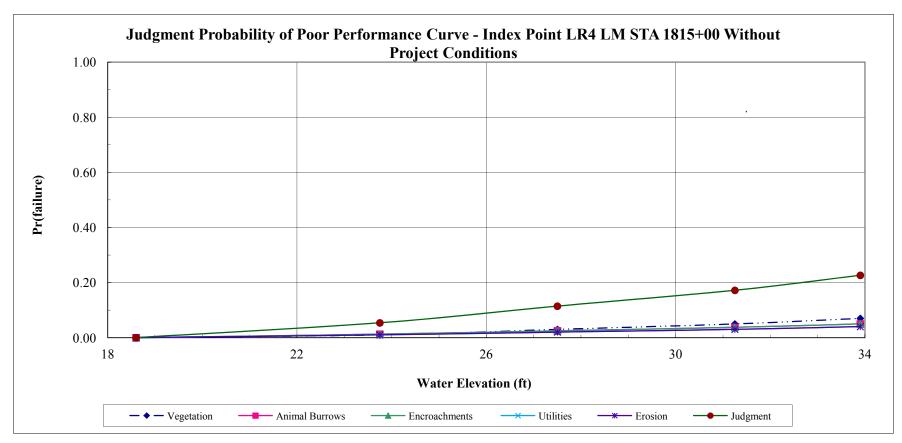
ln(FS req'd) = 0.000000

Kuii		Conesion		Ψ	Conesion		
1 (Mean)	30	50	125	28	100	1.98	
2	26	50	125	28	100		
3	34	50	125	28	100		
4	30	30	125	28	100		
5	30	70	125	28	100		
6	30	50	116	28	100		
7	30	50	134	28	100		
8	30	50	125	24	100		
9	30	50	125	32	100		
10	30	50	125	28	60		
11	30	50	125	28	140		
E[FS] =				$E[\ln FS] =$		Total	
Var[FS]=							

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	125	28	100	2.14		
2	26	50	125	28	100			
3	34	50	125	28	100			
4	30	30	125	28	100			
5	30	70	125	28	100			
6	30	50	116	28	100			
7	30	50	134	28	100			
8	30	50	125	24	100			
9	30	50	125	32	100			
10	30	50	125	28	60			
11	30	50	125	28	140			
E[FS] =				E[ln FS] =		Total		

Pr(f)=0

	Var[FS]=	E[m F5] =
β=	$\sigma[FS]=$	σ[ln FS]=
F(z) =	V(FS) =	
Pr(f) % = 0.000000	FS req'd = 1.00	ln(FS req'd) =


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Judgment Probability of Poor Performance Curve**

Project: Lower San Joaquin Levee Mile: STA 1815+00 Crest Elev.: 33.90 Analysis By: G. Johnson

Study Area: Right Bank San Joaquin River L/S Toe Elev.: 18.60 **Checked By:** M. Perlea 12/13/2012 **River Mile:** XX.XX **Date:** 12/13/2012

River Section: Index Point LR4 Analysis Case: Without Project Conditions W/S Toe Elev.: 19.40

Water Surface	Veget	tation	Animal 1	Animal Burrows Encroachments		chments	Ut	ilities	Ero	sion	Judgment	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
18.60	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
23.75	0.0100	0.9900	0.0125	0.9875	0.0125	0.9875	0.0100	0.9900	0.0100	0.9900	0.0538	0.9462
27.50	0.0300	0.9700	0.0250	0.9750	0.0250	0.9750	0.0200	0.9800	0.0200	0.9800	0.1144	0.8856
31.25	0.0500	0.9500	0.0375	0.9625	0.0375	0.9625	0.0300	0.9700	0.0300	0.9700	0.1719	0.8281
33.90	0.0700	0.9300	0.0500	0.9500	0.0500	0.9500	0.0400	0.9600	0.0400	0.9600	0.2265	0.7735

IP LR4.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

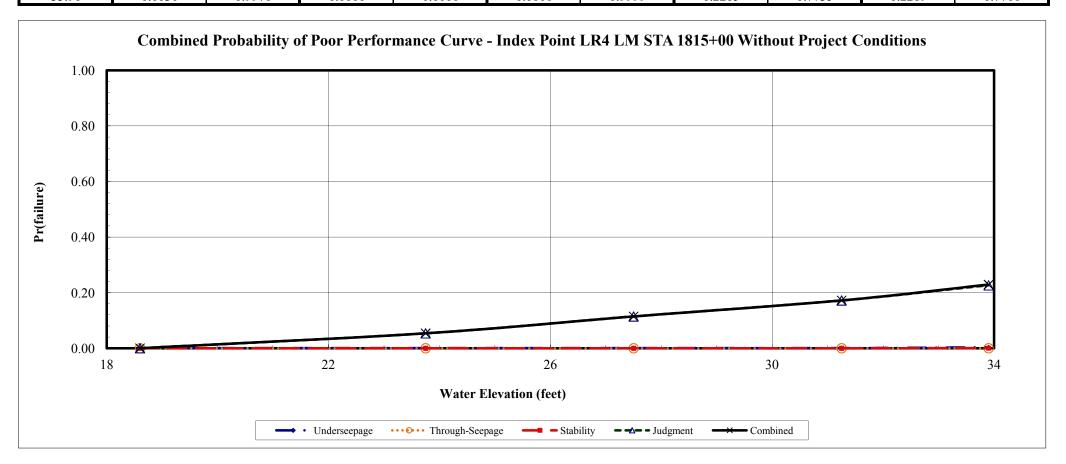
Project: Lower San Joaquin Levee Mile: STA 1815+00 Crest Elev.: 33.90 Analysis By: G. Johnson

Study Area: Right Bank San Joaquin River

River Mile: XX.XX

River Section: Index Point LR4

River Section: Index Point LR4


River Mile: XX.XX

Analysis Case: Without Project Conditions

W/S Toe Elev.: 18.60

Date: 12/13/2012

Water Surface	Unders	seepage	Through	-Seepage	Stal	oility	Judg	ment	Com	bined
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
18.60	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
23.75	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0538	0.9462	0.0538	0.9462
27.50	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.1144	0.8856	0.1144	0.8856
31.25	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.1719	0.8281	0.1719	0.8281
33.90	0.0030	0.9970	0.0000	1.0000	0.0001	0.9999	0.2265	0.7735	0.2289	0.7711

IP LR4.RD 17.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Determination of Random Variables For Underseepage Reliability Analysis**

Project: Lower San Joaquin Channel: Left Bank French Camp Slough Basin and Reach: Index Point FL1

Levee Mile: STA 1049+00 River Mile: XX.XX Analysis Case Without Project Conditions

Crest Elev.: 21.40 **L/S Toe Elev.:** 9.36 **W/S Toe Elev.:** 10.00

Analysis By: G. Johnson Checked By: M. Perlea 12/03/2012

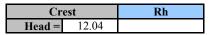
Date: 11/28/2012

		Blanke	et Thickness Vari	able (z)			Aquifer '	Thickness Va	riable (d)				Н	ydraulic Conduct	ivity Vairabl	es (Kb and Ki	f)		
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Blar	ıket	Aquife	r Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	variation	of Variation
WR0017_004C	10					6					CL	0.0007	SC	0.28	400				
WR0017 005C	8					4					CL	0.0007	SC	0.28	400				
WR0017_007B	10					6					CL	0.0007	SC	0.28	400				
WR0017_010C	10					10					CL	0.0007	SC	0.28	400				
WR0017_011C	12	10	1	29	10	18	0	6	25	67	CL	0.0007	SC	0.28	400	400	0	44444	0
		10	1	29	10		7	0	35	07						400	U	44444	U

	Blanket Ma	terial 1 (lowest	permeability)		Blanket Mater	ial 2	Transformed Blanket		Aquifer Mater	ial 1	A	Aquifer Materi	al 2		Aquifer Mate	rial 3	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability		Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	Thickness (z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR0017_004C	CL	10	0.0007				10	SC	6	0.28							0.28
WR0017_005C	CL	8	0.0007				8	SC	4	0.28							0.28
WR0017 007B	CL	10	0.0007				10	SC	6	0.28							0.28
WR0017 010C	CL	10	0.0007				10	SC	10	0.28							0.28
WR0017_011C	CL	12	0.0007				12	SC	18	0.28							0.28
									•								

IP FL1.RD 17.French Camp Slough.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**


Project: Lower San Joaquin

Study Area: Left Bank French Camp Slough

River Section: Index Point FL1

	Random Variables						
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %				
Permaebility Ratio	400	0	0				
Blanket Thickness (z)	10	1	10				
Aquifer Thickness (d)	9	6	67				

	Blanket Theory Analysis Inputs						
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket		
NO	7A	175	103	∞	112		

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	400	10.00	9.00	137.94	189.74	0.0209	5.30	0.53		
2	400	10.00	9.00	137.94	189.74	0.0209	5.30	0.53	0.000000	0.00
3	400	10.00	9.00	137.94	189.74	0.0209	5.30	0.53	0.000000	0.00
4	400	11.00	9.00	140.52	199.00	0.0203	5.41	0.49	0.002025	21.89
5	400	9.00	9.00	134.94	180.00	0.0215	5.19	0.58	0.002023	21.69
6	400	10.00	15.00	150.26	244.95	0.0301	5.92	0.59	0.007225	78.11
7	400	10.00	3.00	100.92	109.54	0.0096	4.21	0.42	0.007223	/0.11
		-	-		-			Total	0.009250	100.00

E[I] =0.530000 $E[\ln I] = -0.651078$ Var[I]= 0.009250 σ[I]= 0.096177 $\sigma [\ln I] = 0.179998$ V(I) =0.181466

Ic=	0.80	ln(I crit) =	-0.223144

200	year	Rh
Head =	6.54	

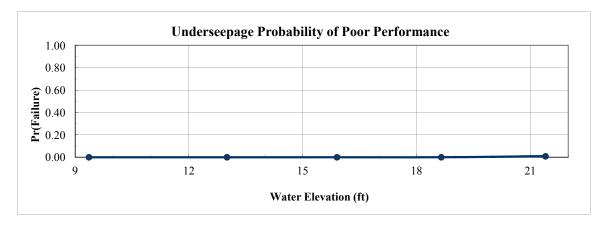
Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	400	10.00	9.00	137.94	189.74	0.0209	2.88	0.29		
2	400	10.00	9.00	137.94	189.74	0.0209	2.88	0.29	0.000000	0.00
3	400	10.00	9.00	137.94	189.74	0.0209	2.88	0.29	0.000000	0.00
4	400	11.00	9.00	140.52	199.00	0.0203	2.94	0.27	0.000400	16.49
5	400	9.00	9.00	134.94	180.00	0.0215	2.82	0.31	0.000400	10.49
6	400	10.00	15.00	150.26	244.95	0.0301	3.22	0.32	0.002025	83.51
7	400	10.00	3.00	100.92	109.54	0.0096	2.29	0.23	0.002023	05.51
								Total	0.002425	100.00

ln(I crit) = -0.223144

E[I] =0.290000 $E[\ln I] = -1.252088$ Var[I]= 0.002425 0.049244 $\sigma [\ln I] = 0.168603$ σ[I]= V(I) =0.169808

β=	-7.426268
F(z) =	1.000000
Pr(f) % =	0.000000

-3.617139


0.991283

0.871666

F(z) =

Pr(f) % =

Levee Mile: STA 1049+00 River Mile: XX.XX L/S Toe Elev.: 9.36 Analysis Case Without Project Conditions **W/S Toe Elev.:** 10.00

Elev. 18	Rh	
Head =	9.29	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	400	10.00	9.00	137.94	189.74	0.0209	4.09	0.41		
2	400	10.00	9.00	137.94	189.74	0.0209	4.09	0.41	0.000000	0.00
3	400	10.00	9.00	137.94	189.74	0.0209	4.09	0.41	0.000000	0.00
4	400	11.00	9.00	140.52	199.00	0.0203	4.18	0.38	0.000900	17.56
5	400	9.00	9.00	134.94	180.00	0.0215	4.00	0.44	0.000900	17.30
6	400	10.00	15.00	150.26	244.95	0.0301	4.57	0.46	0.004225	82.44
7	400	10.00	3.00	100.92	109.54	0.0096	3.25	0.33	0.004223	02.44
						-		Total	0.005125	100.00

Crest Elev.: 21.40

E[I] =0.410000 $E[\ln I] = -0.906614$ Var[I]= 0.005125 σ[I]= 0.071589 $\sigma [\ln I] = 0.173298$ V(I) =0.174608

		_	
Ic=	0.80	ln(I crit) =	-0.223144

Elev. 1	Elev. 13.0			
Head =	3.64			

Ic=

0.80

Run	Kf/Kb	Z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	400	10.00	9.00	137.94	189.74	0.0209	1.60	0.16		
2	400	10.00	9.00	137.94	189.74	0.0209	1.60	0.16	0.000000	0.00
3	400	10.00	9.00	137.94	189.74	0.0209	1.60	0.16	0.000000	0.00
4	400	11.00	9.00	140.52	199.00	0.0203	1.64	0.15	0.000100	13.79
5	400	9.00	9.00	134.94	180.00	0.0215	1.57	0.17	0.000100	13.79
6	400	10.00	15.00	150.26	244.95	0.0301	1.79	0.18	0.000625	86.21
7	400	10.00	3.00	100.92	109.54	0.0096	1.27	0.13	0.000023	00.21
							-	Total	0.000725	100.00

ln(I crit) = -0.223144

E[I] =0.160000 $E[\ln I] = -1.846545$ Var[I]= 0.000725 0.026926 $\sigma [\ln I] = 0.167113$ σ[I]= V(I) =0.168286

β =	-11.049687
F(z) =	1.000000
Pr(f) % =	0.000000

Analysis By: G. Johnson

Head

0.00

3.64

6.54

9.29

12.04

Analysis

Case

Toe

Elev. 13.0

200 year

Elev. 18.65

Crest

Checked By: M. Perlea 12/03/2012

Elevation

9.36

13.00

15.90

18.65

21.40

Pr(f)

0.0000

0.0000

0.0000

0.0000

0.0087

-5.231525

0.999960

0.004008

F(z) =

Pr(f) % =

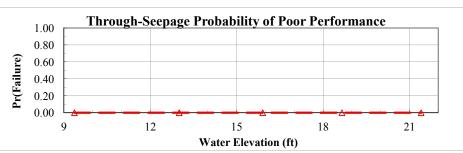
Date: 11/28/2012

Ic=

0.80

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin
Study Area: Left Bank French Camp Slough


River Section: Index Point FL1

Random Variables							
Parameter Expected Value Standard Coefficient of Variation %							
Tractive Stress (Tc)	5	0.5	10.00				
Initial Porosity (n)	0.4	0.04	10.00				
Initial Permeability (Ko)	1.00E-10	3.00E-11	30.00				

Pr(f)=0	
NO	

Levee Mile: STA 1049+00
River Mile: XX.XX
Analysis Case Without Project Conditions

Crest Elev.: 21.40 L/S Toe Elev.: 9.36 W/S Toe Elev.: 10.00

	Checked By:	M. Perlea 12/0	3/2012
	Date:	11/28/2012	
alveie			

Analysis By: G. Johnson

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	9.36	0.0000
Elev. 13.0	3.64	13.00	0.000000
200 year	6.54	15.90	0.000000
Elev. 18.65	9.29	18.65	0.000000
Crest	12.04	21.40	0.000000

Crest	Head =	12.04	Horizontal Gradient (Ix) =	0.380

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	300.05		
2	4.50	0.40	1.00E-10	102.62	270.05	900.329843	26.44
3	5.50	0.40	1.00E-10	125.42	330.06	900.329643	20.44
4	5.00	0.36	1.00E-10	108.17	284.66	225.647998	6.63
5	5.00	0.44	1.00E-10	119.59	314.70	223.047998	0.03
6	5.00	0.40	7.00E-11	136.28	358.63	2278.566570	66.93
7	5.00	0.40	1.30E-10	100.00	263.17	2278.300370	00.93
E[FS] = Var[FS]=	300.054969 3404.544411		$E[\ln FS] =$	5.685407	Total	3404.544411	100.00
$\sigma[FS] = V(FS) =$	58.348474 0.194459		σ[ln FS]=	0.192658		β 	29.810.118
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) %	
20	0 year	Head =	6.54		Horizontal (Gradient (Ix) = 0.220	

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	518.28		
2	4.50	0.40	1.00E-10	102.62	466.45	2686.108045	26.44
3	5.50	0.40	1.00E-10	125.42	570.10	2080.108043	20.44
4	5.00	0.36	1.00E-10	108.17	491.68	673.214276	6.63
5	5.00	0.44	1.00E-10	119.59	543.57	073.214270	0.03
6	5.00	0.40	7.00E-11	136.28	619.46	6798.037451	66.93
7	5.00	0.40	1.30E-10	100.00	454.56	0798.037431	00.93
E[FS] =	518.276764		$E[\ln FS] =$	6.231951	Total	10157.359771	100.00
Var[FS]=	10157.359771					<u> </u>	
$\sigma[FS]=$	100.783728		$\sigma[\ln FS]=$	0.192658		β =	32.347277
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	- 0.000000

Elev. 18.65		Head =	9.29		Horizontal G	Gradient (Ix) = 0.320	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	356.32		
2	4.50	0.40	1.00E-10	102.62	320.68	1260 605755	26.44
3	5.50	0.40	1.00E-10	125.42	391.95	1269.605755	26.44
4	5.00	0.36	1.00E-10	108.17	338.03	210 100025	((2
5	5.00	0.44	1.00E-10	119.59	373.71	318.198935	6.63
6	5.00	0.40	7.00E-11	136.28	425.88	2212 124000	66.02
7	5.00	0.40	1.30E-10	100.00	312.51	3213.134889	66.93
E[FS] = Var[FS]=			E[ln FS] =	5.857257	Total	4800.939579	100.00
$\sigma[FS] = V(FS) =$			σ[ln FS]=	0.192658		β F(z)	= 30.402411 = 0.000000
FS req'd =			ln(FS req'd) =	0.000000		Pr(f) %	
Ele	ev. 13.0	Head =	3.64		Horizontal G	Gradient (Ix) = 0.140	

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	814.43		
2	4.50	0.40	1.00E-10	102.62	732.99	6633.042314	26.44
3	5.50	0.40	1.00E-10	125.42	895.88	0033.042314	20.44
4	5.00	0.36	1.00E-10	108.17	772.64	1662.427089	6.63
5	5.00	0.44	1.00E-10	119.59	854.19	1002.42/009	0.03
6	5.00	0.40	7.00E-11	136.28	973.44	16786.990441	66.93
7	5.00	0.40	1.30E-10	100.00	714.31	10/80.990441	00.93
E[FS] =	814.434915		$E[\ln FS] =$	6.683936	Total	25082.459843	100.00
Var[FS]=	25082.459843						
$\sigma[FS]=$	158.374429		σ[ln FS]=	0.192658		β =	34.693331
V(FS) =	0.194459		_			F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

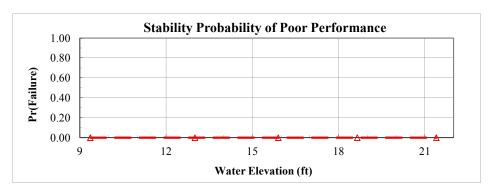
IP FL1.RD 17.French Camp Slough.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin Study Area: Left Bank French Camp Slough

River Section: Index Point FL1

 $\sigma[FS]=$


V(FS) =

1.00

FS req'd =

Random Variables									
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,						
Levee Φ	28	4	13.00						
Levee Cohesion	100	40	40.00						
Levee γ	120	8	7.00						
Foundation Φ	30	4	13.00						
Foundation Cohesion	100	40	40.00						

Elev. 18.65

Elev. 13.0

 $\sigma[FS]=$

1.00

V(FS) =

FS req'd =

Analysis By:	G. Johnson
Checked By:	M. Perlea 12/03/2012
Date:	11/28/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	9.36	0.0000
Elev. 13.0	3.64	13.00	0.000000
200 year	6.54	15.90	0.000000
Elev. 18.65	9.29	18.65	0.000000
Crest	12.04	21.40	0.000000

Crest	Head =	12.04	Pr(f)=0	NO

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	30	100	2.28		
2	24	100	120	30	100	2.20	0.005852	6.83
3	32	100	120	30	100	2.35	0.003832	0.83
4	28	60	120	30	100	2.21	0.004356	5.09
5	28	140	120	30	100	2.34	0.004330	3.09
6	28	100	112	30	100	2.32	0.001722	2.01
7	28	100	128	30	100	2.24	0.001722	2.01
8	28	100	120	26	100	2.09	0.036290	42.36
9	28	100	120	34	100	2.47	0.036290	42.30
10	28	100	120	30	60	2.07	0.037442	43.71
11	28	100	120	30	140	2.46	0.037442	43./1
E[FS] =	2.280000			$E[\ln FS] =$	0.816003	Total	0.085663	100.00
Var[FS]=	0.085663							

Var[FS]=	0.085663				
$\sigma[FS]=$	0.292682	σ[ln FS]=	0.127845	β =	6.382739
V(FS) =	0.128369			F(z) =	0.000000
FS req'd =	1.00	ln(FS req'd) =	0.000000	Pr(f) % =	0.000000
				-	

$\sigma[FS] = 0.292682$ $\sigma[\ln FS] = 0.127845$ $V(FS) = 0.128369$ $\ln(FS \text{ req'd}) = 0.000000$ $Pr(f)$
V(FS) = 0.128369
t 1
$\sigma[FS] = 0.292682$ $\sigma[\ln FS] = 0.127845$

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	30	100	2.41		
2	24	100	120	30	100			
3	32	100	120	30	100			
4	28	60	120	30	100			
5	28	140	120	30	100			
6	28	100	112	30	100			
7	28	100	128	30	100			
8	28	100	120	26	100			
9	28	100	120	34	100			
10	28	100	120	30	60			
11	28	100	120	30	140			
E[FS] = Var[FS]=				$E[\ln FS] =$		Total		

Pr(f)=0

YES

$\sigma[FS]=$		$\sigma[\ln FS]=$	
V(FS) =			
FS req'd =	1.00	ln(FS req'd) =	0.000000

3.64

Head =

Head =

9.29

β=	
F(z) =	
Pr(f) % =	0.000000

F(z) =

0.000000

Pr(f) % =

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	30	100	2.50		
2	24	100	120	30	100			
3	32	100	120	30	100			
4	28	60	120	30	100			
5	28	140	120	30	100			
6	28	100	112	30	100			
7	28	100	128	30	100			
8	28	100	120	26	100			
9	28	100	120	34	100			
10	28	100	120	30	60			
11	28	100	120	30	140			
E[FS] = Var[FS]=				E[ln FS] =		Total		

 $\sigma[\ln FS]=$

ln(FS req'd) =

0.000000

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	30	100	2.58		
2	24	100	120	30	100			
3	32	100	120	30	100			
4	28	60	120	30	100			
5	28	140	120	30	100			
6	28	100	112	30	100			
7	28	100	128	30	100			
8	28	100	120	26	100			
9	28	100	120	34	100			
10	28	100	120	30	60			
11	28	100	120	30	140			
E[FS] = Var[FS]=				$E[\ln FS] =$		Total		

 $\sigma[\ln FS]=$

ln(FS req'd) =

YES

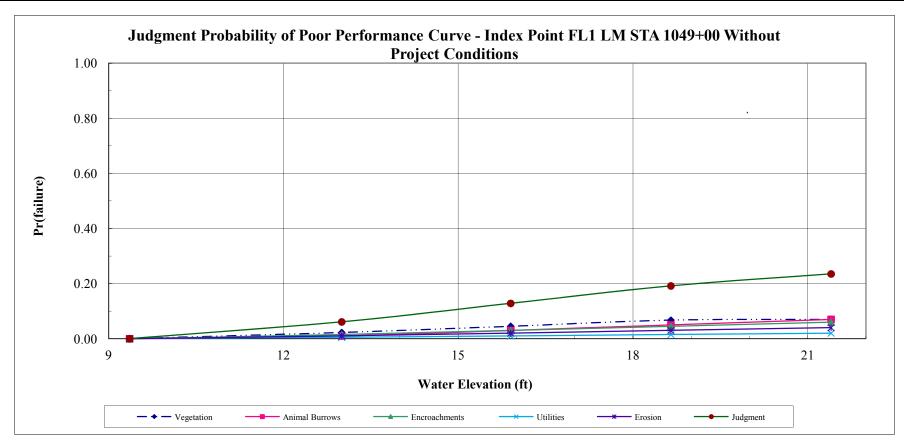
0.000000

Pr(f)=0

8/19/2013

F(z) =

Pr(f) % =


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Judgment Probability of Poor Performance Curve

Project: Lower San Joaquin Levee Mile: STA 1049+00 Crest Elev.: 21.40 Analysis By: G. Johnson

Study Area: Left Bank French Camp Slough
River Mile: XX.XX
L/S Toe Elev.: 9.36
Checked By: M. Perlea 12/03/2012

Analysis Case: Without Project Conditions
W/S Toe Elev.: 10.00
Date: 11/28/2012

Water Surface	Vege	tation	Animal	Burrows	Encroachments		Utilities		Ero	sion	Judgment	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
9.36	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
13.00	0.0225	0.9775	0.0100	0.9900	0.0150	0.9850	0.0050	0.9950	0.0100	0.9900	0.0610	0.9390
15.90	0.0450	0.9550	0.0300	0.9700	0.0300	0.9700	0.0100	0.9900	0.0200	0.9800	0.1282	0.8718
18.65	0.0675	0.9325	0.0500	0.9500	0.0450	0.9550	0.0150	0.9850	0.0300	0.9700	0.1917	0.8083
21.40	0.0700	0.9300	0.0700	0.9300	0.0600	0.9400	0.0200	0.9800	0.0400	0.9600	0.2351	0.7649

IP FL1.RD 17.French Camp Slough.xls

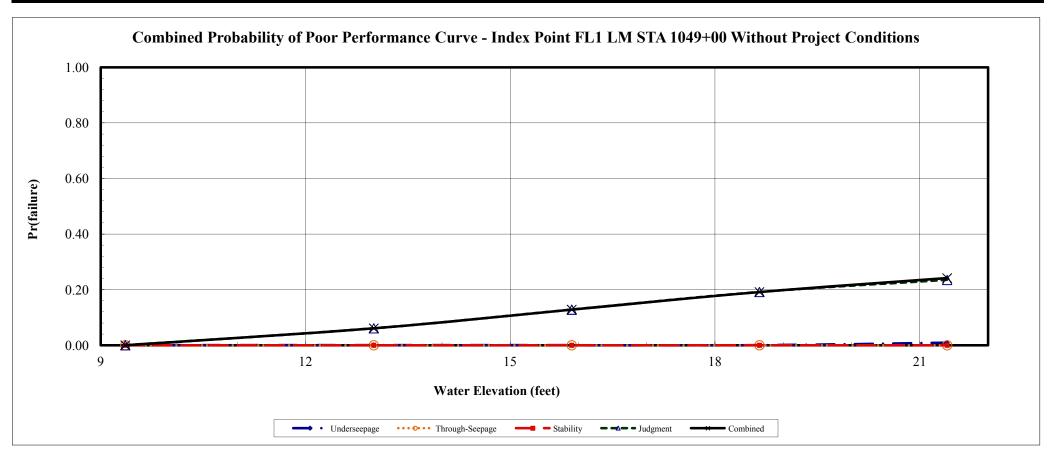
Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San Joaquin Levee Mile: STA 1049+00 Crest Elev.: 21.40 Analysis By: G. Johnson

Study Area: Left Bank French Camp Slough

River Mile: XX.XX

River Section: Index Point FL1


Analysis Case: Without Project Conditions

W/S Toe Elev.: 9.36

W/S Toe Elev.: 10.00

Date: 11/28/2012

Water Surface	Underseepage		Through-Seepage		Stability		Judg	ment	Combined		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	
9.36	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
13.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0610	0.9390	0.0610	0.9390	
15.90	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.1282	0.8718	0.1282	0.8718	
18.65	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.1917	0.8083	0.1917	0.8083	
21.40	0.0087	0.9913	0.0000	1.0000	0.0000	1.0000	0.2351	0.7649	0.2418	0.7582	

IP FL1.RD 17.French Camp Slough.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Determination of Random Variables For Underseepage Reliability Analysis**

Project: Lower San Joaquin Levee Mile: STA 1164+20 Channel: Right Bank French Camp Slough
Basin and Reach: Index Point FR1

Crest Elev.: 21.77 River Mile: XX.XX **L/S Toe Elev.:** 8.14

Analysis By: G. Johnson

Checked By: M. Perlea 12/12/2012

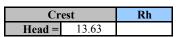
Date: 12/10/2012 Analysis Case Without Project Conditions **W/S Toe Elev.:** 10.00

		Blanket	Thickness Var	iable (z)			Aquifer Thickness Variable (d)				Hydraulic Conductivity Vairables (Kb and Kf)								
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	v ai iation	of Variation
WR0404_075C	7					10					SC	0.007	SM	0.28	40				
WR0404_042B	3.5					9					SC	0.007	SM	0.28	40				
WR0404_041B	9					9.5					ML	0.007	SP-SM	14	2000				
1-CPT-43	6.5					5					ML	0.007	SM	0.28	40				
WR0404_043C	8	7	2	12	20	6.5	Q	2	19	25	CL	0.0007	ML	0.028	40	367	800	391556	98
WR0404_046B	5	,	2	13	29	7	0	2	19	25	CL	0.0007	ML	0.028	40	307	800	391330	96

	Blanket Mat	erial 1 (lowest	permeability)	В	lanket Materia	12	Transformed Blanket	A	quifer Materia	d 1	A	quifer Materia	1 2	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	T mckness (z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR0404_075C	SC	7	0.007				7	SM	10	0.28							0.28
WR0404 042B	SC	3.5	0.007				3.5	SM	9	0.28							0.28
WR0404_041B	ML	9	0.007				9	SP-SM	9.5	14							14
1-CPT-43	ML	6.5	0.007				6.5	SM	5	0.28							0.28
WR0404_043C	CL	8	0.0007				8	ML	6.5	0.028							0.028
WR0404_046B	CL	5	0.0007				5	ML	7	0.028							0.028
							·										•

IP FR1.RD 404.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Underseepage Reliability Analysis With Blanket Theory Analysis


Project: Lower San Joaquin

Study Area: Right Bank French Camp Slough

River Section: Index Point FR1

Random Variables									
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %						
Permaebility Ratio	367	360	98						
Blanket Thickness (z)	7	2	29						
Aquifer Thickness (d)	20	2	25						

Blanket Theory Analysis Inputs									
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket				
NO	7A	150	78	∞	112				

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	367	7.00	20.00	131.36	226.67	0.0459	7.09	1.01		
2	727	7.00	20.00	139.84	318.96	0.0373	8.10	1.16	0.129600	68.20
3	7	7.00	20.00	32.05	32.06	0.1407	3.07	0.44	0.129000	08.20
4	367	9.00	20.00	135.01	257.02	0.0426	7.45	0.83	0.060025	31.59
5	367	5.00	20.00	125.37	191.57	0.0506	6.61	1.32	0.000023	31.39
6	367	7.00	22.00	132.82	237.74	0.0490	7.22	1.03	0.000400	0.21
7	367	7.00	18.00	129.63	215.04	0.0426	6.93	0.99	0.000400	0.21
								Total	0.190025	100.00

E[ln I] =

 $\sigma[\ln I] =$

ln(I crit) =

-0.075461

0.413307

-0.223144

E[I] = 1.010000 Var[I] = 0.190025 $\sigma[I] = 0.435919$ V(I) = 0.431603

Ic= 0.80

200	200 yr						
Head =	Head = 7.76						

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	367	7.00	20.00	131.36	226.67	0.0459	4.03	0.58		
2	727	7.00	20.00	139.84	318.96	0.0373	4.61	0.66	0.042025	67.95
3	7	7.00	20.00	32.05	32.06	0.1407	1.75	0.25	0.042023	07.93
4	367	9.00	20.00	135.01	257.02	0.0426	4.24	0.47	0.019600	31.69
5	367	5.00	20.00	125.37	191.57	0.0506	3.76	0.75	0.019000	31.09
6	367	7.00	22.00	132.82	237.74	0.0490	4.11	0.59	0.000225	0.36
7	367	7.00	18.00	129.63	215.04	0.0426	3.95	0.56	0.000223	0.30
								Total	0.061850	100.00

E[I] = 0.580000 Var[I] = 0.061850 $\sigma[I] = 0.248697$

V(I) = 0.428787 Ic = 0.80

 $E[\ln I] = -0.629117$

 $\sigma[\ln I] =$

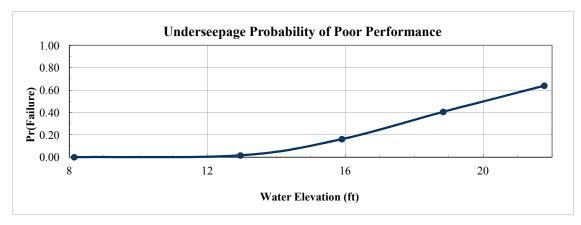
ln(I crit) =

0.410827

-0.223144

 $\beta = -1.531341$ F(z) = 0.838469 Pr(f) % = 16.153113

-0.182579


0.360427

63.95733

F(z) =

Pr(f) % =

Levee Mile: STA 1164+20
River Mile: XX.XX
Analysis Case Without Project Conditions

Elev. 1	8.84	Rh
Head =	10.70	

E.ev. 12.96 Head = 4.82

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	367	7.00	20.00	131.36	226.67	0.0459	5.56	0.79		
2	727	7.00	20.00	139.84	318.96	0.0373	6.36	0.91	0.081225	67.98
3	7	7.00	20.00	32.05	32.06	0.1407	2.41	0.34	0.081223	07.98
4	367	9.00	20.00	135.01	257.02	0.0426	5.85	0.65	0.038025	31.83
5	367	5.00	20.00	125.37	191.57	0.0506	5.19	1.04	0.038023	31.63
6	367	7.00	22.00	132.82	237.74	0.0490	5.67	0.81	0.000225	0.19
7	367	7.00	18.00	129.63	215.04	0.0426	5.44	0.78	0.000223	0.19
						·	-	Total	0.119475	100.00

Crest Elev.: 21.77

L/S Toe Elev.: 8.14

W/S Toe Elev.: 10.00

Ic= 0.80

Rh

β =	-0.772488
F(z) =	0.594569
Pr(f) % =	40.543051

Analysis By: G. Johnson

Head

0.00

4.82

7.76

10.70

13.63

Analysis

Case

Toe E.ev. 12.96

200 yr

Crest

Elev. 18.84

Checked By: M. Perlea 12/12/2012

Elevation

8.14

12.96

15.90

18.84

21.77

Pr(f)

0.0000

0.0157

0.1615

0.4054

0.6396

Date: 12/10/2012

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	367	7.00	20.00	131.36	226.67	0.0459	2.51	0.36		
2	727	7.00	20.00	139.84	318.96	0.0373	2.86	0.41	0.015625	65.79
3	7	7.00	20.00	32.05	32.06	0.1407	1.09	0.16		03.79
4	367	9.00	20.00	135.01	257.02	0.0426	2.64	0.29	0.008100	34.11
5	367	5.00	20.00	125.37	191.57	0.0506	2.34	0.47	0.008100	
6	367	7.00	22.00	132.82	237.74	0.0490	2.55	0.36	0.000025	0.11
7	367	7.00	18.00	129.63	215.04	0.0426	2.45	0.35		

ln(I crit) =

E[I] = 0.360000 Var[I] = 0.023750 $\sigma[I] = 0.154110$

 $\sigma[I] = 0.154110$ V(I) = 0.428084

Ic= 0.80

 $E[\ln I] = -1.105786$

-0.223144

-0.223144

 $\sigma [ln I] = 0.410207$

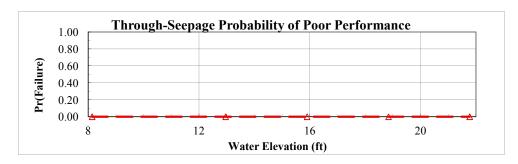
ln(I crit) =

 $\beta = -2.695676$ F(z) = 0.984289 Pr(f) % = 1.571054

0.023750

Total

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model


Project: Lower San Joaquin Study Area: Right Bank French Camp Slough

River Section: Index Point FR1

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,					
Tractive Stress (Tc)	5	0.5	10.00					
Initial Porosity (n)	0.4	0.04	10.00					
Initial Permeability (Ko)	1.00E-10	3.00E-11	30.00					

Pr(f)=0	
NO	

Levee Mile: STA 1164+20 Crest Elev.: 21.77 River Mile: XX.XX **L/S Toe Elev.:** 8.14 Analysis Case Without Project Conditions **W/S Toe Elev.:** 10.00

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	8.14	0.0000
E.ev. 12.96	4.82	12.96	0.000000
200 yr	7.76	15.90	0.000000
Elev. 18.84	10.70	18.84	0.000000
Crest	13.63	21.77	0.000000

Analysis By: G. Johnson

Checked By: M. Perlea 12/12/2012

Date: 12/10/2012

C	rest	Head =	13.63		Horizontal (Gradient (Ix) = 0.520	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	219.27		
2	4.50	0.40	1.00E-10	102.62	197.34	480.797446	26.44
3	5.50	0.40	1.00E-10	125.42	241.20	480./9/440	20.44
4	5.00	0.36	1.00E-10	108.17	208.02	120 501272	((2
5	5.00	0.44	1.00E-10	119.59	229.97	120.501372	6.63
6	5.00	0.40	7.00E-11	136.28	262.08	1216.808479	66.93
7	5.00	0.40	1.30E-10	100.00	192.31	1210.808479	00.93
E[FS] = Var[FS]=			E[ln FS] =	5.371750	Total	1818.107296	100.00
σ[FS]= V(FS) =			σ[ln FS]=	0.192658		<u>β</u> F(z)	
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) %	
20	00 yr	Head =	7.76		Horizontal (Gradient (Ix) = 0.350	

	Run	Tractive Stress (Tc)	Initial Porosity (n)	Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
I	1 (Mean)	5.00	0.40	1.00E-10	114.02	325.77		
I	2	4.50	0.40	1.00E-10	102.62	293.20	1061.286770	26.44
	3	5.50	0.40	1.00E-10	125.42	358.35	1001.280770	20.44
	4	5.00	0.36	1.00E-10	108.17	309.06	265.988334	6.63
I	5	5.00	0.44	1.00E-10	119.59	341.67	203.768334	0.03
I	6	5.00	0.40	7.00E-11	136.28	389.37	2685.918471	66.93
I	7	5.00	0.40	1.30E-10	100.00	285.72	2083.918471	00.93
	E[FS] =	325.773966		$E[\ln FS] =$	5.767645	Total	4013.193575	100.00
	Var[FS]=	4013.193575						
	$\sigma[FS]=$	63.349772		$\sigma[\ln FS]=$	0.192658		β =	29.937274
_	V(FS) =	0.194459	-				$\mathbf{F}(\mathbf{z}) =$	0.000000
	FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Initial G.

Elev.	. 18.84	Head =	10.70		Horizontal G	Fradient (Ix) = 0.440	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	259.14		
2	4.50	0.40	1.00E-10	102.62	233.22	671.527011	26.44
3	5.50	0.40	1.00E-10	125.42	285.05	0/1.32/011	20.44
4	5.00	0.36	1.00E-10	108.17	245.84	168.303569	6.63
5	5.00	0.44	1.00E-10	119.59	271.79	108.303309	0.03
6	5.00	0.40	7.00E-11	136.28	309.73	1699.509363	66.93
7	5.00	0.40	1.30E-10	100.00	227.28	1099.309303	00.93
E[FS] = Var[FS]=	259.138382 2539.339943		E[ln FS] =	5.538804	Total	2539.339943	100.00
σ[FS]= V(FS) =	50.391864 0.194459		σ[ln FS]=	0.192658		β = F(z) =	= 28.749460 = 0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000
E.ev.	12.96	Head =	4.82		Horizontal G	Gradient (Ix) = 0.240]

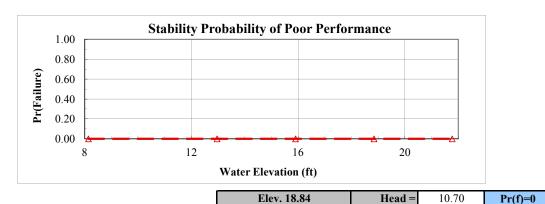
Run	Tractive Stress (Tc)	Initial Porosity (n)	Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	5.00	0.40	1.00E-10	114.02	475.09		
2	4.50	0.40	1.00E-10	102.62	427.58	2257.076899	26.44
3	5.50	0.40	1.00E-10	125.42	522.60	2237.070899	
4	5.00	0.36	1.00E-10	108.17	450.71	565.686995	6.63
5	5.00	0.44	1.00E-10	119.59	498.28	303.000773	0.03
6	5.00	0.40	7.00E-11	136.28	567.84	5712.239803	66.93
7	5.00	0.40	1.30E-10	100.00	416.68	3/12.239803	
E[FS] =	475.087034		$E[\ln FS] =$	6.144940	Total	8535.003697	100.00
Var[FS]=	8535.003697						
$\sigma[FS]=$	92.385084		$\sigma[\ln FS]=$	0.192658		β=	31.895640
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Critical

Initial

Initial

IP FR1.RD 404.LSJ River.xls 8/19/2013


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin **Study Area:** Right Bank French Camp Slough

River Section: Index Point FR1

Random Variables										
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,							
Levee Φ	28	4	13.00							
Levee Cohesion	100	40	40.00							
Levee γ	120	8	7.00							
Foundation Φ	28	4	13.00							
Foundation Cohesion	50	20	40.00							

E.ev. 12.96

Head =

4.82

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	8.14	0.0000
E.ev. 12.96	4.82	12.96	0.000000
200 yr	7.76	15.90	0.000000
Elev. 18.84	10.70	18.84	0.000000
Crest	13 63	21.77	0.000000

Analysis By: G. Johnson Checked By: M. Perlea 12/12/2012 Date: 12/10/2012

Cre	est	Head =	13.63	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	28	50	1.52		
2	24	100	120	28	50	1.46	0.002209	24.29
3	32	100	120	28	50	1.56	0.002209	24.29
4	28	60	120	28	50	1.49	0.000729	8.02
5	28	140	120	28	50	1.54	0.000729	8.02
6	28	100	112	28	50	1.52	0.000081	0.89
7	28	100	128	28	50	1.50	0.000081	0.89
8	28	100	120	24	50	1.44	0.005476	60.21
9	28	100	120	32	50	1.59	0.003470	00.21
10	28	100	120	28	30	1.49	0.000600	6.60
11	28	100	120	28	70	1.54	0.000000	0.00
E[FS] =	1.520000			$E[\ln FS] =$	0.416746	Total	0.009095	100.00
Var[FS]=	0.009095							
$\sigma[FS]=$	0.095369			$\sigma[\ln FS]=$	0.062681		β =	
V(FS) =	0.062743						F(z) =	0.000000
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.000000
							-	

	E[FS] =	1.520000			$E[\ln FS] =$	0.416746	Total	0.009095	100.00
	Var[FS]=	0.009095							
	$\sigma[FS]=$	0.095369			$\sigma[\ln FS]=$	0.062681		β =	6.648663
i	V(FS) =	0.062743						F(z) =	0.000000
	FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.000000
								<u>-</u>	
	200	****	Head =	7.76	D(6) 0	VEC			
	200	yr	neau –	7.70	Pr(f)=0	YES			
i	200	yr	neau –	7.70	Pr(1)=0	TES			
			Levee		Foundation	Foundation	FS	Variance Component	% Variance
	Run	Levee Φ	_	Levee γ			FS	Variance Component	% Variance
Í			Levee		Foundation	Foundation	FS 1.76	Variance Component	% Variance
	Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion		Variance Component	% Variance

Run	Levee Φ	Cohesion	Levee γ	Foundation Φ	Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	28	50	1.76		
2	24	100	120	28	50			
3	32	100	120	28	50			
4	28	60	120	28	50			
5	28	140	120	28	50			
6	28	100	112	28	50			
7	28	100	128	28	50			
8	28	100	120	24	50			
9	28	100	120	32	50			
10	28	100	120	28	30			
11	28	100	120	28	70			
E[FS] =				$E[\ln FS] =$		Total		
Var[FS]=								
$\sigma[FS]=$				σ[ln FS]=			β =	=
V(FS) =		-					F(z) =	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	28	50	1.65		
2	24	100	120	28	50			
3	32	100	120	28	50			
4	28	60	120	28	50			
5	28	140	120	28	50			
6	28	100	112	28	50			
7	28	100	128	28	50			
8	28	100	120	24	50			
9	28	100	120	32	50			
10	28	100	120	28	30			
11	28	100	120	28	70			
E[FS] =				$E[\ln FS] =$		Total		
Var[FS]=								
$\sigma[FS]=$				σ[ln FS]=			β =	
V(FS) =		-					F(z) =	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

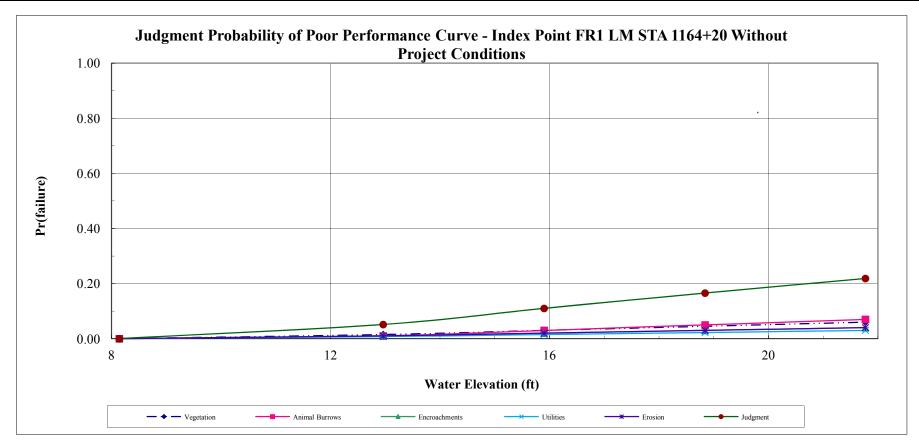
Pr(f)=0

YES

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	28	100	120	28	50	1.88		
2	24	100	120	28	50			
3	32	100	120	28	50			
4	28	60	120	28	50			
5	28	140	120	28	50			
6	28	100	112	28	50			
7	28	100	128	28	50			
8	28	100	120	24	50			
9	28	100	120	32	50			
10	28	100	120	28	30			
11	28	100	120	28	70			
E[FS] = Var[FS]=				$E[\ln FS] =$		Total		
$\sigma[FS] = V(FS) =$				σ[ln FS]=			$\beta = F(z) = F(z)$	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	

YES

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Judgment Probability of Poor Performance Curve

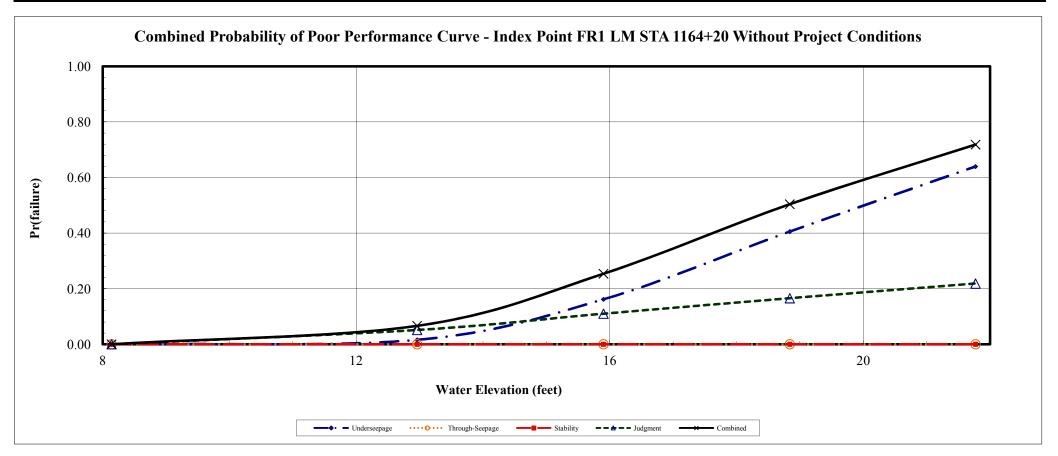

Project: Lower San Joaquin Levee Mile: STA 1164+20 Crest Elev.: 21.77 Analysis By: G. Johnson

Study Area: Right Bank French Camp Slough
River Mile: XX.XX
L/S Toe Elev.: 8.14
Checked By: M. Perlea 12/12/2012

Note: 12/10/2012

Note: 12/10/2012

Water Surface	Veget	tation	Animal	Burrows	Encroa	Encroachments		ilities	Ero	sion	Judgment		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	Pr(f) R		R	Pr(f)	R	Pr(f)	R	
8.14	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
12.96	0.0150	0.9850	0.0100	0.9900	0.0100	0.9900	0.0075	0.9925	0.0100	0.9900	0.0514	0.9486	
15.90	0.0300	0.9700	0.0300	0.9700	0.0200	0.9800	0.0150	0.9850	0.0200	0.9800	0.1099	0.8901	
18.84	0.0450	0.9550	0.0500	0.9500	0.0300	0.9700	0.0225	0.9775	0.0300	0.9700	0.1656	0.8344	
21.77	0.0600	0.9400	0.0700	0.9300	0.0400	0.9600	0.0300	0.9700	0.0400	0.9600	0.2185	0.7815	


IP FR1.RD 404.LSJ River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San Joaquin Levee Mile: STA 1164+20 Crest Elev.: 21.77 Analysis By: G. Johnson

Study Area: Right Bank French Camp Slough
River Mile: XX.XX
River Section: Index Point FR1
River Section: Index Point FR1
River Section: Undex Point FR1
River Mile: XX.XX
Riv

Water Surface	Unders	seepage	Through	-Seepage	Stal	oility	Judg	ment	Combined		
Elevation	Pr(f)	R	Pr(f) R		Pr(f)	R	Pr(f)	R	Pr(f)	R	
8.14	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
12.96	0.0157	0.9843	0.0000	1.0000	0.0000	1.0000	0.0514	0.9486	0.0663	0.9337	
15.90	0.1615	0.8385	0.0000	1.0000	0.0000	1.0000	0.1099	0.8901	0.2537	0.7463	
18.84	0.4054	0.5946	0.0000	1.0000	0.0000	1.0000	0.1656	0.8344	0.5039	0.4961	
21.77	0.6396	0.3604	0.0000	1.0000	0.0000	1.0000	0.2185	0.7815	0.7183	0.2817	

IP FR1.RD 404.LSJ River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Determination of Random Variables For Underseepage Reliability Analysis**

Levee Mile: STA 846+68

Analysis Case Without Project Conditions

River Mile: XX.XX

Project: Lower San Joaquin

Channel: Left Bank Stockton Diverting Canal

Basin and Reach: Index Point SL-1

Coordinates: State Plane (ft), N 2183207, E 6340943

Datum: NAVD 88

Crest Elev.: 39.16

Analysis By: J. Hogan Checked By: M. Perlea, G. Johnson L/S Toe Elev.: 25.00

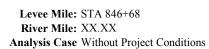
W/S Toe Elev.: 25.00 Date: 9/27/2012

		Blanket	Thickness Var	iable (z)			Aquifer	Thickness Var	iable (d)]	Hydraulic Cond	uctivity Vairab	les (Kb and Kf)		
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	variation	of Variation
WCSBDC_001B	9					6					CL/ML	0.007	SM	0.28	40				
WCSBDC_002B	6					38					CL	0.007	SP-SM	2.8	400				
WCSBDC_003B	16.7					8					CH/ML	0.007	SM	0.28	40				
WCSBDC_004B	6					20					CL	0.007	SM	0.28	40				
WCSBDC_008C	10.8	10	5	38	50	12	17	11	152	65	CL/ML	0.007	SP-SM	2.8	400	194	192	33493	98
WCSBDC_009C	6.4	10	3	36	30	11	1 /	11	132	03	CL/ML	0.007	SP-SM	2.8	400	134	192	33493	96
WCSBDC 005B	16					24					CL	0.007	ML	0.28	40				

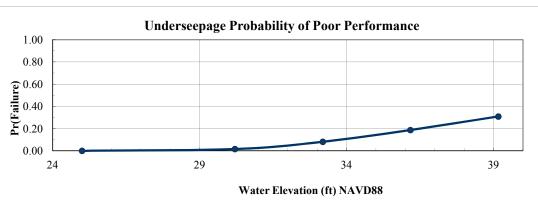
	Blanket Mat	erial 1 (lowest	permeability)	В	lanket Materia	12	Transformed Blanket	A	quifer Materia	l 1	A	quifer Materia	12	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	Tillekness (Z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WCSBDC 001B	CL	5	0.007	ML	4	0.007	9	SM	6	0.28							0.28
WCSBDC_002B	CL	6	0.007				6	SP-SM	38	2.8							2.8
WCSBDC 003B	СН	16	0.007	ML	7	0.07	16.7	SM	8	0.28							0.28
WCSBDC 004B	CL	6	0.007				6	SM	20	0.28							0.28
WCSBDC 008C	CL	8	0.007	ML	28	0.07	10.8	SP-SM	12	2.8							2.8
WCSBDC_009C	CL	4	0.007	ML	24	0.07	6.4	SP-SM	11	2.8							2.8
WCSBDC_005B	CL	16	0.007				16	ML	24	0.28							0.28
				•													
				•													

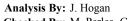
Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**

Project: Lower San Joaquin


Study Area: Left Bank Stockton Diverting Canal

River Section: Index Point SL-1


Coordinates: State Plane (ft), N 2183207, E 6340943


Random Variables													
Parameter	Parameter Expected Standard Coefficient of Value Deviation Variation, %												
Permaebility Ratio	194	192	98										
Blanket Thickness (z)	10	5	50										
Aquifer Thickness (d)	` '												

Blanket Theory Analysis Inputs								
Pr(f)=0	Pr(f)=0 BTA Case		L2	L3	γ Blanket			
NO	7A	115	77	00	112			

Checked By: M. Perlea, G. Johnson **Date:** 9/27/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	25.00	0.0000
200yr	5.20	30.20	0.0160
200yr + 3ft	8.19	33.19	0.0813
Crest-3ft	11.17	36.17	0.1869
Crest	14 16	39 16	0.3087

Total

Cro	Crest					
Head =	14.16					

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	194	10.00	17.00	101.75	181.60	0.0472	7.14	0.71		
2	386	10.00	17.00	107.85	256.16	0.0385	8.22	0.82	0.087025	39.27
3	2	10.00	17.00	18.44	18.44	0.1493	2.29	0.23	0.087023	39.27
4	194	15.00	17.00	105.74	222.42	0.0420	7.77	0.52	0.122500	55.27
5	194	5.00	17.00	91.70	128.41	0.0572	6.12	1.22	0.122300	33.27
6	194	10.00	28.00	106.49	233.07	0.0672	7.92	0.79	0.012100	5.46
7	194	10.00	6.00	85.01	107.89	0.0222	5.66	0.57	0.012100	3.46
								Total	0.221625	100.00

E[I] = 0.710000

Var[I]= 0.221625

 $\sigma[I] = 0.470771$

V(I) = 0.663057

Ic= 0.80

$E[\ln I] =$	-0.524689
--------------	-----------

 $\sigma [ln I] = 0.603653$

ln(I crit) = -0.223144

β=	-0.869190
F(z) =	0.691298
Pr(f)% =	30.870162

Crest-	-3ft	Rh
Head =	11.17	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	194	10.00	17.00	101.75	181.60	0.0472	5.63	0.56		
2	386	10.00	17.00	107.85	256.16	0.0385	6.49	0.65	0.055225	38.97
3	2	10.00	17.00	18.44	18.44	0.1493	1.81	0.18	0.033223	36.97
4	194	15.00	17.00	105.74	222.42	0.0420	6.13	0.41	0.078400	55.32
5	194	5.00	17.00	91.70	128.41	0.0572	4.83	0.97	0.078400	33.32
6	194	10.00	28.00	106.49	233.07	0.0672	6.25	0.63	0.008100	5.72
7	194	10.00	6.00	85.01	107.89	0.0222	4.47	0.45	0.008100	3.72

E[I] = 0.560000

Var[I]= 0.141725

 $\sigma[I] = 0.376464$

V(I) = 0.672257

Ic= 0.80

σ [ln I] =	0.610650
ln(I crit) =	-0.223144

 $E[\ln I] = -0.766265$

p –	-1.234830
F(z) =	0.813110
Pr(f) % =	18.688985

100.00

0.141725

200yr	+ 3ft	Rh
Head =	8.19	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	194	10.00	17.00	101.75	181.60	0.0472	4.13	0.41		
2	386	10.00	17.00	107.85	256.16	0.0385	4.76	0.48	0.030625	39.84
3	2	10.00	17.00	18.44	18.44	0.1493	1.33	0.13	0.030023	39.04
4	194	15.00	17.00	105.74	222.42	0.0420	4.50	0.30	0.042025	54.67
5	194	5.00	17.00	91.70	128.41	0.0572	3.54	0.71	0.042023	34.07
6	194	10.00	28.00	106.49	233.07	0.0672	4.58	0.46	0.004225	5.50
7	194	10.00	6.00	85.01	107.89	0.0222	3.27	0.33	0.004225	3.30
								Total	0.076875	100.00

E[I] = 0.410000Var[I] = 0.076875 $E[\ln I] = -1.079897$

 $\sigma[I] = 0.277263$ V(I) = 0.676252

Ic= 0.80

 $\sigma [\ln I] = 0.613675$

ln(I crit) = -0.223144

-1.759721 0.918658 F(z) =8.134187 Pr(f) % =

200y	Rh	
Head =	5.20	

Run	Kf/Kb	Z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	194	10.00	17.00	101.75	181.60	0.0472	2.62	0.26		
2	386	10.00	17.00	107.85	256.16	0.0385	3.02	0.30	0.012100	39.54
3	2	10.00	17.00	18.44	18.44	0.1493	0.84	0.08	0.012100	39.34
4	194	15.00	17.00	105.74	222.42	0.0420	2.85	0.19	0.016900	55.23
5	194	5.00	17.00	91.70	128.41	0.0572	2.25	0.45		
6	194	10.00	28.00	106.49	233.07	0.0672	2.91	0.29	0.001600	5.23
7	194	10.00	6.00	85.01	107.89	0.0222	2.08	0.21	0.001000	3.23
						-	-	Total	0.030600	100.00

E[I] = 0.260000Var[I] = 0.030600

 $\sigma[I] = 0.174929$ V(I) = 0.672802

Ic= 0.80

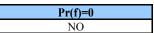
 $E[\ln I] = -1.533773$

 $\sigma [\ln I] = 0.611063$

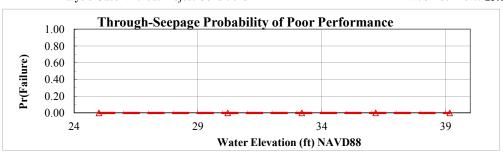
ln(I crit) = -0.223144

β =	-2.510007
F(z) =	0.984017
Pr(f) % =	1.598306

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model


Project: Lower San Joaquin

Study Area: Left Bank Stockton Diverting Canal


River Section: Index Point SL-1

Coordinates: State Plane (ft), N 2183207, E 6340943

Random Variables									
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,						
Tractive Stress (Tc)	50	5.0	10.00						
Initial Porosity (n)	0.7	0.07	10.00						
Initial Permeability (Ko)	1.00E-10	3.00E-11	30.00						

Analysis Elevation Head Pr(f) Case 0.00 25.00 0.0000 Toe 200yr 5.20 30.20 0.000000 200yr + 3ft 8.19 33.19 0.000000

11.17

14.16

Crest-3ft

Crest

Analysis By: J. Hogan Checked By: M. Perlea, G. Johnson Date: 9/27/2012

36.17

39.16

0.000000

0.000000

(Crest Head = 14.16		14.16		Horizontal C	Gradient (Ix) = 0.480	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.70	1.00E-10	1508.35	3142.41		
2	45.00	0.70	1.00E-10	1357.52	2828.16	98747.114311	26.44
3	55.00	0.70	1.00E-10	1659.19	3456.65	98/4/.114311	20.44
4	50.00	0.63	1.00E-10	1430.95	2981.15	24748.806051	6.63
5	50.00	0.77	1.00E-10	1581.98	3295.78	24/48.800031	0.03
6	50.00	0.70	7.00E-11	1802.83	3755.89	240010 401260	66.02
7	50.00	0.70	1.30E-10	1322.91	2756.07	249910.491369	66.93
E[FS] = Var[FS]=			$E[\ln FS] =$	8.034185	Total	373406.411731	100.00
$\sigma[FS] = V(FS) =$	611.069891		$\sigma[\ln FS] =$	0.192658		β =	
FS req'd =			ln(FS req'd) =	0.000000		$\frac{F(z) = F(f) \%}{Pr(f) \%}$	
200	yr + 3ft	Head =	8.19		Horizontal C	Gradient (Ix) = 0.320]

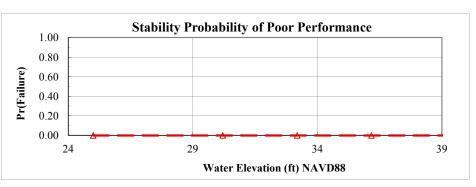
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.70	1.00E-10	1508.35	4713.61		
2	45.00	0.70	1.00E-10	1357.52	4242.25	222181.007199	26.44
3	55.00	0.70	1.00E-10	1659.19	5184.97	222181.00/199	20.44
4	50.00	0.63	1.00E-10	1430.95	4471.72	55684.813615	6.63
5	50.00	0.77	1.00E-10	1581.98	4943.67	33084.813013	0.03
6	50.00	0.70	7.00E-11	1802.83	5633.84	562298.605580	66.93
7	50.00	0.70	1.30E-10	1322.91	4134.11	302298.003380	00.93
E[FS] =	4713.608036		$E[\ln FS] =$	8.439650	Total	840164.426394	100.00
Var[FS]=	840164.426394					<u></u>	
σ[FS]=	916.604837		$\sigma[\ln FS]=$	0.192658		β =	43.806461
V(FS) =	0.194459	_				F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Cre	est-3ft	Head =	11.17		Horizontal G	radient (Ix) = 0.450]
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.70	1.00E-10	1508.35	3351.90		
2	45.00	0.70	1.00E-10	1357.52	3016.71	112352.272282	26.44
3	55.00	0.70	1.00E-10	1659.19	3687.09	112332.272282	26.44
4	50.00	0.63	1.00E-10	1430.95	3179.89	28158.641551	6.63
5	50.00	0.77	1.00E-10	1581.98	3515.50	20130.041331	0.03
6	50.00	0.70	7.00E-11	1802.83	4006.29	294242 (02512	((02
7	50.00	0.70	1.30E-10	1322.91	2939.81	284342.603513	66.93
E[FS] = Var[FS]=	3351.899048 424853.517347		$E[\ln FS] =$	8.098724	Total	424853.517347	100.00
$\sigma[FS] = V(FS) =$	651.807884 0.194459		$\sigma[\ln FS]=$	0.192658		$\beta = F(z) = F(z)$	
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	
20	00vr	Head =	5.20		Horizontal G	radient (Ix) = 0.290	7

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.70	1.00E-10	1508.35	5201.22		
2	45.00	0.70	1.00E-10	1357.52	4681.10	270527.171667	26.44
3	55.00	0.70	1.00E-10	1659.19	5721.34	2/032/.1/100/	20.44
4	50.00	0.63	1.00E-10	1430.95	4934.31	67801.723117	6.63
5	50.00	0.77	1.00E-10	1581.98	5455.09	0/601./2511/	
6	50.00	0.70	7.00E-11	1802.83	6216.65	684653.712383	66.93
7	50.00	0.70	1.30E-10	1322.91	4561.77	084033./12383	00.93
E[FS] =	5201.222661		$E[\ln FS] =$	8.538091	Total	1022982.607167	100.00
Var[FS]=	1022982.607167						
$\sigma[FS]=$	1011.426027		$\sigma[\ln FS]=$	0.192658		β =	44.317420
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin


Study Area: Left Bank Stockton Diverting Canal

River Section: Index Point SL-1

Coordinates: State Plane (ft), N 2183207, E 6340943

Random Variables									
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %						
Levee Φ	34	4	13.00						
Levee Cohesion	100	40	40.00						
Levee γ	115	8	7.00						
Foundation Φ	31	4	13.00						
Foundation Cohesion	150	60	40.00						

Crest-3ft

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	25.00	0.0000
200yr	5.20	30.20	0.000000
200yr + 3ft	8.19	33.19	0.000000
Crest-3ft	11.17	36.17	0.000000
Crest	14 16	39 16	0.000000

Analysis By: J. Hogan

Checked By: M. Perlea, G. Johnson

Date: 9/27/2012

Cr	est	Head =	14.16	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	115	31	150	1.40		
2	30	100	115	31	150	1.32	0.002401	52.46
3	38	100	115	31	150	1.41	0.002401	52.46
4	34	60	115	31	150	1.39	0.000030	0.66
5	34	140	115	31	150	1.40		0.00
6	34	100	107	31	150	1.40	0.000529	11.56
7	34	100	123	31	150	1.35		
8	34	100	115	27	150	1.34	0.001560	34.09
9	34	100	115	35	150	1.42	0.001300	
10	34	100	115	31	90	1.39	0.000056	1.23
11	34	100	115	31	210	1.41	0.000030	1.23
E[FS] = Var[FS]=				$E[\ln FS] =$	0.333156	Total	0.004577	100.00
$\sigma[FS] = V(FS) =$				σ[ln FS]=	0.048398		$\beta = F(z) = F(z)$	0.00000
FS req'd =				ln(FS req'd) =	0.000000		Pr(f) % =	
200yr	· + 3ft	Head =	8.19	Pr(f)=0	YES			

200yr	+ 3ft	Head =	8.19	Pr(f)=0	YES			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	115	31	150	1.27		
2	30	100	115	31	150	1.12	0.012769	79.39
3	38	100	115	31	150	1.34	0.012/09	79.39
4	34	60	115	31	150	1.19	0.001156	7.19
5	34	140	115	31	150	1.26	0.001130	7.17
6	34	100	107	31	150	1.22	0.000016	0.10
7	34	100	123	31	150	1.23	0.000010	
8	34	100	115	27	150	1.20	0.001722	10.71
9	34	100	115	35	150	1.29	0.001722	10.71
10	34	100	115	31	90	1.21	0.000420	2.61
11	34	100	115	31	210	1.25	0.000420	2.01
E[FS] =				$E[\ln FS] =$		Total	0.016084	100.0
Var[FS]=	0.016084							
$\sigma[FS] = V(FS) =$	0.126821			$\sigma[\ln FS]=$			$\beta = F(z)$	
FS req'd =	1.00			ln(FS reg'd) =	0.000000		Pr(f) % =	

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	115	31	150	1.13		
2	30	100	115	31	150	1.02	0.008372	28.40
3	38	100	115	31	150	1.21	0.008372	28.40
4	34	60	115	31	150	1.08	0.004225	14.33
5	34	140	115	31	150	1.21		14.55
6	34	100	107	31	150	1.13	0.002704	9.17
7	34	100	123	31	150	1.23		9.17
8	34	100	115	27	150	1.10	0.000556	29.02
9	34	100	115	35	150	1.28	0.008556	29.02
10	34	100	115	31	90	1.08	0.005625	19.08
11	34	100	115	31	210	1.23	0.003623	19.08
E[FS] = Var[FS]=	0.029483			$E[\ln FS] =$		Total	0.029483	100.00
$\sigma[FS] = V(FS) =$	0.171705			$\sigma[\ln FS]=$			$\beta = F(z)$	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	
200	yr	Head =	5.20	Pr(f)=0	YES			

Pr(f)=0

YES

11.17

Head =

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	115	31	150	1.30		
2	30	100	115	31	150			
3	38	100	115	31	150			
4	34	60	115	31	150			
5	34	140	115	31	150			
6	34	100	107	31	150			
7	34	100	123	31	150			
8	34	100	115	27	150			
9	34	100	115	35	150			
10	34	100	115	31	90			
11	34	100	115	31	210	•		
E[FS] =				$E[\ln FS] =$		Total		

E[FS] =		$E[\ln FS] =$		Total	
Var[FS]=					
$\sigma[FS]=$		σ[ln FS]=			β=
V(FS) =					F(z) =
S req'd =	1.00	ln(FS req'd) =	0.000000		Pr(f) % =

0.000000

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Judgment Probability of Poor Performance Curve**

Project: Lower San Joaquin

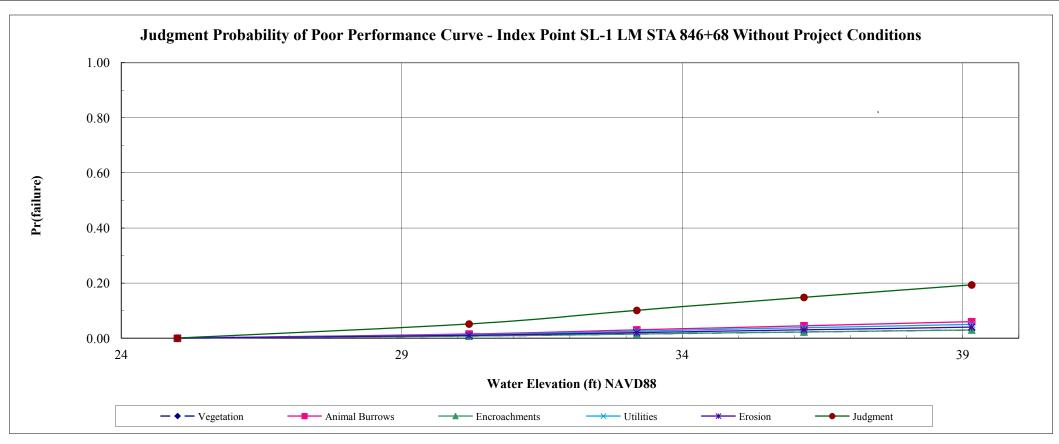
Study Area: Left Bank Stockton Diverting Canal

Levee Mile: STA 846+68

Analysis By: J. Hogan

River Section: Index Point SL-1

River Mile: XX.XX **Coordinates:** State Plane (ft), N 2183207, E 6340943 Analysis Case: Without Project Conditions


Crest Elev.: 39.16 L/S Toe Elev.: 25.00 **W/S Toe Elev.:** 25.00

Datum: NAVD 88

Checked By: M. Perlea, G. John

Date: 9/27/2012

Water Surface	Vege	tation	Animal	Burrows	Encroac	hments	Util	ities	Ero	sion	Judg	ment
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
25.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
30.20	0.0075	0.9925	0.0150	0.9850	0.0075	0.9925	0.0125	0.9875	0.0100	0.9900	0.0514	0.9486
33.19	0.0150	0.9850	0.0300	0.9700	0.0150	0.9850	0.0250	0.9750	0.0200	0.9800	0.1008	0.8992
36.17	0.0225	0.9775	0.0450	0.9550	0.0225	0.9775	0.0375	0.9625	0.0300	0.9700	0.1481	0.8519
39.16	0.0300	0.9700	0.0600	0.9400	0.0300	0.9700	0.0500	0.9500	0.0400	0.9600	0.1934	0.8066

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San Joaquin Datum: NAVD 88

Study Area: Left Bank Stockton Diverting Canal

Levee Mile: STA 846+68

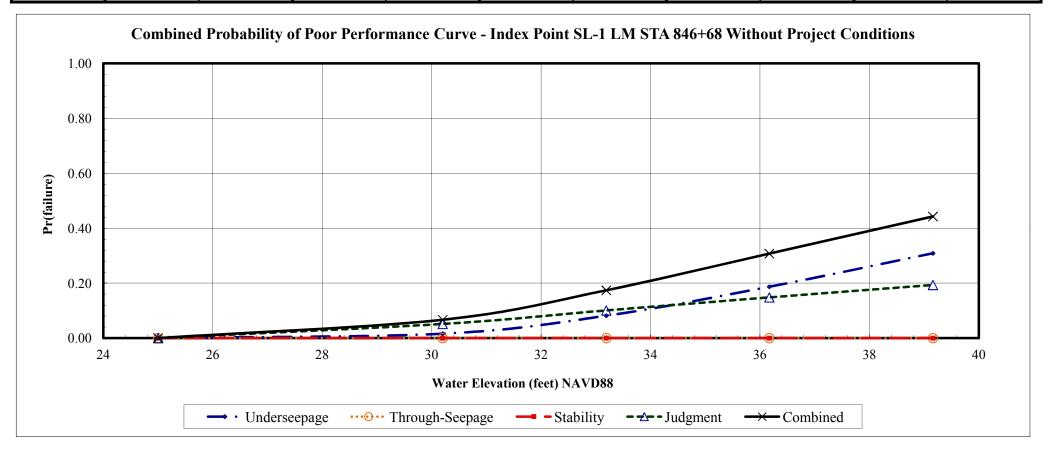
Crest Elev.: 39.16

Analysis By: J. Hogan

River Section: Index Point SL-1

River Mile: XX.XX

L/S Toe Elev.: 25.00


Checked By: M. Perlea, G. Joh

Analysis Case: Without Project Conditions

W/S Toe Elev.: 25.00

Date: 9/27/2012

Water Surface	Unders	seepage	Through	-Seepage	Stab	oility	Judg	ment	Com	bined
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
25.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
30.20	0.0160	0.9840	0.0000	1.0000	0.0000	1.0000	0.0514	0.9486	0.0666	0.9334
33.19	0.0813	0.9187	0.0000	1.0000	0.0000	1.0000	0.1008	0.8992	0.1739	0.8261
36.17	0.1869	0.8131	0.0000	1.0000	0.0000	1.0000	0.1481	0.8519	0.3073	0.6927
39.16	0.3087	0.6913	0.0000	1.0000	0.0000	1.0000	0.1934	0.8066	0.4424	0.5576

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Determination of Random Variables For Underseepage Reliability Analysis**

Project: Lower San Joaquin

Datum: NAVD 88 Levee Mile: STA 976+00 Crest Elev.: 44.56

Channel: Left Bank Stockton Diverting Canal Basin and Reach: Index Point SL-2

River Mile: XX.XX L/S Toe Elev.: 34.30

Coordinates: State Plane (ft), N 2176913, E 6352470

Analysis By: J. Hogan Checked By: M. Perlea, G. Johnson Analysis Case Without Project Conditions **W/S Toe Elev.:** 34.79 Date: 9/27/2012

		Blanket	Thickness Var	iable (z)			Aquifer	Thickness Var	iable (d)					Hydraulic Cond	uctivity Vairab	les (Kb and Ki	f)		
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	v ai iation	of Variation
WCSBDC 007B	6					16					CL	0.007	SM	1.4	200				
WCSBDC_008B	10					19					CL	0.007	SP-SM	2.8	400				
WCSBDC 009B	4.6					3					CL/ML	0.007	SM	1.4	200				
WCSBDC 011B	5					4					CL	0.007	SM	1.4	200				
WCSBDC 012B	8	7	2	1.5	20	8	10	(40	(0)	CL	0.0007	SC	0.28	400	267	102	24000	39
WCSBDC 025C	8	/	2	15	29	8	10	б	48	60	CL	0.007	SM	1.4	200	267	103	24889	39
_																			

	Blanket Mat	erial 1 (lowest	permeability)	В	lanket Materia	12	Transformed Blanket	A	quifer Materia	ıl 1	A	quifer Materia	12	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	T HICKHESS (Z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WCSBDC_007B	CL	6	0.007				6	SM	16	1.4							1.4
WCSBDC_008B	CL	10	0.007				10	SP-SM	19	2.8							2.8
WCSBDC_009B	CL	4	0.007	ML	6	0.07	4.6	SM	3	1.4							1.4
WCSBDC_011B	CL	5	0.007				5	SM	4	1.4							1.4
WCSBDC_012B	CL	8	0.0007				8	SC	8	0.28							0.28
WCSBDC 025C	CL	8	0.007				8	SM	8	1.4							1.4
				•													
				_			_										

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**

Underseepage Probability of Poor Performance

40

Water Elevation (ft) NAVD88

Project: Lower San Joaquin

Study Area: Left Bank Stockton Diverting Canal

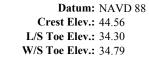
River Section: Index Point SL-2

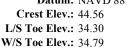
Coordinates: State Plane (ft), N 2176913, E 6352470

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %					
Permaebility Ratio	267	103	39					
Blanket Thickness (z)	7	2	29					
Aquifer Thickness (d)	10	6	60					

1	Blanket Theory Analysis Inputs									
	Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket				
	NO	7A	97	77	oc.	112				

1.00 0.80 **ૄ** 0.60


0.20 **Failur**


0.00 34

Analysis Case Without Project Conditions

36

38

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	34.30	0.0000
200yr	2.90	37.20	0.0000
200yr + 3ft	4.50	38.80	0.0002
Crest-3ft	6.10	40.40	0.0062
Crest	10.26	44.56	0.2245

Checked By: M. Perlea, G. Johnson

Date: 9/27/2012

Analysis By: J. Hogan

Crest	Rh
Head = 10.26	

Run	Kf/Kb	Z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	267	7.00	10.00	83.45	136.71	0.0337	4.72	0.67		
2	370	7.00	10.00	86.74	160.93	0.0308	5.09	0.73	0.004225	10.76
3	164	7.00	10.00	77.02	107.14	0.0383	4.21	0.60	0.004223	10.70
4	267	9.00	10.00	86.05	155.02	0.0314	5.00	0.56	0.024025	61.17
5	267	5.00	10.00	79.21	115.54	0.0368	4.36	0.87	0.024023	01.17
6	267	7.00	16.00	87.96	172.93	0.0474	5.25	0.75	0.011025	28.07
7	267	7.00	4.00	69.88	86.46	0.0171	3.80	0.54	0.011023	26.07
								Total	0.039275	100.00

E[I] = 0.670000

Var[I] = 0.039275

 $\sigma[I] = 0.198179$

V(I) = 0.295790

Rh

Ic=	0.80

Head = 4.50

Ic=	0.80

ln(I crit) =	-0.223144

ln(I crit) =	-0.223144
ln(I crit) =	-0.223144

 $E[\ln I] = -0.442414$

 $\sigma [\ln I] = 0.289610$

β=	-1.527623
F(z) =	0.775513
Pr(f)% =	22.448734

β=	-1.527623
F(z) =	0.775513
Pr(f) % =	22.448734

β =	-1.527623
F(z) =	0.775513
Pr(f) % =	22.448734

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	267	7.00	10.00	83.45	136.71	0.0337	2.07	0.30		
2	370	7.00	10.00	86.74	160.93	0.0308	2.23	0.32	0.000900	11.50
3	164	7.00	10.00	77.02	107.14	0.0383	1.85	0.26	0.000900	11.50
4	267	9.00	10.00	86.05	155.02	0.0314	2.19	0.24	0.004900	62.62
5	267	5.00	10.00	79.21	115.54	0.0368	1.91	0.38	0.004900	02.02
6	267	7.00	16.00	87.96	172.93	0.0474	2.30	0.33	0.002025	25.88
7	267	7.00	4.00	69.88	86.46	0.0171	1.67	0.24	0.002025	23.00
								Total	0.007825	100.00

E[I] = 0.300000Var[I] = 0.007825

 $\sigma[I] = 0.088459$

V(I) = 0.294863

Ic= 0.80

ln(I crit) = -0.223144

 $E[\ln I] = -1.245658$

 $\sigma [\ln I] = 0.288739$

999801
019908

Crest	Rh	
Head =	6.10	

42

44

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	267	7.00	10.00	83.45	136.71	0.0337	2.81	0.40		
2	370	7.00	10.00	86.74	160.93	0.0308	3.02	0.43	0.001225	8.46
3	164	7.00	10.00	77.02	107.14	0.0383	2.50	0.36	0.001223	8.40
4	267	9.00	10.00	86.05	155.02	0.0314	2.97	0.33	0.009025	62.35
5	267	5.00	10.00	79.21	115.54	0.0368	2.59	0.52	0.009023	02.33
6	267	7.00	16.00	87.96	172.93	0.0474	3.12	0.45	0.004225	29.19
7	267	7.00	4.00	69.88	86.46	0.0171	2.26	0.32	0.004223	29.19

 $E[\ln I] = -0.959595$

E[I] = 0.400000Var[I] = 0.014475

 $\sigma[I] = 0.120312$

V(I) = 0.300780

[In I] =	0.294292	
		β =
		$\mathbf{F}(\mathbf{z}) =$
crit) =	-0.223144	Pr(f) % =

Total

0.014475

100.00

-3.260691

0.99383

0.616682

Ic=	0.80	ln(I crit) =	-0.2
		_	
		•	

200y	200yr					
Head =	2.90					

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	267	7.00	10.00	83.45	136.71	0.0337	1.33	0.19		
2	370	7.00	10.00	86.74	160.93	0.0308	1.44	0.21	0.000400	12.03
3	164	7.00	10.00	77.02	107.14	0.0383	1.19	0.17	0.000400	12.03
4	267	9.00	10.00	86.05	155.02	0.0314	1.41	0.16	0.002025	60.90
5	267	5.00	10.00	79.21	115.54	0.0368	1.23	0.25	0.002023	00.90
6	267	7.00	16.00	87.96	172.93	0.0474	1.48	0.21	0.000900	27.07
7	267	7.00	4.00	69.88	86.46	0.0171	1.07	0.15	0.000900	27.07
								Total	0.003325	100.00

E[I] = 0.190000Var[I] = 0.003325

 $\sigma[I] = 0.057663$ V(I) = 0.303488

 $E[\ln I] = -1.704785$

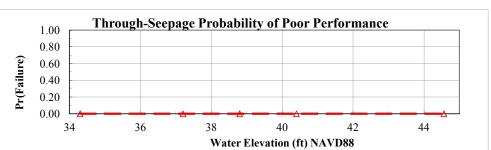
0.296829

Ic= 0.80 ln(I crit) = -0.223144

-5.743329 1.000000 F(z) =0.000030 Pr(f) % =

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin


Study Area: Left Bank Stockton Diverting Canal

River Section: Index Point SL-2

Coordinates: State Plane (ft), N 2176913, E 6352470

Random Variables									
Parameter Expected Standard Coefficient of Variation Value Deviation %									
Tractive Stress (Tc)	50	5.0	10.00						
Initial Porosity (n) 0.35 0.04 10.00									
Initial Permeability (Ko)	5.00E-10	1.50E-10	30.00						

Analysis	Head	Elevation	Pr(f)
Case	11000		
Toe	0.00	34.30	0.0000
200yr	2.90	37.20	0.000000
200yr + 3ft	4.50	38.80	0.000000
Crest-3ft	6.10	40.40	0.000000
Crest	10.26	44.56	0.000000

Analysis By: J. Hogan Checked By: M. Perlea, G. Johnson Date: 9/27/2012

Pr(f)=0
NO

200yr + 3ft

Crest		Head =	10.26				
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.35	5.00E-10	476.98	1014.86		
2	45.00	0.35	5.00E-10	429.29	913.37	10299.382135	26.44
3	55.00	0.35	5.00E-10	524.68	1116.34	10299.382133	20.44
4	50.00	0.32	5.00E-10	452.51	962.78	2501 215026	6.63
5	50.00	0.39	5.00E-10	500.26	1064.39	2581.315036	0.03
6	50.00	0.35	3.50E-10	570.10	1212.99	26065.811323	66.02
7	50.00	0.35	6.50E-10	418.34	890.09	20003.811323	66.93
E[FS] =	1014.858716		$E[\ln FS] =$	6.903946	Total	38946.508494	100.00
Var[FS]=	38946.508494						
$\sigma[FS]=$	197.348698		$\sigma[\ln FS]=$	0.192658		β =	= 35.835305
V(FS) =	0.194459	•				F(z)	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.00000
	•	1				·	

Horizontal Gradient (Ix) =

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.35	5.00E-10	476.98	1255.22		
2	45.00	0.35	5.00E-10	429.29	1129.70	15755.772256	26.44
3	55.00	0.35	5.00E-10	524.68	1380.74	13/33.772230	20.44
4	50.00	0.32	5.00E-10	452.51	1190.81	3948.839968	6.63
5	50.00	0.39	5.00E-10	500.26	1316.49	3740.037700	0.03
6	50.00	0.35	3.50E-10	570.10	1500.27	39874.914966	66.93
7	50.00	0.35	6.50E-10	418.34	1100.90	398/4.914900	00.93
E[FS] =	1255.219991		$E[\ln FS] =$	7.116508	Total	59579.527190	100.00
Var[FS]=	59579.527190					_	
$\sigma[FS]=$	244.089179		$\sigma[\ln FS]=$	0.192658		β =	36.938617
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

4.50

Cr	est-31t	Head =	6.10		Horizontai G	$\mathbf{radient}(\mathbf{Ix}) = 0.470$	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.35	5.00E-10	476.98	1014.86		
2	45.00	0.35	5.00E-10	429.29	913.37	10299.382135	26.44
3	55.00	0.35	5.00E-10	524.68	1116.34	10299.382133	20.44
4	50.00	0.32	5.00E-10	452.51	962.78	2581.315036	6.62
5	50.00	0.39	5.00E-10	500.26	1064.39	2381.313030	6.63
6	50.00	0.35	3.50E-10	570.10	1212.99	26065.811323	66.93
7	50.00	0.35	6.50E-10	418.34	890.09	20003.811323	00.93
E[FS] =	1014.858716		$E[\ln FS] =$	6.903946	Total	38946.508494	100.00
Var[FS]=	38946.508494						
$\sigma[FS]=$	197.348698		$\sigma[\ln FS]=$	0.192658		β =	35.835305
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	
		1	• •				•

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	50.00	0.35	5.00E-10	476.98	1490.57		
2	45.00	0.35	5.00E-10	429.29	1341.52	22218.100720	26.44
3	55.00	0.35	5.00E-10	524.68	1639.63	22218.100720	20.44
4	50.00	0.32	5.00E-10	452.51	1414.08	5568.481361	6.63
5	50.00	0.39	5.00E-10	500.26	1563.33	3300.401301	0.03
6	50.00	0.35	3.50E-10	570.10	1781.58	56229.860558	66.93
7	50.00	0.35	6.50E-10	418.34	1307.32	30229.800338	00.93
E[FS] =	1490.573739		$E[\ln FS] =$	7.288358	Total	84016.442639	100.00
Var[FS]=	84016.442639						
$\sigma[FS]=$	289.855900		$\sigma[\ln FS]=$	0.192658		β =	37.83061:
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.00000

2.90

Head =

Horizontal Gradient (Ix) =

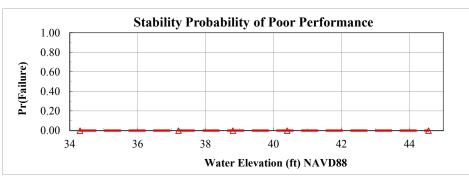
Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin

Study Area: Left Bank Stockton Diverting Canal

River Section: Index Point SL-2

Coordinates: State Plane (ft), N 2176913, E 6352470


	Random Variables									
Parameter Expected Value Standard Deviation Coefficient of Variation %										
Levee Φ	31	4	13.00							
Levee Cohesion	150	60	40.00							
Levee γ	115	8	7.00							
Foundation Φ	31	4	13.00							
Foundation Cohesion	150	60	40.00							

Crest-3ft

 $\sigma[FS]=$

V(FS) =

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	34.30	0.0000
200yr	2.90	37.20	0.000000
200yr + 3ft	4.50	38.80	0.000000
Crest-3ft	6.10	40.40	0.000000
Crest	10.26	44 56	0.000000

Analysis By: J. Hogan

Checked By: M. Perlea, G. Johnson **Date:** 9/27/2012

Cr	est	Head =	10.26	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	31	150	115	31	150	1.68		
2	27	150	115	31	150	1.66	0.000576	4.05
3	35	150	115	31	150	1.71	0.000370	4.03
4	31	90	115	31	150	1.68	0.000009	0.06
5	31	210	115	31	150	1.69	0.000009	0.00
6	31	150	107	31	150	1.67	0.000256	1.80
7	31	150	123	31	150	1.70	0.000230	1.60
8	31	150	115	27	150	1.55	0.013225	93.07
9	31	150	115	35	150	1.78	0.013223	93.07
10	31	150	115	31	90	1.67	0.000144	1.01
11	31	150	115	31	210	1.69	0.000144	1.01
E[FS] =				$E[\ln FS] =$	0.517478	Total	0.014210	100.00
$Var[FS]=$ $\sigma[FS]=$ $V(FS)=$	0.119206			σ[ln FS]=	0.070783		$\beta = F(z) = F(z)$	
FS req'd =				ln(FS req'd) =	0.000000		Pr(f) % =	
200yr	· + 3ft	Head =	4.50	Pr(f)=0	YES			

200yr -	+ 3ft	Head =	4.50	Pr(f)=0	YES			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	31	150	115	31	150	1.27		
2	27	150	115	31	150	1.12	0.012760	70.20
3	35	150	115	31	150	1.34	0.012769	79.39
4	31	90	115	31	150	1.19	0.001156	7.19
5	31	210	115	31	150	1.26	0.001136	7.19
6	31	150	107	31	150	1.22	0.000017	0.10
7	31	150	123	31	150	1.23	0.000016	0.10
8	31	150	115	27	150	1.20	0.001722	10.71
9	31	150	115	35	150	1.29	0.001722	10.71
10	31	150	115	31	90	1.21	0.000420	2.61
11	31	150	115	31	210	1.25	0.000420	2.01
E[FS] =				$E[\ln FS] =$		Total	0.016084	100.0
Var[FS]=	0.016084							
$\sigma[FS]=$	0.126821			σ[ln FS]=			β =	=
V(FS) =							F(z) =	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.00000

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	31	150	115	31	150	1.13		
2	27	150	115	31	150	1.02	0.009272	28.40
3	35	150	115	31	150	1.21	0.008372	28.40
4	31	90	115	31	150	1.08	0.004225	14.33
5	31	210	115	31	150	1.21	0.004223	14.33
6	31	150	107	31	150	1.13	0.002704	0.17
7	31	150	123	31	150	1.23	0.002704	9.17
8	31	150	115	27	150	1.10	0.000557	20.02
9	31	150	115	35	150	1.28	0.008556	29.02
10	31	150	115	31	90	1.08	0.005/25	10.00
11	31	150	115	31	210	1.23	0.005625	19.08
E[FS] = Var[FS]=	0.029483			E[ln FS] =		Total	0.029483	100.00
σ[FS]= V(FS) =	0.171705			σ[ln FS]=			β = F(z) =	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	
200)yr	Head =	2.90	Pr(f)=0	YES			

YES

Pr(f)=0

6.10

Head =

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	31	150	115	31	150	1.30		
2	27	150	115	31	150			
3	35	150	115	31	150			
4	31	90	115	31	150			
5	31	210	115	31	150			
6	31	150	107	31	150			
7	31	150	123	31	150			
8	31	150	115	27	150			
9	31	150	115	35	150			
10	31	150	115	31	90			
11	31	150	115	31	210			
E[FS] = Var[FS]=				E[ln FS] =		Total		

0.000000

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Judgment Probability of Poor Performance Curve**

Project: Lower San Joaquin

Study Area: Left Bank Stockton Diverting Canal

Levee Mile: STA 976+00

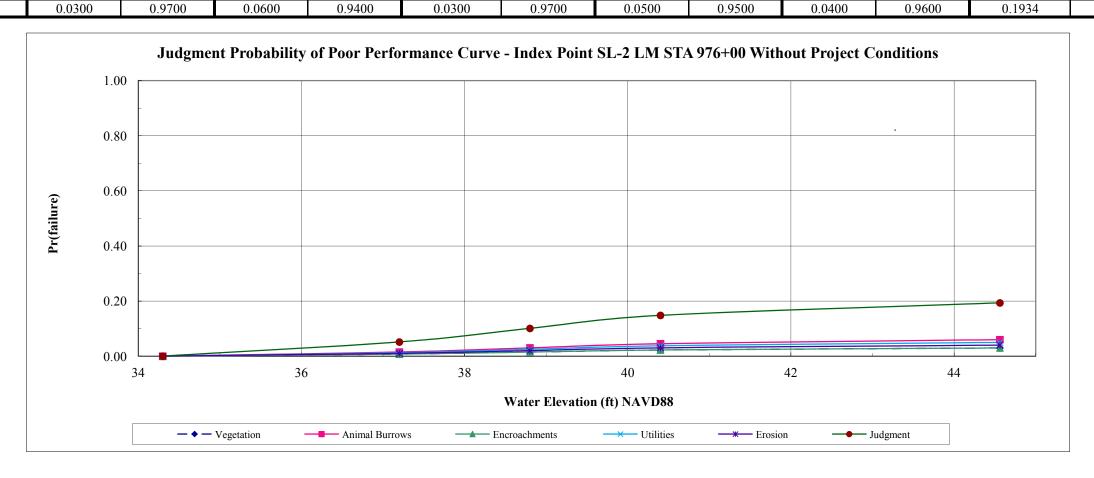
Analysis By: J. Hogan

River Section: Index Point SL-2

River Mile: XX.XX

Crest Elev.: 44.56 L/S Toe Elev.: 34.30

Datum: NAVD 88


Checked By: M. Perlea, G. John

Coordinates: State Plane (ft), N 2176913, E 6352470

Analysis Case: Without Project Conditions

W/S Toe Elev.: 34.79 **Date:** 9/27/2012

Utilities Water Surface Vegetation Encroachments Erosion Judgment **Animal Burrows** Pr(f) R Pr(f) Pr(f) Pr(f) R Pr(f) Elevation Pr(f) 34.30 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 37.20 0.0075 0.9925 0.0150 0.9850 0.0075 0.9925 0.0125 0.9875 0.0100 0.9900 0.0514 0.9486 38.80 0.9850 0.0300 0.9700 0.0150 0.9850 0.0250 0.9750 0.0200 0.9800 0.1008 0.8992 0.0150 40.40 0.0225 0.9775 0.0450 0.9550 0.0225 0.9775 0.0375 0.9625 0.0300 0.9700 0.1481 0.8519 44.56 0.8066

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San Joaquin Datum: NAVD 88

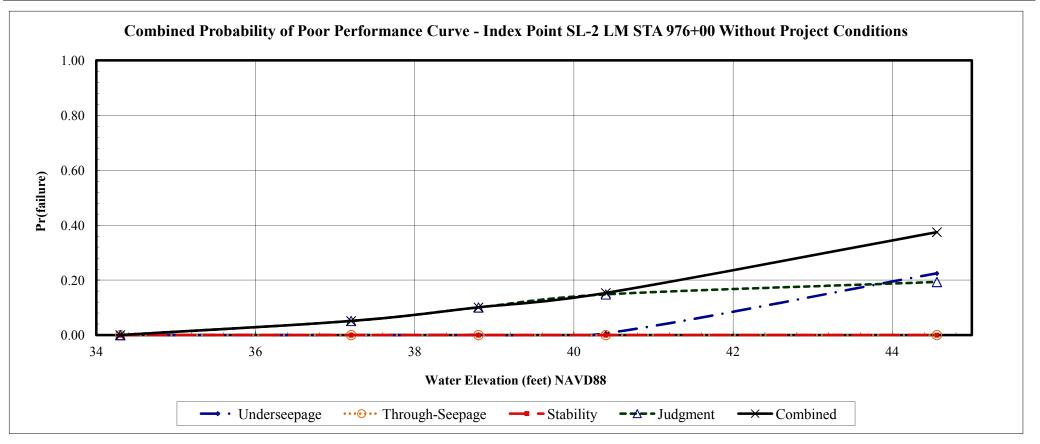
Study Area: Left Bank Stockton Diverting Canal

Levee Mile: STA 976+00

Crest Elev.: 44.56

Analysis By: J. Hogan

Checked By: M. Perlea, G. Joh


Coordinates: State Plane (ft), N 2176913, E 6352470

Analysis Case: Without Project Conditions

W/S Toe Elev.: 34.79

Date: 9/27/2012

Water Surface			Through-Seepage		Stab	oility	Judg	ment	Combined		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	
34.30	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
37.20	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0514	0.9486	0.0514	0.9486	
38.80	0.0002	0.9998	0.0000	1.0000	0.0000	1.0000	0.1008	0.8992	0.1009	0.8991	
40.40	0.0062	0.9938	0.0000	1.0000	0.0000	1.0000	0.1481	0.8519	0.1533	0.8467	
44.56	0.2245	0.7755	0.0000	1.0000	0.0000	1.0000	0.1934	0.8066	0.3745	0.6255	

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Determination of Random Variables For Underseepage Reliability Analysis**

Project: Lower San Joaquin Channel: Left Bank Calaveras River Levee Mile: STA 6757+00

Analysis By: G. Johnson

River Mile: XX.XX

Crest Elev.: 31.43 L/S Toe Elev.: 21.00

Basin and Reach: CL1

Analysis Case Without Project Conditions

Checked By: M. Perlea, J. Hogan
Date: 9/24/2012 **W/S Toe Elev.:** 26.94

		Blanket	Thickness Var	iable (z)			Aquifer	Thickness Var	iable (d)		Hydraulic Conductivity Vairables (Kb and Kf)								
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	variation	of Variation
WR1614_014C	11					7					ML	0.07	SM	2.8	40				
WCSBCR_001B	10					6.5					CL	0.007	ML	0.28	40				
WCSBCR_003B	29					26					ML	0.07	SP-SM	2.8	40			373	
WCSBCR 003A	26			110		24	15			72	ML	0.07	SP-SM	2.8	40				
WCSBCR_006C	20	19	0		42	30		11	137		ML	0.07	SP-SM	2.8	40	40			
WCSBCR_008C	13	19	8	119	42	5	15	11	13/	/3		40	0	3/3	U				
WCSBCR_004B	22					4						ОН	0.28	40					
													•						
				1 1	1 F														

	Blanket Mat	erial 1 (lowest)	permeability)	В	lanket Materia	12	Transformed Blanket	A	quifer Materia	ıl 1	A	quifer Materia	12	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	T mckness (z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR1614_014C	ML	11	0.07				11	SM	7	2.8							2.8
WCSBCR_001B	CL	10	0.007				10	ML	6.5	0.28							0.28
WCSBCR 003B	ML	29	0.07				29	SP-SM	26	2.8							2.8
WCSBCR_003A	ML	26	0.07				26	SP-SM	24	2.8							2.8
WCSBCR_006C	ML	20	0.07				20	SP-SM	30	2.8							2.8
WCSBCR_008C	ML	13	0.07				13	SP-SM	5	2.8							2.8
WCSBCR 004B	ML	22	0.007				22	OH	4	0.28							0.28
				<u> </u>													

Reach-N-P.IP CL1.Calaveras River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Underseepage Reliability Analysis With Blanket Theory Analysis

25

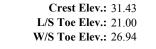

Underseepage Probability of Poor Performance

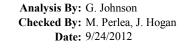
Project: Lower San Joaquin **Study Area:** Left Bank Calaveras River

River Section: CL1

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %					
Permaebility Ratio	40	0	0					
Blanket Thickness (z)	19	8	42					
Aquifer Thickness (d)	15	11	73					

Blanket Theory Analysis Inputs									
Pr(f)=0	Pr(f)=0 BTA Case No. L1 L2 L3 γ Blanke								
NO	7A	158	61	∞	112				


23


1.00 0.80 2 0.60

Pr(Failur 0.40

0.00

21

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	21.00	0.0000
200yr	4.50	25.50	0.0000
200yr+2ft	6.46	27.46	0.0000
Crest-2ft	8.40	29.40	0.0001
Crest	10.43	31.43	0.0004

Cr	est	Rh
Head =	10.43	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	40	19.00	15.00	96.25	106.77	0.0568	4.22	0.22		
2	40	19.00	15.00	96.25	106.77	0.0568	4.22	0.22	0.000000	0.00
3	40	19.00	15.00	96.25	106.77	0.0568	4.22	0.22	0.000000	0.00
4	40	27.00	15.00	107.66	127.28	0.0507	4.49	0.17	0.008100	90.00
5	40	11.00	15.00	77.98	81.24	0.0681	3.85	0.35	0.008100	90.00
6	40	19.00	26.00	113.71	140.57	0.0825	4.65	0.24	0.000900	10.00
7	40	19.00	4.00	54.78	55.14	0.0234	3.36	0.18	0.000900	10.00
								Total	0.009000	100.00

 $E[\ln I] = -1.599400$

E[I] = 0.220000 Var[I] = 0.009000 $\sigma[I] = 0.094868$ V(I) = 0.431220

σ [ln I] =	0.412970		
		β=	-3.872917
		F(z) =	0.999570
ln(I crit) =	-0 223144	Pr(f) % =	0.043022

200y	r+2ft	Rh
Head =	6.46	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	40	19.00	15.00	96.25	106.77	0.0568	2.61	0.14		
2	40	19.00	15.00	96.25	106.77	0.0568	2.61	0.14	0.000000	0.00
3	40	19.00	15.00	96.25	106.77	0.0568	2.61	0.14	0.000000	0.00
4	40	27.00	15.00	107.66	127.28	0.0507	2.78	0.10	0.003600	90.00
5	40	11.00	15.00	77.98	81.24	0.0681	2.38	0.22	0.003000	90.00
6	40	19.00	26.00	113.71	140.57	0.0825	2.88	0.15	0.000400	10.00
7	40	19.00	4.00	54.78	55.14	0.0234	2.08	0.11	0.000400	10.00
								Total	0.004000	100.00

 $E[\ln I] = -2.058971$

 $\sigma [\ln I] = 0.430949$

E[I] = 0.140000 Var[I] = 0.004000 $\sigma[I] = 0.063246$ V(I) = 0.451754

β=	-4.777760
F(z) =	0.999990
Pr(f) % =	0.001022

Crest-	Rh	
Head =	8.40	

29

27

Water Elevation (ft)

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	40	19.00	15.00	96.25	106.77	0.0568	3.40	0.18		
2	40	19.00	15.00	96.25	106.77	0.0568	3.40	0.18	0.000000	0.00
3	40	19.00	15.00	96.25	106.77	0.0568	3.40	0.18	0.000000	0.00
4	40	27.00	15.00	107.66	127.28	0.0507	3.61	0.13	0.005625	86.21
5	40	11.00	15.00	77.98	81.24	0.0681	3.10	0.28	0.003023	80.21
6	40	19.00	26.00	113.71	140.57	0.0825	3.75	0.20	0.000900	13.79
7	40	19.00	4.00	54.78	55.14	0.0234	2.71	0.14	0.000900	15.79
						-		Total	0.006525	100.00

31

Ic= 0.80 ln(I crit) = -0.223144

β =	-4.217496
F(z) =	0.999891
Pr(f) % =	0.010927
	_

200y	Rh	
Head =	4.50	

Ic= 0.80

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	40	19.00	15.00	96.25	106.77	0.0568	1.82	0.10		
2	40	19.00	15.00	96.25	106.77	0.0568	1.82	0.10	0.000000	0.00
3	40	19.00	15.00	96.25	106.77	0.0568	1.82	0.10	0.000000	0.00
4	40	27.00	15.00	107.66	127.28	0.0507	1.94	0.07	0.001600	87.67
5	40	11.00	15.00	77.98	81.24	0.0681	1.66	0.15	0.001000	87.07
6	40	19.00	26.00	113.71	140.57	0.0825	2.01	0.11	0.000225	12.33
7	40	19.00	4.00	54.78	55.14	0.0234	1.45	0.08	0.000223	12.33
						-		Total	0.001825	100.00

ln(I crit) = -0.223144

 $\begin{array}{lll} E[I] = & 0.100000 & E[\ln I] = & -2.386401 \\ Var[I] = & 0.001825 & \\ \sigma[I] = & 0.042720 & \sigma \left[\ln I\right] = & 0.409427 \\ V(I) = & 0.427200 & & \end{array}$

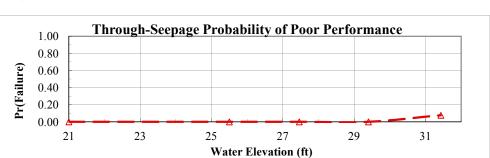
 $\beta = -5.828628$ F(z) = 1.000000 Pr(f) % = 0.000006

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin **Study Area:** Left Bank Calaveras River

River Section: CL1

Random Variables							
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %				
Tractive Stress (Tc)	3.2	0.3	10.00				
Initial Porosity (n)	0.39	0.04	10.00				
Initial Permeability (Ko)	2.00E-06	6 00E-07	30.00				


Head =

6.46

Pr(f)=0	
NO	

200yr+2ft

Levee Mile: STA 6757+00
River Mile: XX.XX
Analysis Case Without Project Conditions

Crest Elev.: 31.43

Head =

Head =

8.40

4.50

L/S Toe Elev.: 21.00

W/S Toe Elev.: 26.94

Crest-2ft

200yr

Analysis By: G. Johnson Checked By: M. Perlea, J. Hogan Date: 9/24/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	21.00	0.0000
200yr	4.50	25.50	0.000000
200yr+2ft	6.46	27.46	0.000003
Crest-2ft	8.40	29.40	0.000010
Crest	10.43	31.43	0.076943

0.220

Horizontal Gradient (Ix) =

Horizontal Gradient (Ix) =

Crest	Head =	10.43	Horizontal Gradient (Ix) =	0.380
			` /	

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	3.20	0.39	2.00E-06	0.51	1.34		
2	2.88	0.39	2.00E-06	0.46	1.21	0.017978	26.44
3	3.52	0.39	2.00E-06	0.56	1.47	0.017978	20.44
4	3.20	0.35	2.00E-06	0.48	1.27	0.004506	6.63
5	3.20	0.43	2.00E-06	0.53	1.41	0.004300	
6	3.20	0.39	1.40E-06	0.61	1.60	0.045498	66.93
7	3.20	0.39	2.60E-06	0.45	1.18	0.043498	00.93
E[FS] =	1.340813		$E[\ln FS] =$	0.274717	Total	0.067982	100.00
Var[FS]=	0.067982						
$\sigma[FS]=$	0.260733		$\sigma[\ln FS]=$	0.192658		β =	1.425936
V(FS) =	0.194459					$\mathbf{F}(\mathbf{z}) =$	0.076943
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	7.694347

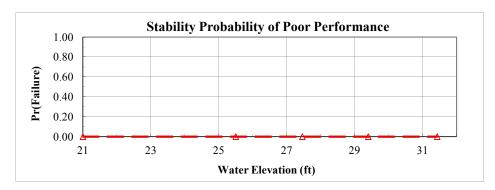
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	3.20	0.39	2.00E-06	0.51	2.43		
2	2.88	0.39	2.00E-06	0.46	2.18	0.058866	26.44
3	3.52	0.39	2.00E-06	0.56	2.67	0.038800	20.44
4	3.20	0.35	2.00E-06	0.48	2.30	0.014753	6.63
5	3.20	0.43	2.00E-06	0.53	2.54	0.014733	0.03
6	3.20	0.39	1.40E-06	0.61	2.90	0.148979	66.93
7	3.20	0.39	2.60E-06	0.45	2.13	0.148979	
E[FS] =	2.426232		E[ln FS] =	0.867781	Total	0.222598	100.00
Var[FS]=	0.222598						
$\sigma[FS]=$	0.471803		$\sigma[\ln FS]=$	0.192658		β =	4.504265
V(FS) =	0.194459					$\mathbf{F}(\mathbf{z}) =$	0.000003
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	- 0.000333

Horizontal Gradient (Ix) =

0.100						0.220	_
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	3.20	0.39	2.00E-06	0.51	2.32		
2	2.88	0.39	2.00E-06	0.46	2.08	0.053636	26.44
3	3.52	0.39	2.00E-06	0.56	2.55	0.033030	20.44
4	3.20	0.35	2.00E-06	0.48	2.20	0.013443	6.63
5	3.20	0.43	2.00E-06	0.53	2.43	0.013443	0.03
6	3.20	0.39	1.40E-06	0.61	2.77	0.135743	66.93
7	3.20	0.39	2.60E-06	0.45	2.03	0.133743	00.93
E[FS] =	2.315949		E[ln FS] =	0.821261	Total	0.202822	100.00
Var[FS]=	0.202822						
$\sigma[FS]=$	0.450358		$\sigma[\ln FS]=$	0.192658		β =	4.262800
V(FS) =	0.194459	-				F(z) =	0.000010
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.001009
		- I					

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	3.20	0.39	2.00E-06	0.51	3.92		
2	2.88	0.39	2.00E-06	0.46	3.53	0.153609	26.44
3	3.52	0.39	2.00E-06	0.56	4.31	0.133009	20.44
4	3.20	0.35	2.00E-06	0.48	3.72	0.038499	6.63
5	3.20	0.43	2.00E-06	0.53	4.11	0.038499	0.03
6	3.20	0.39	1.40E-06	0.61	4.68	0.388756	66.93
7	3.20	0.39	2.60E-06	0.45	3.44	0.388/30	00.93
E[FS] = Var[FS]=	3.919299 0.580863		$E[\ln FS] =$	1.347354	Total	0.580863	100.00
σ[FS]= V(FS) =	0.762144 0.194459		$\sigma[\ln FS]=$	0.192658		$\beta = F(z) = F(z)$	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	- 0.000000

Reach-N-P.IP CL1.Calaveras River.xls


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin Study Area: Left Bank Calaveras River

River Section: CL1

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,					
Levee Φ	34	4	13.00					
Levee Cohesion	100	40	40.00					
Levee γ	115	8	7.00					
Foundation Φ	31	4	13.00					
Foundation Cohesion	150	60	40.00					

Levee Mile: STA 6757+00 Crest Elev.: 31.43 River Mile: XX.XX L/S Toe Elev.: 21.00 Analysis Case Without Project Conditions W/S Toe Elev.: 26.94

FS req'd =

FS req'd =

1.00

1.00

Crest-2ft

Analysis By: G. Johnson Checked By: M. Perlea, J. Hogan
Date: 9/24/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	21.00	0.0000
200yr	4.50	25.50	0.000000
200yr+2ft	6.46	27.46	0.000000
Crest-2ft	8.40	29.40	0.000000
Crest	10.43	31.43	0.000109

Crest	Head =	10.43	Pr(1)=0	NO
	Y		E 14.	E 1.4

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	115	31	150	2.05		
2	30	100	115	31	150	1.88	0.039800	25.96
3	38	100	115	31	150	2.28	0.039800	23.90
4	34	60	115	31	150	1.70	0.109230	71.25
5	34	140	115	31	150	2.36	0.109230	/1.23
6	34	100	107	31	150	2.05	0.000009	0.01
7	34	100	123	31	150	2.05	0.000009	0.01
8	34	100	115	27	150	2.10	0.000552	0.36
9	34	100	115	35	150	2.05	0.000332	0.30
10	34	100	115	31	90	1.93	0.003721	2.43
11	34	100	115	31	210	2.05	0.003721	2.43
E[FS] =	2.050000	_		$E[\ln FS] =$	0.699924	Total	0.153313	100.00
Var[FS]=	0.153313							

11	34	100	115	31	210	2.05	0.003/21	2.43
E[FS] =	2.050000			$E[\ln FS] =$	0.699924	Total	0.153313	100.00
Var[FS]=	0.153313							
$\sigma[FS]=$	0.391552			$\sigma[\ln FS]=$	0.189292		β =	3.697580
V(FS) =	0.191001						F(z) =	0.000109
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.010883
							-	

200yr+	2ft	Head =	6.46	Pr(f)=0	YES			
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.0
V(FS) =	0.191001						$\mathbf{F}(\mathbf{z}) =$	0.0
$\sigma[FS]=$	0.391552			$\sigma[\ln FS]=$	0.189292		β =	3.6
Var[FS]=	0.153313							
E[FS] =	2.050000			$E[\ln FS] =$	0.699924	Total	0.153313	

1 (Mean) 34 100 115 31 150 2.46 2 30 100 115 31 150 3 38 100 115 31 150 4 34 60 115 31 150 5 34 140 115 31 150 6 34 100 107 31 150 7 34 100 123 31 150 8 34 100 115 27 150 9 34 100 115 35 150 10 34 100 115 31 90 11 24 100 115 31 210	Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
3 38 100 115 31 150 4 34 60 115 31 150 5 34 140 115 31 150 6 34 100 107 31 150 7 34 100 123 31 150 8 34 100 115 27 150 9 34 100 115 35 150 10 34 100 115 31 90	1 (Mean)	34	100	115	31	150	2.46		
4 34 60 115 31 150 5 34 140 115 31 150 6 34 100 107 31 150 7 34 100 123 31 150 8 34 100 115 27 150 9 34 100 115 35 150 10 34 100 115 31 90	2	30	100	115	31	150			
5 34 140 115 31 150 6 34 100 107 31 150 7 34 100 123 31 150 8 34 100 115 27 150 9 34 100 115 35 150 10 34 100 115 31 90	3	38	100	115	31	150			
6 34 100 107 31 150 7 34 100 123 31 150 8 34 100 115 27 150 9 34 100 115 35 150 10 34 100 115 31 90	4	34	60	115	31	150			
7 34 100 123 31 150 8 34 100 115 27 150 9 34 100 115 35 150 10 34 100 115 31 90	5	34	140	115	31	150			
8 34 100 115 27 150 9 34 100 115 35 150 10 34 100 115 31 90	6	34	100	107	31	150			
9 34 100 115 35 150 10 34 100 115 31 90	7	34	100	123	31	150			
10 34 100 115 31 90	8	34	100	115	27	150			
	9	34	100	115	35	150			
11 24 100 115 21 210	10	34	100	115	31	90			
11 34 100 113 31 210	11	34	100	115	31	210			

E[FS] = Var[FS]= $E[\ln FS] =$ $\sigma[FS]=$ $\sigma[\ln FS]=$ V(FS) =FS req'd = 1.00 ln(FS req'd) = 0.000000

β=	
F(z) =	•
Pr(f) % =	0.000000

				(-) *				
	v .	Levee		Foundation	Foundation	P.C.	V. C.	
Run	Levee Φ	Cohesion	Levee γ	Φ	Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	115	31	150	2.28		
2	30	100	115	31	150			
3	38	100	115	31	150			
4	34	60	115	31	150			
5	34	140	115	31	150			
6	34	100	107	31	150			
7	34	100	123	31	150			
8	34	100	115	27	150			
9	34	100	115	35	150			
10	34	100	115	31	90			
11	34	100	115	31	210			

YES

0.000000

0.000000

Total

Pr(f)=0

ln(FS req'd) =

E[FS] = Var[FS]= $E[\ln FS] =$ $\sigma[FS] = V(FS) = 0$ $\sigma[\ln FS]=$

Head =

8.40

β=		
F(z) =		
Pr(f) % =	0.000000	

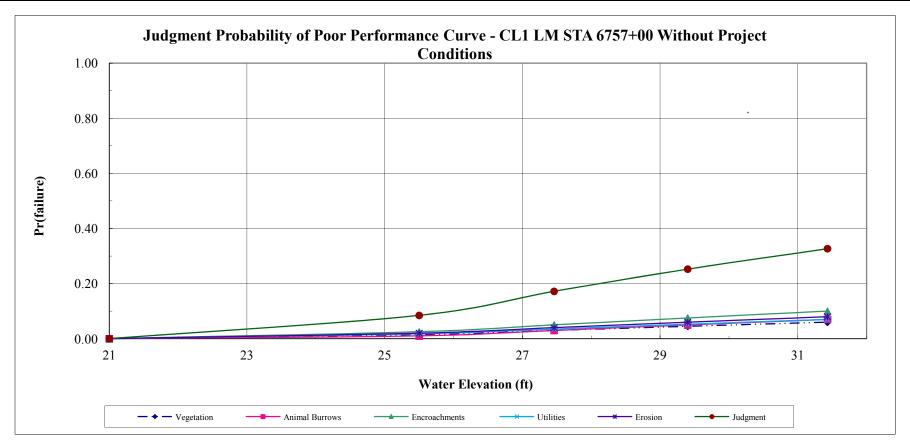
200yr Head = 4.50 Pr(f)=0 YES

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	115	31	150	2.71		
2	30	100	115	31	150			
3	38	100	115	31	150			
4	34	60	115	31	150			
5	34	140	115	31	150			
6	34	100	107	31	150			
7	34	100	123	31	150			
8	34	100	115	27	150			
9	34	100	115	35	150			
10	34	100	115	31	90			
11	34	100	115	31	210			
E[EC] =		•		F[ln FC] =	•	Total	•	•

ln(FS req'd) =

E[FS] = Var[FS]= $E[\ln FS] =$ Total σ[FS]= V(FS) = $\sigma[\ln FS]=$

F(z) =Pr(f) % = 0.000000


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Judgment Probability of Poor Performance Curve

Project: Lower San Joaquin
Study Area: Left Bank Calaveras River
River Section: CL1
Levee Mile: STA 6757+00
River Mile: XX.XX
Analysis Case: Without Project

Levee Mile: STA 6757+00 Crest Elev.: 31.43
River Mile: XX.XX L/S Toe Elev.: 21.00
Analysis Case: Without Project Conditions W/S Toe Elev.: 26.94

Analysis By: G. Johnson Checked By: M. Perlea, J. F Date: 9/24/2012

Water Surface	Vege	tation	Animal 1	Burrows	Encroa	Encroachments		ilities	Erosion		Judgment	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
21.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
25.50	0.0150	0.9850	0.0100	0.9900	0.0250	0.9750	0.0175	0.9825	0.0200	0.9800	0.0845	0.9155
27.46	0.0300	0.9700	0.0300	0.9700	0.0500	0.9500	0.0350	0.9650	0.0400	0.9600	0.1719	0.8281
29.40	0.0450	0.9550	0.0500	0.9500	0.0750	0.9250	0.0525	0.9475	0.0600	0.9400	0.2526	0.7474
31.43	0.0600	0.9400	0.0700	0.9300	0.1000	0.9000	0.0700	0.9300	0.0800	0.9200	0.3268	0.6732

Reach-N-P.IP CL1.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San JoaquinLevee Mile: STA 6757+00Crest Elev.: 31.43Analysis By: G. JohnsonStudy Area: Left Bank Calaveras RiverRiver Mile: XX.XXL/S Toe Elev.: 21.00Checked By: M. Perlea, J. HogRiver Section: CL1Analysis Case: Without Project ConditionsW/S Toe Elev.: 26.94Date: 9/24/2012

Water Surface	Unders	seepage	Through-Seepage		Stab	oility	Judg	ment	Com	Combined		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R		
21.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000		
25.50	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0845	0.9155	0.0845	0.9155		
27.46	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.1719	0.8281	0.1719	0.8281		
29.40	0.0001	0.9999	0.0000	1.0000	0.0000	1.0000	0.2526	0.7474	0.2527	0.7473		
31.43	0.0004	0.9996	0.0769	0.9231	0.0001	0.9999	0.3268	0.6732	0.3790	0.6210		

Reach-N-P.IP CL1.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Determination of Random Variables For Underseepage Reliability Analysis

Project: Lower San Joaquin
Channel: Right Bank Calaveras River
Basin and Reach: Index Point CR1

Levee Mile: STA 3306+00Crest Elev.: 29.66Analysis By: G. JohnsonRiver Mile: XX.XXL/S Toe Elev.: 23.80Checked By: M. Perlea, J. HoganAnalysis Case Without Project ConditionsW/S Toe Elev.: 22.90Date: 9/28/2012

		Blanket	Thickness Varia	ble (z)			Aquifer T	hickness Vari	able (d)				Н	ydraulic Conduct	ivity Vairable	es (Kb and Kf			
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Blan	ket	Aquifer	· Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	variation	of Variation
WCNBCR_006A	8					26					CL	0.007	ML	1.4	200				
WCNBCR_007B	4					12					CL	0.007	ML	1.4	200				
WCNBCR_013C	4					14					CL	0.007	ML	1.4	200				
WCNBCR_008B	5					4					CL	0.007	ML	1.4	200				
WCNBCR_010A	2	5	2	Q	40	16	14	Q	86	57	CL	0.007	ML	1.4	200	200	0	11111	0
		3	2	0	40		14	8	80	37						200	U	11111	U

	Blanket Mate	erial 1 (lowest	permeability)		Blanket Mater	rial 2	Tuansformed Dlankst		Aquifer Mater	rial 1	A	Aquifer Materia	al 2	,	Aquifer Mater	rial 3	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Transformed Blanket Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	Tillekiless (z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WCNBCR_006A	CL	8	0.007				8	ML	26	1.4							1.4
WCNBCR_007B	CL	4	0.007				4	ML	12	1.4							1.4
WCNBCR_013C	CL	4	0.007				4	ML	14	1.4							1.4
WCNBCR_008B	CL	5	0.007				5	ML	4	1.4							1.4
WCNBCR 010A	CL	2	0.007				2	ML	16	1.4							1.4

Reach-H.IP CR1.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**

Project: Lower San Joaquin Study Area: Right Bank Calaveras River River Section: Index Point CR1

River Mile: XX.XX Analysis Case Without Project Conditions

Levee Mile: STA 3306+00

Crest Elev.: 29.66 Analysis By: G. Johnson L/S Toe Elev.: 23.80 Checked By: M. Perlea, J. Hogan **W/S Toe Elev.:** 22.90 **Date:** 9/28/2012

Analysis

Case

Toe

Elev. 25.3

200 yr

Elev. 28.2

Crest

Head

0.00

1.50

3.10

4.40

5.86

Elevation

23.80

25.30

26.90

28.20

29.66

Pr(f)

0.0000

0.0000

0.0074

0.0727

0.2418

Random Variables						
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %			
Permaebility Ratio	200	0	0			
Blanket Thickness (z)	5	2	40			
Aquifer Thickness (d)	14	8	57			

Blanket Theory Analysis Inputs								
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket			
NO	7A	37	56	∞	112			

1.00			
0.80			
0.60			
0.60 0.40 0.20			
0.20			
0.00			
23	25	27	29

Cre	Rh	
Head =	5.86	

Run	Kf/Kb	z	d	x 1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	200	5.00	14.00	35.84	118.32	0.0666	3.30	0.66		
2	200	5.00	14.00	35.84	118.32	0.0666	3.30	0.66	0.000000	0.00
3	200	5.00	14.00	35.84	118.32	0.0666	3.30	0.66	0.000000	0.00
4	200	7.00	14.00	36.16	140.00	0.0603	3.53	0.50	0.057600	87.67
5	200	3.00	14.00	35.11	91.65	0.0766	2.94	0.98	0.037600	87.07
6	200	5.00	22.00	36.25	148.32	0.0914	3.61	0.72	0.008100	12.33
7	200	5.00	6.00	34.42	77.46	0.0357	2.70	0.54	0.008100	12.55
		·				-		Total	0.065700	100.00

E[I] =0.660000 $E[\ln I] = -0.485756$ Var[I]= 0.065700 0.256320 $\sigma [\ln I] = 0.374807$ σ[I]=

V(I) =	0.388364		β =	-1.296015
			F(z) =	0.758242
Ic=	0.80	ln(I crit) = -0.223144	Pr(f) % =	24.175783

Elev. 28.2	Rh
Head = 4.	40

Elev. 25.3

Head = 1.50

Rh

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	200	5.00	14.00	35.84	118.32	0.0666	2.48	0.50		
2	200	5.00	14.00	35.84	118.32	0.0666	2.48	0.50	0.000000	0.00
3	200	5.00	14.00	35.84	118.32	0.0666	2.48	0.50	0.000000	0.00
4	200	7.00	14.00	36.16	140.00	0.0603	2.66	0.38	0.032400	88.46
5	200	3.00	14.00	35.11	91.65	0.0766	2.21	0.74	0.032400	88.40
6	200	5.00	22.00	36.25	148.32	0.0914	2.72	0.54	0.004225	11.54
7	200	5.00	6.00	34.42	77.46	0.0357	2.03	0.41	0.004223	11.34
						_		Total	0.036625	100.00

E[I] = 0.500000 $E[\ln I] = -0.761504$ Var[I]= 0.036625 $\sigma[I] = 0.191377$ $\sigma [\ln I] = 0.369748$ V(I) = 0.382753Ic= 0.80 ln(I crit) = -0.223144

β=	-2.059520
F(z) =	0.927306
Pr(f) % =	7.269370

200) yr	Rh
Head =	3.10	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	200	5.00	14.00	35.84	118.32	0.0666	1.75	0.35		
2	200	5.00	14.00	35.84	118.32	0.0666	1.75	0.35	0.000000	0.00
3	200	5.00	14.00	35.84	118.32	0.0666	1.75	0.35	0.000000	0.00
4	200	7.00	14.00	36.16	140.00	0.0603	1.87	0.27	0.015625	88.53
5	200	3.00	14.00	35.11	91.65	0.0766	1.56	0.52	0.013023	88.33
6	200	5.00	22.00	36.25	148.32	0.0914	1.91	0.38	0.002025	11.47
7	200	5.00	6.00	34.42	77.46	0.0357	1.43	0.29	0.002023	11.47
								Total	0.017650	100.00

E[I] =	0.350000	$E[\ln I] = -1.117123$	
Var[I]=	0.017650		
σ[I]=	0.132853	$\sigma [\ln I] = 0.366882$	
V(I) =	0.379581		β =
			F(z) =
Ic=	0.80	ln(I crit) = -0.223144	Pr(f) % =

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	200	5.00	14.00	35.84	118.32	0.0666	0.85	0.17		
2	200	5.00	14.00	35.84	118.32	0.0666	0.85	0.17	0.000000	0.00
3	200	5.00	14.00	35.84	118.32	0.0666	0.85	0.17	0.000000	0.00
4	200	7.00	14.00	36.16	140.00	0.0603	0.91	0.13	0.003600	85.21
5	200	3.00	14.00	35.11	91.65	0.0766	0.75	0.25	0.003000	65.21
6	200	5.00	22.00	36.25	148.32	0.0914	0.93	0.19	0.000625	14.79
7	200	5.00	6.00	34.42	77.46	0.0357	0.69	0.14	0.000023	14.79
								Total	0.004225	100.00
	E[I] =	0.170000			E[ln I] =	-1.840180				

	⊑[I] −	0.170000		Ե[m ɪ] −	-1.040100		
	Var[I]=	0.004225					
	$\sigma[I]=$	0.065000		σ [ln I] =	0.369387		
	V(I) =	0.382353				β=	-4.981715
						F(z) =	0.999994
	Ic=	0.80	lr	n(I crit) =	-0.223144	Pr(f) % =	0.000600
_						-	

-3.044913 0.992589

0.741105

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Water Elevation (ft)

Crest Elev.: 29.66 L/S Toe Elev.: 23.80

W/S Toe Elev.: 22.90

Elev. 28.2

Project: Lower San Joaquin
Study Area: Right Bank Calaveras River

River Section: Index Point CR1

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,					
Tractive Stress (Tc)	8	0.8	10.00					
Initial Porosity (n)	50	5.00	10.00					
Initial Permeability (Ko)	2.80E-08	8.40E-09	30.00					

	1.00	Through	-Seepage Pi	robability of Poo	r Performance
	0.80				
re)	0.60				
Pr(Failure)	0.40				
Pr(F	0.20				
	0.00	<u> </u>			<u> </u>
	23		25	27	29

Levee Mile: STA 3306+00

Analysis Case Without Project Conditions

River Mile: XX.XX

0.000000

Pr(f) % =

Analysis By: G. Johnson Checked By: M. Perlea, J. Hogan Date: 9/28/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	23.80	0.0000
Elev. 25.3	1.50	25.30	0.000000
200 yr	3.10	26.90	0.000000
Elev. 28.2	4.40	28.20	0.000000
Crest	5.86	29.66	0.000000

0.180

Horizontal Gradient (Ix) =

11(1)
NO

1.00

FS req'd =

Crest Head = 5.86 Horizontal Gradient (Ix) = 0.220

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	8.00	50.00	2.80E-08	121.89	554.06		
2	7.20	50.00	2.80E-08	109.70	498.66	3069.837765	26.44
3	8.80	50.00	2.80E-08	134.08	609.47	3009.837703	∠0.44
4	8.00	45.00	2.80E-08	115.64	525.63	769.387744	6.63
5	8.00	55.00	2.80E-08	127.84	581.10	709.387744	0.03
6	8.00	50.00	1.96E-08	145.69	662.23	7769.185658	66.93
7	8.00	50.00	3.64E-08	106.91	485.94	//09.183038	00.93
E[FS] =	554.061167		$E[\ln FS] =$	6.298717	Total	11608.411167	100.00
Var[FS]=	11608.411167						
$\sigma[FS]=$	107.742337		$\sigma[\ln FS]=$	0.192658		β =	32.693828
V(FS) =	0.194459					$\mathbf{F}(\mathbf{z}) =$	0.000000

	200 yr	Head =	3.10	Horizontal Gradient (Ix) =	0.140
--	--------	--------	------	----------------------------	-------

ln(FS req'd) = 0.000000

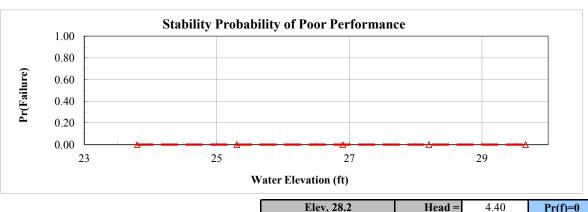
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	8.00	50.00	2.80E-08	121.89	870.67		
2	7.20	50.00	2.80E-08	109.70	783.60	7580.619787	26.44
3	8.80	50.00	2.80E-08	134.08	957.73	/380.019/8/	20.44
4	8.00	45.00	2.80E-08	115.64	825.99	1899.916673	6.63
5	8.00	55.00	2.80E-08	127.84	913.16	1899.910073	0.03
6	8.00	50.00	1.96E-08	145.69	1040.65	19185.131932	66.93
7	8.00	50.00	3.64E-08	106.91	763.63	19183.131932	00.93
E[FS] =	870.667548		$E[\ln FS] =$	6.750702	Total	28665.668392	100.00
Var[FS]=	28665.668392						
$\sigma[FS]=$	169.309387		$\sigma[\ln FS]=$	0.192658		β =	35.039882
V(FS) =	0.194459	_				$\mathbf{F}(\mathbf{z}) =$	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	8.00	50.00	2.80E-08	121.89	677.19		
2	7.20	50.00	2.80E-08	109.70	609.47	4585.807032	26.44
3	8.80	50.00	2.80E-08	134.08	744.90	4363.607032	20.44
4	8.00	45.00	2.80E-08	115.64	642.43	1149.332308	6.63
5	8.00	55.00	2.80E-08	127.84	710.24	1149.552506	0.03
6	8.00	50.00	1.96E-08	145.69	809.39	11605.820552	66.93
7	8.00	50.00	3.64E-08	106.91	593.93	11003.820332	00.93
E[FS] =			E[ln FS] =	6.499387	Total	17340.959892	100.00
Var[FS]=	17340.959892						
$\sigma[FS]=$	131.685078		$\sigma[\ln FS]=$	0.192658		β =	33.735420
V(FS) =	0.194459	_				$\mathbf{F}(\mathbf{z}) =$	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

4.40

Head =

]	radient (Ix) = 0.010	Horizontal G		1.50	Head =	ev. 25.3	Elev. 25.3			
% Variance	Variance Component	FS	Critical Gradient (Ic)	Initial Permeability (Ko)	Initial Porosity (n)	Tractive Stress (Tc)	Run			
		12189.35	121.89	2.80E-08	50.00	8.00	1 (Mean)			
26.44	1485801.478345	10970.41	109.70	2.80E-08	50.00	7.20	2			
26.44	1483801.478343	13408.28	134.08	2.80E-08	50.00	8.80	3			
6.62	272202 667064	11563.83	115.64	2.80E-08	45.00	8.00	4			
6.63	372383.667864	12784.29	127.84	2.80E-08	55.00	8.00	5			
((02	27(0205 05070)	14569.05	145.69	1.96E-08	50.00	8.00	6			
66.93	3760285.858706	10690.76	106.91	3.64E-08	50.00	8.00	7			
100.0	5618471.004916	Total	9.389759	E[ln FS] =		12189.345669	E[FS] =			
						5618471.004916	Var[FS]=			
48.73805	β =		0.192658	$\sigma[\ln FS]=$		2370.331412	$\sigma[FS]=$			
0.00000	F(z) =				_	0.194459	V(FS) =			
0.00000	Pr(f) % =		0.000000	ln(FS req'd) =		1.00	FS req'd =			


Reach-H.IP CR1.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin
Study Area: Right Bank Calaveras River
River Section: Index Point CR1

Random Variables											
Parameter Expected Value Standard Coefficient of Variation %											
Levee Φ	34	4	13.00								
Levee Cohesion	100	40	40.00								
Levee γ	120	8	7.00								
Foundation Φ	31	4	13.00								
Foundation Cohesion	150	60	40.00								

Levee

Head =

Elev. 25.3

1.50

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	23.80	0.0000
Elev. 25.3	1.50	25.30	0.000000
200 yr	3.10	26.90	0.000000

4.40

5.86

Elev. 28.2

Crest

Analysis By: G. Johnson

Checked By: M. Perlea, J. Hogan
Date: 9/28/2012

28.20

29.66

F(z) =

0.000000

Pr(f) % =

0.000000

0.000000

Crest		Head =	5.86	Pr(f)=0	NO				
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Foundation Φ Cohesion		FS	Variance Component	% Variance	
1 (Mean)	34	100	120	31	150	2.91			
2	30	100	120	31	150	2.67	0.022052	8.22	
3	38	100	120	31	150	2.97	0.022032	0.22	
4			120	31	150	2.31	0.189660	70.73	
5			120	31	150	3.18	0.189000	70.73	
6			112	31	150	2.82	0.000225	0.00	
7	34 100 128		128	31	150	2.85	0.000225	0.08	
8			120	27	150	2.71	0.008464	3.16	
9	34	100	120	35	150	2.89	0.008404	3.10	
10	34	100	120	31	90	2.45	0.047742	17.80	
11	34	100	120	31	210	2.89	0.047742	17.80	
E[FS] =	2.910000			$E[\ln FS] =$	1.052566	Total	0.268144	100.00	
Var[FS]=									
$\sigma[FS]=$				$\sigma[\ln FS]=$	0.176562		β =	5.961451	
V(FS) =	V(FS) = 0.177947						F(z) =	0.000000	
FS req'd =	FS req'd = 1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.000000	
		1							
200	yr	Head =	3.10	Pr(f)=0	YES				

Run	Levee 4	Cohesion	Levee 7	Φ	Cohesion	15	variance Component	70 variance
1 (Mean)	34	100	120	31	150	3.13		
2	30	100	120	31	150			
3	38	100	120	31	150			
4	34	60	120	31	150			
5	34	140	120	31	150			
6	34	100	112	31	150			
7	34	100	128	31	150			
8	34	100	120	27	150			
9	34	100	120	35	150			
10	34	100	120	31	90			
11	34	100	120	31	210			
E[FS] =				E[ln FS] =		Total		
Var[FS]=								
σ[FS]=				$\sigma[\ln FS]=$			β =	
V(FS) =		-					F(z) =	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

Foundation Foundation

YES

YES

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	120	31	150	3.37		
2	30	100	120	31	150			
3	38	100	120	31	150			
4	34	60	120	31	150			
5	34	140	120	31	150			
6	34	100	112	31	150			
7	34	100	128	31	150			
8	34	100	120	27	150			
9	34	100	120	35	150			
10	34	100	120	31	90			
11	34	100	120	31	210			
E[FS] =				$E[\ln FS] =$		Total		

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	120	31	150	3.73		
2	30	100	120	31	150			
3	38	100	120	31	150			
4	34	60	120	31	150			
5	34	140	120	31	150			
6	34	100	112	31	150			
7	34	100	128	31	150			
8	34	100	120	27	150			
9	34	100	120	35	150			
10	34	100	120	31	90			
11	34	100	120	31	210	·		
E[FS] = Var[FS]=				$E[\ln FS] =$		Total		

 $\sigma[\ln FS]=$

ln(FS req'd) = 0.000000

Pr(f)=0

	E[FS] =			E[ln FS] =		Total	
	Var[FS]=						
	$\sigma[FS]=$			$\sigma[\ln FS]=$			β=
	V(FS) =		_				F(z) =
	FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =
,		-	•				

σ[FS]= V(FS) =

1.00

FS req'd =

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Judgment Probability of Poor Performance Curve

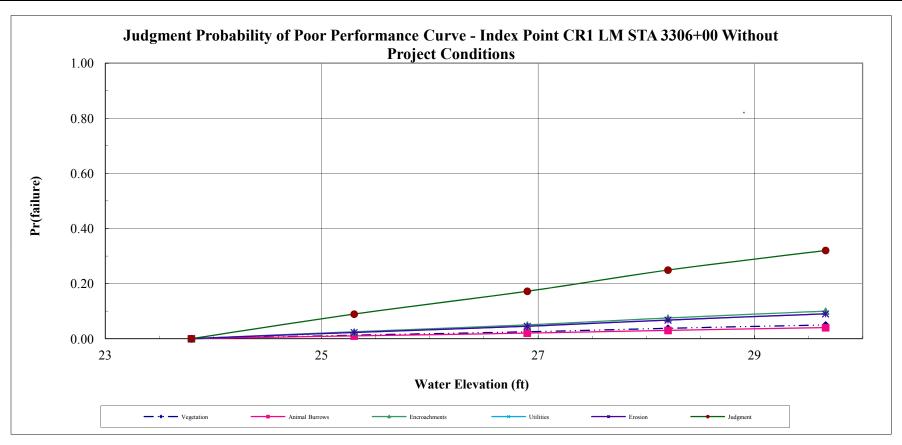
Project: Lower San Joaquin

Study Area: Right Bank Calaveras River

River Section: Index Point CR1

Levee Mile: STA 3306+00

Crest Elev.: 29.66

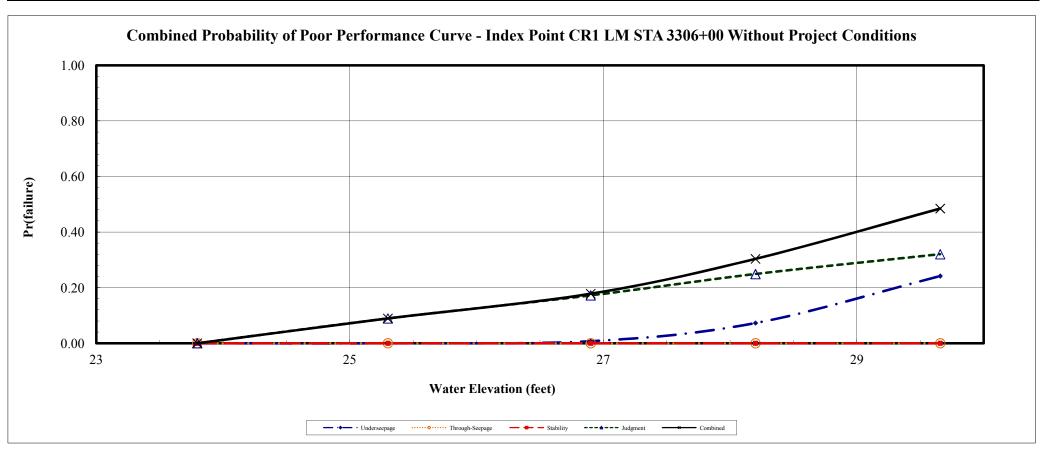

L/S Toe Elev.: 23.80

Checked By: M. Perlea, J. F.

W/S Toe Elev.: 22.90

Date: 9/28/2012

Water Surface	Veget	tation	Animal 1	Burrows	Encroachments		Utilities		Erosion		Judgment	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
23.80	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
25.30	0.0125	0.9875	0.0100	0.9900	0.0250	0.9750	0.0225	0.9775	0.0225	0.9775	0.0892	0.9108
26.90	0.0250	0.9750	0.0200	0.9800	0.0500	0.9500	0.0450	0.9550	0.0450	0.9550	0.1721	0.8279
28.20	0.0375	0.9625	0.0300	0.9700	0.0750	0.9250	0.0675	0.9325	0.0675	0.9325	0.2490	0.7510
29.66	0.0500	0.9500	0.0400	0.9600	0.1000	0.9000	0.0900	0.9100	0.0900	0.9100	0.3203	0.6797



Reach-H.IP CR1.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San JoaquinLevee Mile: STA 3306+00Crest Elev.: 29.66Analysis By: G. JohnsonStudy Area: Right Bank Calaveras RiverRiver Mile: XX.XXL/S Toe Elev.: 23.80Checked By: M. Perlea, J. HogRiver Section: Index Point CR1Analysis Case: Without Project ConditionsW/S Toe Elev.: 22.90Date: 9/28/2012

Water Surface	Vater Surface Underseepage		Through-Seepage		Stab	oility	Judg	ment	Combined	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
23.80	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
25.30	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0892	0.9108	0.0892	0.9108
26.90	0.0074	0.9926	0.0000	1.0000	0.0000	1.0000	0.1721	0.8279	0.1783	0.8217
28.20	0.0727	0.9273	0.0000	1.0000	0.0000	1.0000	0.2490	0.7510	0.3036	0.6964
29.66	0.2418	0.7582	0.0000	1.0000	0.0000	1.0000	0.3203	0.6797	0.4846	0.5154

Reach-H.IP CR1.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Determination of Random Variables For Underseepage Reliability Analysis

Project: Lower San Joaquin **Channel:** Right Bank Calaveras River

Levee Mile: STA 3092+00 River Mile: XX.XX Analysis By: G. Johnson Checked By: M. Perlea, J. Hogan Date: 9/25/2012

Crest Elev.: 18.82

L/S Toe Elev.: 5.37 W/S Toe Elev.: 3.18

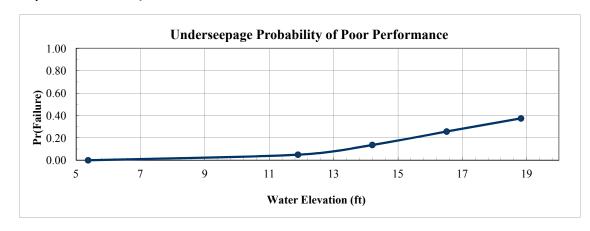
Basin and Reach: Index Point D4	Analysis Case Without Project Conditions

		Blanket	Thickness Var	riable (z)			Aquifer	Thickness Var	iable (d)			Hydraulic Conductivity Vairables (Kb and Kf)										
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient			
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	variation	of Variation			
WR2074_001B	12					33					CL/ML	0.0007	SP-SM	19.6	28000							
WR2074 002B	19					28					CL/ML	0.007	SP-SM	2.8	400							
WR2074_003B	28						28					CL	0.007	SP-SM	2.8	400			ı İ	ı		
WR2074 004B	7					28					CL	0.007	SP-SM	2.8	400		1		i			
WR2074_005B	18	15	7	81	47	32	30	2	150	158 7	CL/ML	0.007	SP-SM	2.8	400	3804	9777	76919955	98			
WCNBCR 003B	8.5	13	,	01	47	30	30	2	136	,	CH/ML 0.007 S	SP-SM	1.8	257	3604	9///	70919933	96				
WCNBCR_004B	8.3					27						1		CL/ML	0.007	SP-SM	2	286				
WCNBCR_005B	19					30					CL/ML	0.007	SP-SM	2	286							

	Blanket Mate	erial 1 (lowest	permeability)	В	lanket Materia	12	Transformed Blanket	A	quifer Materia	l 1	Aquifer Material 2		12	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	Tillekness (z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR2074_001B	CL	11	0.0007	ML	10	0.007	12	SP-SM	33	19.6							19.6
WR2074_002B	CL	18	0.007	ML	10	0.07	19	SP-SM	28	2.8							2.8
WR2074_003B	CL	28	0.007				28	SP-SM	28	2.8							2.8
WR2074 004B	CL	7	0.007				7	SP-SM	28	2.8							2.8
WR2074_005B	CL/ML	18	0.007				18	SP-SM	32	2.8							2.8
WCNBCR 003B	СН	8	0.007	ML	5	0.07	8.5	SP-SM	30	1.8							1.8
WCNBCR_004B	CL	8	0.007	ML	3	0.07	8.3	SP-SM	27	2							2
WCNBCR_005B	CL	18	0.007	ML	10	0.07	19	SP-SM	30	2	•						2
				<u> </u>			_				<u> </u>						

Reach-A.IP D4.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**


Project: Lower San Joaquin Study Area: Right Bank Calaveras River

River Section: Index Point D4

Random Variables									
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %						
Permaebility Ratio	3804	3728	98						
Blanket Thickness (z)	15	7	47						
Aquifer Thickness (d)	30	2	7						

Blanket Theory Analysis Inputs									
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket				
NO	7A	86	103	∞	112				

Levee Mile: STA 3092+00 River Mile: XX.XX Analysis Case Without Project Conditions

Analysis By: G. Johnson Checked By: M. Perlea, J. Hogan **Date:** 9/25/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	5.37	0.0000
Elev. 11.89	6.52	11.89	0.0500
200 yr	8.83	14.20	0.1369
Elev. 16.51	11.14	16.51	0.2570
Crest	13.45	18.82	0.3744

Cr	est	Rh
Head =	13.45	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	3804	15.00	30.00	85.88	1308.36	0.0200	11.75	0.78		
2	7532	15.00	30.00	85.94	1841.02	0.0148	12.20	0.81	0.032400	15.21
3	76	15.00	30.00	80.30	185.03	0.0814	6.76	0.45	0.032400	13.21
4	3804	22.00	30.00	85.92	1584.50	0.0169	12.02	0.55	0.180625	84.78
5	3804	8.00	30.00	85.77	955.49	0.0262	11.23	1.40	0.180023	04.70
6	3804	15.00	32.00	85.88	1351.27	0.0208	11.80	0.79	0.000025	0.01
7	3804	15.00	28.00	85.87	1263.99	0.0193	11.70	0.78	0.000023	0.01
								Total	0.213050	100.00

E[I] = 0.780000

 $E[\ln I] = -0.398581$

Var[I] = 0.213050 $\sigma[I] = 0.461573$

V(I) = 0.591761

0.80

σ [ln I] =	0.547940		
		β=	-0.727416
		F(z) =	0.625582
ln(I crit) =	-0.223144	Pr(f) % =	37.441763

200) yr	Rh
Head =	8.83	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	3804	15.00	30.00	85.88	1308.36	0.0200	7.72	0.51		
2	7532	15.00	30.00	85.94	1841.02	0.0148	8.01	0.53	0.013225	14.43
3	76	15.00	30.00	80.30	185.03	0.0814	4.44	0.30	0.013223	14.43
4	3804	22.00	30.00	85.92	1584.50	0.0169	7.89	0.36	0.078400	85.54
5	3804	8.00	30.00	85.77	955.49	0.0262	7.37	0.92	0.078400	65.54
6	3804	15.00	32.00	85.88	1351.27	0.0208	7.75	0.52	0.000025	0.03
7	3804	15.00	28.00	85.87	1263.99	0.0193	7.68	0.51	0.000023	0.03
								Total	0.091650	100.00

E[I] = 0.510000

Var[I] = 0.091650

 $\sigma[I] = 0.302738$

V(I) = 0.593603

0.80 ln(I crit) = -0.223144Ic=

$E[\ln I] = -1$	0.824272
-----------------	----------

 $\sigma [\ln I] = 0.549413$

β=	-1.500278
F(z) =	0.863051
Pr(f) % =	13.694933

Elev. 10	6.51	Rh
Head =	11.14	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	3804	15.00	30.00	85.88	1308.36	0.0200	9.73	0.65		
2	7532	15.00	30.00	85.94	1841.02	0.0148	10.10	0.67	0.022500	15.15
3	76	15.00	30.00	80.30	185.03	0.0814	5.60	0.37	0.022300	13.13
4	3804	22.00	30.00	85.92	1584.50	0.0169	9.95	0.45	0.126025	84.85
5	3804	8.00	30.00	85.77	955.49	0.0262	9.30	1.16	0.120023	04.03
6	3804	15.00	32.00	85.88	1351.27	0.0208	9.77	0.65	0.000000	0.00
7	3804	15.00	28.00	85.87	1263.99	0.0193	9.69	0.65	0.000000	0.00
								Total	0.148525	100.00

Crest Elev.: 18.82

L/S Toe Elev.: 5.37

W/S Toe Elev.: 3.18

E[I] = 0.650000

Var[I]= 0.148525 $\sigma[I] = 0.385389$

V(I) = 0.592907

Ic=	0.80

 $\sigma [\ln I] = 0.548857$

ln(I crit) = -0.223144

 $E[\ln I] = -0.581405$

β=	-1.05930
F(z) =	0.74303
Pr(f) % =	25.69616

Elev. 11.89 Rh **Head =** 6.52

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	3804	15.00	30.00	85.88	1308.36	0.0200	5.70	0.38		
2	7532	15.00	30.00	85.94	1841.02	0.0148	5.91	0.39	0.007225	14.67
3	76	15.00	30.00	80.30	185.03	0.0814	3.28	0.22	0.007223	14.07
4	3804	22.00	30.00	85.92	1584.50	0.0169	5.83	0.27	0.042025	85.33
5	3804	8.00	30.00	85.77	955.49	0.0262	5.44	0.68	0.042023	63.33
6	3804	15.00	32.00	85.88	1351.27	0.0208	5.72	0.38	0.000000	0.00
7	3804	15.00	28.00	85.87	1263.99	0.0193	5.67	0.38	0.000000	0.00

E[I] = 0.380000Var[I] = 0.049250

 $\sigma[I] = 0.221923$

V(I) = 0.584009

Ic= 0.80

 $E[\ln I] = -1.114317$

 $\sigma [\ln I] = 0.541724$

ln(I crit) = -0.223144

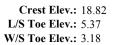
β =	-2.056981
F(z) =	0.950022
Pr(f) % =	4.997793

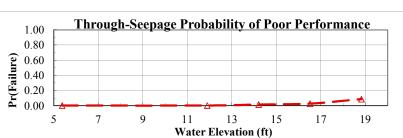
100.00

0.049250

Total

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model


Project: Lower San Joaquin
Study Area: Right Bank Calaveras River


River Section: Index Point D4

Random Variables							
Parameter Expected Standard Coefficient of Variation, Value Deviation %							
Tractive Stress (Tc)	4	0.4	10.00				
Initial Porosity (n)	0.39	0.04	10.00				
Initial Permeability (Ko)	2.00E-06	6.00E-07	30.00				

P	r(f)=0
	NO

Levee Mile: STA 3092+00
River Mile: XX.XX
Analysis Case Without Project Conditions

Analysis By: G. Johnson Checked By: M. Perlea, J. Hogan Date: 9/25/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	5.37	0.0000
Elev. 11.89	6.52	11.89	0.001302
200 yr	8.83	14.20	0.014271
Elev. 16.51	11.14	16.51	0.026035
Crest	13.45	18.82	0.085097

Cr	est	Head =	13.45		Horizontal C	Gradient (Ix) = 0.480	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	4.00	0.39	2.00E-06	0.64	1.33		
2	3.60	0.39	2.00E-06	0.57	1.19	0.017605	26.44
3	4.40	0.39	2.00E-06	0.70	1.46	0.01/603	20.44
4	4.00	0.35	2.00E-06	0.60	1.26	0.004412	6.63
5	4.00	0.43	2.00E-06	0.67	1.39	0.004412	0.03
6	4.00	0.39	1.40E-06	0.76	1.59	0.044555	66.93
7	4.00	0.39	2.60E-06	0.56	1.16	0.044555	
E[FS] = Var[FS]=	1.326846 0.066573		E[ln FS] =	0.264246	Total	0.066573	100.00
σ[FS]= V(FS) =	0.258017 0.194459		$\sigma[\ln FS]=$	0.192658		β : F(z) :	= 1.371584 = 0.085097
FS req'd =		l	ln(FS req'd) =	0.000000		Pr(f) %	
200) yr	Head =	8.83		Horizontal C	Gradient (Ix) = 0.410	

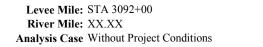
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance	
1 (Mean)	4.00	0.39	2.00E-06	0.64	1.55			
2	3.60	0.39	2.00E-06	0.57	1.40	0.024130	26.44	
3	4.40	0.39	2.00E-06	0.70	1.71	0.024130	20.44	
4	4.00	0.35	2.00E-06	0.60	1.47	0.006048	6.63	
5	4.00	0.43	2.00E-06	0.67	1.63	0.00048	0.03	
6	4.00	0.39	1.40E-06	0.76	1.86	0.061068	66.93	
7	4.00	0.39	2.60E-06	0.56	1.36	0.001008	00.93	
E[FS] = Var[FS]=	1.553381 0.091246		$E[\ln FS] =$	0.421875	Total	0.091246	100.00	
$\sigma[FS] = V(FS) =$	0.302069 0.194459		$\sigma[\ln FS]=$	0.192658		$\beta = F(z) = F(z)$		
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =		

Elev.	10.01						
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	4.00	0.39	2.00E-06	0.64	1.48		•
2	3.60	0.39	2.00E-06	0.57	1.33 0.021937		26.44
3	4.40	0.39	2.00E-06	0.70	1.63	0.021937	26.44
4	4.00	0.35	2.00E-06	0.60	1.41	0.005498	6.62
5	4.00	0.43	2.00E-06	0.67	1.55	0.003498	6.63
6	4.00	0.39	1.40E-06	0.76	1.77	0.055520	66.93
7	4.00	0.39	2.60E-06	0.56	1.30	0.055520	00.93
E[FS] =	1.481130		$E[\ln FS] =$	0.374247	Total	0.082955	100.0
Var[FS]=	0.082955						
$\sigma[FS]=$	0.288020		$\sigma[\ln FS]=$	0.192658		β =	1.94254
V(FS) =	0.194459	_				F(z) =	
FS req'd =	1.00		ln(FS reg'd) =	0.000000		Pr(f) % =	2.60353
rs req u =	1.00		(1)			11(1) /0	2.00333
-							2.003331
-	11.89	Head =	6.52		Horizontal G	radient (Ix) = 0.350	
-		Head =	6.52		Horizontal G]
-		Head =	6.52	Critical		radient (Ix) = 0.350]
Elev.	11.89		6.52 Initial Permeability	Critical Gradient	Horizontal G]
Elev.	11.89 Tractive Stress (Tc)	Initial Porosity (n)	6.52 Initial Permeability (Ko)	Critical Gradient (Ic)	FS	radient (Ix) = 0.350]
Run 1 (Mean)	Tractive Stress (Tc)	Initial Porosity (n) 0.39	6.52 Initial Permeability (Ko) 2.00E-06	Critical Gradient (Ic) 0.64	FS 1.82	radient (Ix) = 0.350 Variance Component	% Variance
Elev.	11.89 Tractive Stress (Tc) 4.00 3.60	Initial Porosity (n) 0.39 0.39	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06	Critical Gradient (Ic) 0.64 0.57	FS 1.82 1.64	radient (Ix) = 0.350]
Run 1 (Mean) 2 3	Tractive Stress (Tc)	Initial Porosity (n) 0.39 0.39 0.39	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06	Critical Gradient (Ic) 0.64 0.57 0.70	FS 1.82 1.64 2.00	variance Component 0.033112	% Variance 26.44
Run 1 (Mean) 2 3 4	Tractive Stress (Tc) 4.00 3.60 4.40 4.00	Initial Porosity (n) 0.39 0.39 0.39 0.35	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06 2.00E-06	Critical Gradient (Ic) 0.64 0.57 0.70 0.60	1.82 1.64 2.00 1.73	radient (Ix) = 0.350 Variance Component	% Variance
Run 1 (Mean) 2 3 4 5	Tractive Stress (Tc) 4.00 3.60 4.40 4.00 4.00	Initial Porosity (n) 0.39 0.39 0.39 0.35 0.43	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06 2.00E-06 2.00E-06	Critical Gradient (Ic) 0.64 0.57 0.70 0.60 0.67	1.82 1.64 2.00 1.73 1.91	variance Component 0.033112 0.008299	% Variance 26.44 6.63
Run 1 (Mean) 2 3 4	Tractive Stress (Tc) 4.00 3.60 4.40 4.00	Initial Porosity (n) 0.39 0.39 0.39 0.35	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06 2.00E-06	Critical Gradient (Ic) 0.64 0.57 0.70 0.60	1.82 1.64 2.00 1.73 1.91 2.17	variance Component 0.033112	% Variance
Run 1 (Mean) 2 3 4 5 6 7	Tractive Stress (Tc) 4.00 3.60 4.40 4.00 4.00 4.00 4.00	Initial Porosity (n) 0.39 0.39 0.39 0.35 0.43	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06 2.00E-06 1.40E-06 2.60E-06	Critical Gradient (Ic) 0.64 0.57 0.70 0.60 0.67 0.76	1.82 1.64 2.00 1.73 1.91	variance Component 0.033112 0.008299	% Variance 26.44 6.63 66.93
Run 1 (Mean) 2 3 4 5 6	Tractive Stress (Tc) 4.00 3.60 4.40 4.00 4.00 4.00 4.00	Initial Porosity (n) 0.39 0.39 0.39 0.35 0.43	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06 2.00E-06 2.00E-06 1.40E-06	Critical Gradient (Ic) 0.64 0.57 0.70 0.60 0.67 0.76 0.56	1.82 1.64 2.00 1.73 1.91 2.17 1.60	variance Component 0.033112 0.008299 0.083801	% Variance 26.44 6.63 66.93
Elev. Run 1 (Mean) 2 3 4 5 6 7 E[FS] = Var[FS]=	Tractive Stress (Tc) 4.00 3.60 4.40 4.00 4.00 4.00 4.00 1.819674	Initial Porosity (n) 0.39 0.39 0.39 0.35 0.43	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06 2.00E-06 1.40E-06 2.60E-06 E[ln FS] =	Critical Gradient (Ic) 0.64 0.57 0.70 0.60 0.67 0.76 0.56	1.82 1.64 2.00 1.73 1.91 2.17 1.60	variance Component 0.033112 0.008299 0.083801	% Variance 26.44 6.63 66.93
Run 1 (Mean) 2 3 4 5 6 7 E[FS] =	Tractive Stress (Tc) 4.00 3.60 4.40 4.00 4.00 4.00 4.00 0.125212	Initial Porosity (n) 0.39 0.39 0.39 0.35 0.43	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06 2.00E-06 1.40E-06 2.60E-06	Critical Gradient (Ic) 0.64 0.57 0.70 0.60 0.67 0.76 0.56 0.580099	1.82 1.64 2.00 1.73 1.91 2.17 1.60	radient (Ix) = 0.350 Variance Component 0.033112 0.008299 0.083801 0.125212 β =	% Variance 26.44 6.63 66.93 100.00
Elev. Run 1 (Mean) 2 3 4 5 6 7 E[FS] = Var[FS]= σ[FS]=	Tractive Stress (Tc) 4.00 3.60 4.40 4.00 4.00 4.00 1.819674 0.125212 0.353853	Initial Porosity (n) 0.39 0.39 0.39 0.35 0.43	6.52 Initial Permeability (Ko) 2.00E-06 2.00E-06 2.00E-06 2.00E-06 1.40E-06 2.60E-06 E[ln FS] =	Critical Gradient (Ic) 0.64 0.57 0.70 0.60 0.67 0.76 0.56 0.580099	1.82 1.64 2.00 1.73 1.91 2.17 1.60	0.033112 0.008299 0.083801 0.125212	% Variance 26.44 6.63 66.93 100.00 3.011036 0.001302

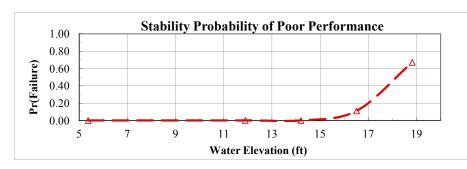
Reach-A.IP D4.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin
Study Area: Right Bank Calaveras River
River Section: Index Point D4


200 yr

Random Variables											
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,								
Levee Φ	34	4	13.00								
Levee Cohesion	100	40	40.00								
Levee γ	110	8	7.00								
Foundation Φ	27	4	13.00								
Foundation Cohesion	50	20	40.00								


Head =

8.83

Pr(f)=0

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	5.37	0.0000
Elev. 11.89	6.52	11.89	0.000000
200 yr	8.83	14.20	0.000044
Elev. 16.51	11.14	16.51	0.110781
Crest	13.45	18.82	0.669813

Cr	est	Head =	13.45	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	110	27	50	0.95		
2	30	100	110	27	50	0.93	0.000380	2.17
3	38	100	110	27	50	0.97	0.000380	2.17
4	34	60	110	27	50	0.87	0.005550	31.71
5	34	140	110	27	50	1.02	0.005550	31./1
6	34	100	102	27	50	0.90	0.001764	10.08
7	34	100	118	27	50	0.98	0.001/04	10.08
8	34	100	110	23	50	0.87	0.005776	33.00
9	34	100	110	31	50	1.03	0.003770	33.00
10	34	100	110	27	30	0.88	0.004032	23.04
11	34	100	110	27	70	1.01	0.004032	23.04
E[FS] =	0.950000			E[ln FS] =	-0.060897	Total	0.017503	100.00
Var[FS]=	0.017503							
$\sigma[FS]=$	0.132298			$\sigma[\ln FS]=$	0.138593		β =	-0.439397
V(FS) =	0.139261	-					F(z) =	0.669813
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	66.981308

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	110	27	50	1.57		
2	30	100	110	27	50	1.52	0.002704	8.49
3	38	100	110	27	50	1.62	0.002704	0.49
4	34	60	110	27	50	1.53	0.002401	7.54
5	34	140	110	27	50	1.63	0.002401	7.34
6	34	100	102	27	50	1.56	0.000156	0.49
7	34	100	118	27	50	1.58	0.000130	0.49
8	34	100	110	23	50	1.43	0.018225	57.21
9	34	100	110	31	50	1.70	0.018223	37.21
10	34	100	110	27	30	1.49	0.008372	26.28
11	34	100	110	27	70	1.67	0.008372	20.28
E[FS] =	1.570000			$E[\ln FS] =$	0.444655	Total	0.031859	100.00
Var[FS]=	0.031859							
$\sigma[FS]=$	0.178489			$\sigma[\ln FS]=$	0.113323		β =	3.923788
V(FS) =	0.113688						F(z) =	0.000044
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.004358

NO

Elev.	16.51	Head =	11.14	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	110	27	50	1.18		•
2	30	100	110	27	50	1.15	0.001024	4.41
3	38	100	110	27	50	1.22	0.001024	4.41
4	34	60	110	27	50	1.11	0.004761	20.49
5	34	140	110	27	50	1.25	0.004701	20.49
6	34	100	102	27	50	1.15	0.001764	7.59
7	34	100	118	27	50	1.24	0.001704	7.39
8	34	100	110	23	50	1.08	0.010712	46.11
9	34	100	110	31	50	1.29	0.010/12	40.11
10	34	100	110	27	30	1.11	0.004970	21.39
11	34	100	110	27	70	1.25	0.001770	
E[FS] =	1.180000			$E[\ln FS] =$	0.157241	Total	0.023232	100.00
Var[FS]= σ[FS]= V(FS) =	0.023232 0.152419 0.129169			σ[ln FS]=	0.128635		$\beta = F(z) = F(z)$	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	
Elev.	11.89	Head =	6.52	Pr(f)=0	YES			

Elev.	11.89	Head =	0.32	Pr(1)=0	TES			
=								
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	34	100	110	27	50	1.89		
2	30	100	110	27	50			
3	38	100	110	27	50			
4	34	60	110	27	50			
5	34	140	110	27	50			
6	34	100	102	27	50			
7	34	100	118	27	50			
8	34	100	110	23	50			
9	34	100	110	31	50			
10	34	100	110	27	30			
11	34	100	110	27	70			
E[FS] = Var[FS]=				E[ln FS] =		Total		
σ[FS]= V(FS) =				σ[ln FS]=			β = F(z) =	
FS req'd =				ln(FS req'd) =	0.000000		Pr(f) % =	

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Judgment Probability of Poor Performance Curve

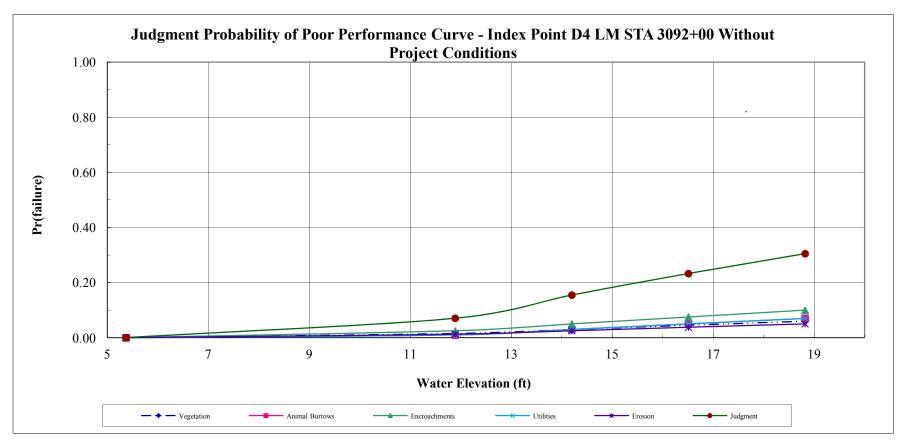
Project: Lower San Joaquin

Study Area: Right Bank Calaveras River

River Section: Index Point D4

Levee Mile: STA 3092+00

Crest Elev.: 18.82

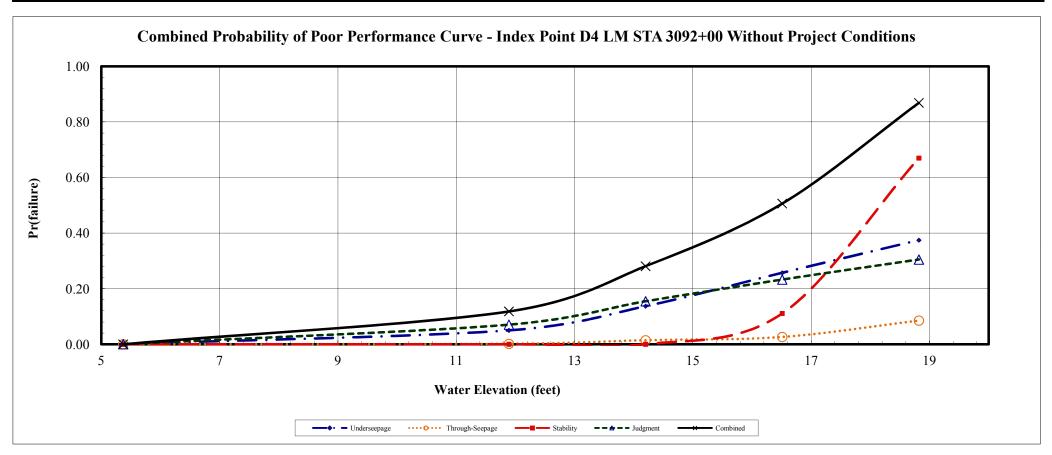

L/S Toe Elev.: 5.37

Checked By: M. Perlea, J. F.

W/S Toe Elev.: 3.18

Date: 9/25/2012

Water Surface	Veget	tation	Animal 1	Burrows	Encroa	chments	Uti	ilities	Ero	sion	Judg	ment
Elevation	Pr(f)	R	Pr(f)	Pr(f) R		R	Pr(f)	Pr(f) R		Pr(f) R		R
5.37	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
11.89	0.0150	0.9850	0.0100	0.9900	0.0250	0.9750	0.0100	0.9900	0.0125	0.9875	0.0705	0.9295
14.20	0.0300	0.9700	0.0300	0.9700	0.0500	0.9500	0.0300	0.9700	0.0250	0.9750	0.1546	0.8454
16.51	0.0450	0.9550	0.0500	0.9500	0.0750	0.9250	0.0500	0.9500	0.0375	0.9625	0.2327	0.7673
18.82	0.0600	0.9400	0.0700	0.9300	0.1000	0.9000	0.0700	0.9300	0.0500	0.9500	0.3049	0.6951



Reach-A.IP D4.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San JoaquinLevee Mile: STA 3092+00Crest Elev.: 18.82Analysis By: G. JohnsonStudy Area: Right Bank Calaveras RiverRiver Mile: XX.XXL/S Toe Elev.: 5.37Checked By: M. Perlea, J. HogRiver Section: Index Point D4Analysis Case: Without Project ConditionsW/S Toe Elev.: 3.18Date: 9/25/2012

Water Surface			Through	-Seepage	Stab	oility	Judg	ment	Combined		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	
5.37	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
11.89	0.0500	0.9500	0.0013	0.9987	0.0000	1.0000	0.0705	0.9295	0.1181	0.8819	
14.20	0.1369	0.8631	0.0143	0.9857	0.0000	1.0000	0.1546	0.8454	0.2809	0.7191	
16.51	0.2570	0.7430	0.0260	0.9740	0.1108	0.8892	0.2327	0.7673	0.5062	0.4938	
18.82	0.3744	0.6256	0.0851	0.9149	0.6698	0.3302	0.3049	0.6951	0.8686	0.1314	

Reach-A.IP D4.Calaveras River.xls

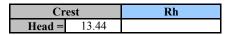
Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Determination of Random Variables For Underseepage Reliability Analysis

Project: Lower San Joaquin	Levee Mile: STA 6535+00	Crest Elev.: 17.54	Analysis By: G. Johnson
Channel: Left Bank Calaveras River	River Mile: XX.XX	L/S Toe Elev.: 4.10	Checked By: M. Perlea, J. Hogan
Basin and Reach: Index Point D5	Analysis Case Without Project Conditions	W/S Toe Elev.: -6.30	Date: 9/19/2012

		Blanket	Thickness Var	iable (z)			Aquifer Thickness Variable (d)				Hydraulic Conductivity Vairables (Kb and Kf)									
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient	
	Thickness (ft)	(MLV)	Deviation	v ai iation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	variation	of Variation	
WR1614_003B	15					6					CL	0.007	SM	0.28	40					
WR1614_003C	12					23					CL	0.007	SM	0.28	40					
WR1614_004B	21					7					CL	0.007	SM	0.28	40					
WR1614_006B	32					23					ML	0.007	SP-SM	0.4	57					
		20	0	133	45		15	10	88	67						44	0	547	20	
		20	,	133	43		13	10	88	07						77	,	347	20	
																				1 1

	Blanket Mat	erial 1 (lowest	permeability)	В	lanket Materia	12	Transformed Blanket	A	quifer Materia	d 1	A	quifer Materia	12	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	T HICKHESS (Z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR1614_003B	CL	15	0.007				15	SM	6	0.28							0.28
WR1614_003C	CL	12	0.007				12	SM	23	0.28							0.28
WR1614 004B	CL	21	0.007				21	SM	7	0.28							0.28
WR1614_006B	ML	32	0.007				32	SP-SM	23	0.4							0.4

8/19/2013 Reach-K.IP D5.Calaveras River.xls


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**

Project: Lower San Joaquin Study Area: Left Bank Calaveras River

River Section: Index Point D5

Random Variables										
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %							
Permaebility Ratio	44	9	20							
Blanket Thickness (z)	20	9	45							
Aquifer Thickness (d)	15	10	67							

Blanket Theory Analysis Inputs								
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket			
NO	7A	120	85	∞	112			

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	44	20.00	15.00	89.57	114.89	0.0518	5.33	0.27		
2	53	20.00	15.00	93.38	126.10	0.0493	5.57	0.28	0.000225	1.57
3	35	20.00	15.00	84.50	102.47	0.0552	5.06	0.25	0.000223	1.57
4	44	29.00	15.00	96.85	138.35	0.0468	5.81	0.20	0.012100	84.32
5	44	11.00	15.00	75.59	85.21	0.0610	4.66	0.42	0.012100	04.32
6	44	20.00	25.00	99.24	148.32	0.0752	5.99	0.30	0.002025	14.11
7	44	20.00	5.00	62.87	66.33	0.0233	4.16	0.21	0.002023	14.11
								Total	0.014350	100.00

 $E[\ln I] = -1.399178$

ln(I crit) = -0.223144

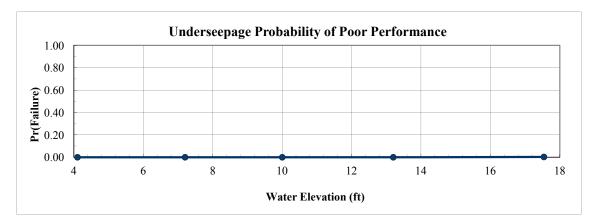
0.423897

0.430026

σ[ln I] =

E[I] =0.270000 Var[I]= 0.014350 σ[I]= 0.119791 V(I) =0.443672

0.80


Half I	Height	Rh
Head =	5 90	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	44	20.00	15.00	89.57	114.89	0.0518	2.34	0.12		
2	53	20.00	15.00	93.38	126.10	0.0493	2.44	0.12	0.000025	0.85
3	35	20.00	15.00	84.50	102.47	0.0552	2.22	0.11	0.000023	0.83
4	44	29.00	15.00	96.85	138.35	0.0468	2.55	0.09	0.002500	85.47
5	44	11.00	15.00	75.59	85.21	0.0610	2.05	0.19	0.002300	65.47
6	44	20.00	25.00	99.24	148.32	0.0752	2.63	0.13	0.000400	13.68
7	44	20.00	5.00	62.87	66.33	0.0233	1.83	0.09	0.000400	13.06
		·						Total	0.002025	100.00

E[I] =0.120000 $E[\ln I] = -2.212725$ Var[I]= 0.002925 0.054083 σ[I]= σ[ln I] = V(I) =0.450694

ln(I crit) = -0.2231440.80

Levee Mile: STA 6535+00 River Mile: XX.XX Analysis Case Without Project Conditions

200y	200yr					
Head =	9.10					

									Component		
1 (Mean)	44	20.00	15.00	89.57	114.89	0.0518	3.61	0.18			
2	53	20.00	15.00	93.38	126.10	0.0493	3.77	0.19	0.000100		
3	35	20.00	15.00	84.50	102.47	0.0552	3.43	0.17	0.000100		
4	44	29.00	15.00	96.85	138.35	0.0468	3.93	0.14	0.005625		
5	44	11.00	15.00	75.59	85.21	0.0610	3.15	0.29	0.003623	0.005625	
6	44	20.00	25.00	99.24	148.32	0.0752	4.06	0.20	0.000900		
7	44	20.00	5.00	62.87	66.33	0.0233	2.82	0.14	0.000900		
								Total	0.006625		
	rm –	0.100000			Ella II –	1 007020					

Crest Elev.: 17.54

L/S Toe Elev.: 4.10

W/S Toe Elev.: -6.30

E[I] = 0.180000 $E[\ln I] = -1.807820$ Var[I] = 0.006625 $\sigma[I] = 0.081394$ σ [ln I] = V(I) = 0.452189

0.80 Ic=

β =	-4.191287
F(z) =	0.999881
Pr(f) % =	0.011942

Analysis By: G. Johnson

Head

0.00

3.10

5.90

9.10

13.44

Analysis

Case

Toe

Toe+3ft

Half Heigh

200vr

Crest

Checked By: M. Perlea, J. Hogan

Elevation

4.10

7.20

10.00

13.20

17.54

Pr(f)

0.0000

0.0000

0.0000

0.0001

0.0028

% Variance

1.51

84.91

13.58

100.00

Date: 9/19/2012

Toe+	Rh	
Head =	3.10	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance	
1 (Mean)	44	20.00	15.00	89.57	114.89	0.0518	1.23	0.06			
2	53	20.00	15.00	93.38	126.10	0.0493	1.28	0.06	0.000000	0.00	
3	35	20.00	15.00	84.50	102.47	0.0552	1.17	0.06	0.000000		
4	44	29.00	15.00	96.85	138.35	0.0468	1.34	0.05	0.000625	86.21	
5	44	11.00	15.00	75.59	85.21	0.0610	1.07	0.10	0.000023	80.21	
6	44	20.00	25.00	99.24	148.32	0.0752	1.38	0.07	0.000100	13.79	
7	44	20.00	5.00	62.87	66.33	0.0233	0.96	0.05	0.000100	13./9	
		-				-		Total	0.000725	100.00	

 $E[\ln I] = -2.905150$

ln(I crit) = -0.223144

0.431328

ln(I crit) = -0.223144

E[I] = 0.060000Var[I] = 0.000725 $\sigma[I] = 0.026926$ V(I) = 0.448764

 σ [ln I] =

0.80 Ic=

0.428344

-6.782287 F(z) 1.000000 0.000000

-3.300747

0.99723

0.27657

-5.14556

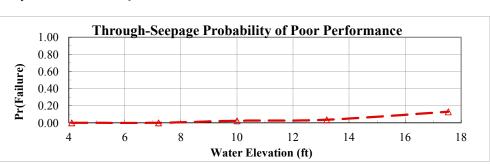
0.999998

0.000186

F(z) =

F(z) =

Pr(f) % =


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin
Study Area: Left Bank Calaveras River
River Section: Index Point D5

Random Variables										
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %							
Tractive Stress (Tc)	2.9	0.3	10.00							
Initial Porosity (n)	0.32	0.03	10.00							
Initial Permeability (Ko)	2.00E-06	6.00E-07	30.00							

Pr(f)=0	
NO	

Levee Mile: STA 6535+00
River Mile: XX.XX
Analysis Case Without Project Conditions

Crest Elev.: 17.54

Head =

L/S Toe Elev.: 4.10

W/S Toe Elev.: -6.30

200 yr

Analysis By: G. Johnson Checked By: M. Perlea, J. Hogan Date: 9/19/2012

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	4.10	0.0000
Toe+3ft	3.10	7.20	0.000000
Half Height	5.90	10.00	0.023480
200 yr	9.10	13.20	0.035575
Crest	13.44	17.54	0.128431

0.290

Horizontal Gradient (Ix) =

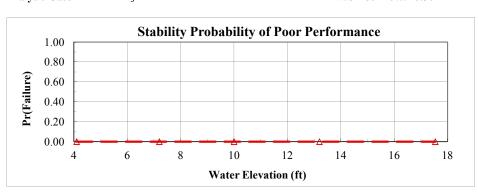
Crest	Head =	13.44	Horizontal Gradient (Ix) =	0.330

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	2.90	0.32	2.00E-06	0.42	1.27		
2	2.61	0.32	2.00E-06	0.38	1.14	0.016064	26.44
3	3.19	0.32	2.00E-06	0.46	1.39	0.010004	20.44
4	2.90	0.29	2.00E-06	0.40	1.20	0.004026	6.63
5	2.90	0.35	2.00E-06	0.44	1.33	0.004020	
6	2.90	0.32	1.40E-06	0.50	1.51	0.040655	66.93
7	2.90	0.32	2.60E-06	0.37	1.11	0.040033	00.93
E[FS] =	1.267443		$E[\ln FS] =$	0.218443	Total	0.060746	100.00
Var[FS]=	0.060746						
$\sigma[FS]=$	0.246466		$\sigma[\ln FS]=$	0.192658		β =	1.133841
V(FS) =	0.194459	_				$\mathbf{F}(\mathbf{z}) =$	0.128431
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	12.843072

Run	Tractive Stress (Tc)	Initial Porosity (n)	Permeability	Gradient	FS	Variance Component	% Variance
	` ′	• ()	(Ko)	(Ic)			
1 (Mean)	2.90	0.32	2.00E-06	0.42	1.49		
2	2.61	0.32	2.00E-06	0.38	1.34	0.022314	26.44
3	3.19	0.32	2.00E-06	0.46	1.64	0.022314	20.44
4	2.90	0.29	2.00E-06	0.40	1.42	0.005592	6.63
5	2.90	0.35	2.00E-06	0.44	1.57	0.003392	0.03
6	2.90	0.32	1.40E-06	0.50	1.79	0.056471	66.93
7	2.90	0.32	2.60E-06	0.37	1.31	0.030471	00.93
E[FS] =	1.493772		E[ln FS] =	0.382746	Total	0.084377	100.00
Var[FS]=	0.084377						
$\sigma[FS]=$	0.290478		$\sigma[\ln FS]=$	0.192658		β =	1.986664
V(FS) =	0.194459					$\mathbf{F}(\mathbf{z}) =$	0.023480
FS req'd =	1.00		ln(FS req'd) =	0.000000		$\Pr(f) \% =$	

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	2.90	0.32	2.00E-06	0.42	1.44		
2	2.61	0.32	2.00E-06	0.38	1.30	0.020801	26.44
3	3.19	0.32	2.00E-06	0.46	1.59	0.020801	20.44
4	2.90	0.29	2.00E-06	0.40	1.37	0.005213	6.63
5	2.90	0.35	2.00E-06	0.44	1.51	0.003213	0.03
6	2.90	0.32	1.40E-06	0.50	1.72	0.052644	66.93
7	2.90	0.32	2.60E-06	0.37	1.26	0.032044	00.93
E[FS] = Var[FS]=	1.442263 0.078659		$E[\ln FS] =$	0.347655	Total	0.078659	100.00
σ[FS]= V(FS) =	0.280461 0.194459		$\sigma[\ln FS]=$	0.192658		$\beta = F(z) = F(z)$	
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	

Toe+3ft		Head =	3.10				
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	2.90	0.32	2.00E-06	0.42	4.65		
2	2.61	0.32	2.00E-06	0.38	4.18	0.215973	26.44
3	3.19	0.32	2.00E-06	0.46	5.11	0.215973	26.44
4	2.90	0.29	2.00E-06	0.40	4.41	0.054129	6.63
5	2.90	0.35	2.00E-06	0.44	4.87	0.034129	0.03
6	2.90	0.32	1.40E-06	0.50	5.55	0.546588	66.93
7	2.90	0.32	2.60E-06	0.37	4.08	0.346388	00.93
E[FS] =	4.647291		E[ln FS] =	1.517726	Total	0.816690	100.0
Var[FS]=	0.816690					<u> </u>	
$\sigma[FS]=$	0.903709		$\sigma[\ln FS]=$	0.192658		β =	7.87783
V(FS) =	0.194459					$\mathbf{F}(\mathbf{z}) =$	0.00000
FS reg'd =	1.00		ln(FS reg'd) =	0.000000		Pr(f) % =	0.00000


Reach-K.IP D5.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin Study Area: Left Bank Calaveras River **River Section:** Index Point D5

Random Variables							
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,				
Levee Φ	31	4	13.00				
Levee Cohesion	150	60	40.00				
Levee γ	115	8	7.00				
Foundation Φ	31	4	13.00				
Foundation Cohesion	150	60	40.00				

Levee Mile: STA 6535+00	Crest Elev.: 17.54
River Mile: XX.XX	L/S Toe Elev.: 4.10
Analysis Case Without Project Conditions	W/S Toe Elev.: -6.30

Crest-3ft

Toe+3ft

Head =

Head =

3.10

9.10

Checked By: M. Perlea, J. Hogan Date: 9/19/2012						
Analysis Case	Head	Elevation	Pr(f)			
Toe	0.00	4.10	0.0000			
Toe+3ft	3.10	7.20	0.000000			

10.00

13.20

17.54

0.000000

0.000000

0.000011

5.90

9.10

13.44

Half Height

Crest-3ft

Crest

Analysis By: G. Johnson

Cr	est	Head =	13.44	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	31	150	115	31	150	1.86		
2	27	150	115	31	150	1.84	0.000(25	0.06
3	35	150	115	31	150	1.89	0.000625	0.86
4	31	90	115	31	150	1.82	0.001764	2.43
5	31	210	115	31	150	1.90	0.001/64	2.43
6	31	150	107	31	150	1.84	0.000650	0.90
7	31	150	123	31	150	1.89		0.90
8	31	150	115	27	150	1.74	0.014762	20.35
9	31	150	115	35	150	1.99	0.014762	
10	31	150	115	31	90	1.61	0.054756	75.47
11	31	150	115	31	210	2.08	0.034730	73.47
E[FS] =	1.860000			$E[\ln FS] =$	0.610199	Total	0.072558	100.00
Var[FS]=	0.072558							
$\sigma[FS]=$	0.269365			σ[ln FS]=	0.144069		β =	4.235458
V(FS) =		-					$\mathbf{F}(\mathbf{z}) =$	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.001140
							<u>-</u>	
Half H	Height	Head =	5.90	Pr(f)=0	YES			

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	31	150	115	31	150	2.38		
2	27	150	115	31	150			
3	35	150	115	31	150			
4	31	90	115	31	150			
5	31	210	115	31	150			
6	31	150	107	31	150			
7	31	150	123	31	150			
8	31	150	115	27	150			
9	31	150	115	35	150			
10	31	150	115	31	90			
11	31	150	115	31	210			
E[FS] =				$E[\ln FS] =$		Total		
Var[FS]=								
$\sigma[FS]=$				$\sigma[\ln FS]=$			β =	-
V(FS) =							F(z) =	=

ln(FS req'd) = 0.000000

FS req'd =

1.00

				(-)				
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	31	150	115	31	150	2.15		
2	27	150	115	31	150			
3	35	150	115	31	150			
4	31	90	115	31	150			
5	31	210	115	31	150			
6	31	150	107	31	150			
7	31	150	123	31	150			
8	31	150	115	27	150			
9	31	150	115	35	150			
10	31	150	115	31	90			
11	31	150	115	31	210			
E[FS] =				$E[\ln FS] =$		Total		
Var[FS]=								
$\sigma[FS]=$				$\sigma[\ln FS]=$			β =	=
V(FS) =		_					F(z) =	=
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	- 0.000000

YES

YES

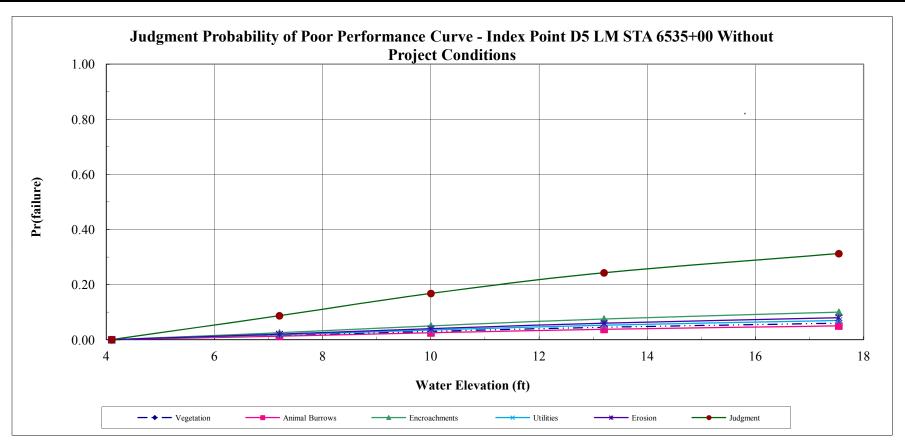
Pr(f)=0

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	31	150	115	31	150	2.60		
2	27	150	115	31	150			
3	35	150	115	31	150		1	
4	31	90	115	31	150			
5	31	210	115	31	150			
6	31	150	107	31	150			
7	31	150	123	31	150		1	
8	31	150	115	27	150			
9	31	150	115	35	150		1	
10	31	150	115	31	90			
11	31	150	115	31	210			
E[FS] =				$E[\ln FS] =$		Total		
Var[FS]=								
$\sigma[FS]=$				$\sigma[\ln FS]=$			β =	=
V(FS) =		_					$\mathbf{F}(\mathbf{z}) =$	_
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.00000

Pr(f)=0

0.000000

Pr(f) % =

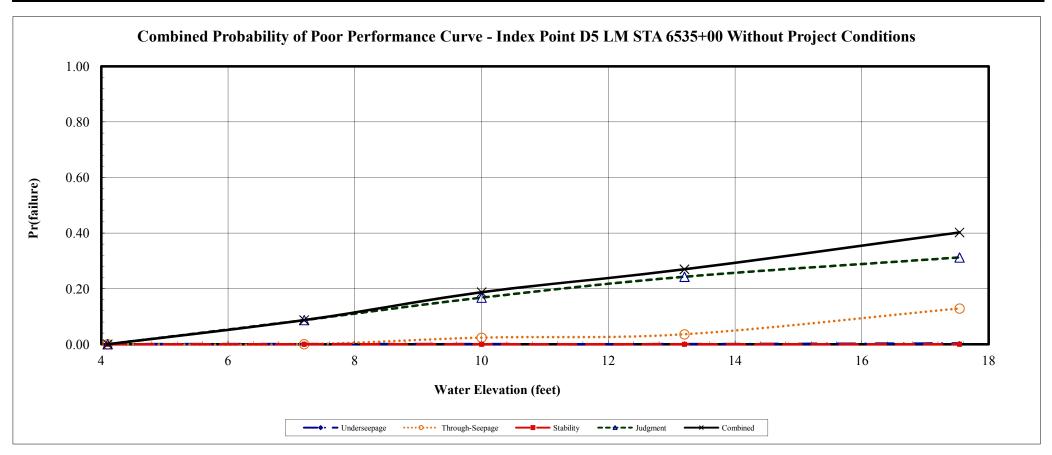

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Judgment Probability of Poor Performance Curve**

Crest Elev.: 17.54

Project: Lower San Joaquin Levee Mile: STA 6535+00 Study Area: Left Bank Calaveras River **L/S Toe Elev.:** 4.10 **River Mile:** XX.XX River Section: Index Point D5 Analysis Case: Without Project Conditions W/S Toe Elev.: -6.30

Analysis By: G. Johnson Checked By: M. Perlea, J. F. **Date:** 9/19/2012

Water Surface	Vege	tation	Animal 1	Burrows	Encroa	chments	Ut	ilities	Ero	sion	Judgment	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
4.10	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
7.20	0.0150	0.9850	0.0125	0.9875	0.0250	0.9750	0.0175	0.9825	0.0200	0.9800	0.0869	0.9131
10.00	0.0300	0.9700	0.0250	0.9750	0.0500	0.9500	0.0350	0.9650	0.0400	0.9600	0.1677	0.8323
13.20	0.0450	0.9550	0.0375	0.9625	0.0750	0.9250	0.0525	0.9475	0.0600	0.9400	0.2427	0.7573
17.54	0.0600	0.9400	0.0500	0.9500	0.1000	0.9000	0.0700	0.9300	0.0800	0.9200	0.3124	0.6876



Reach-K.IP D5.Calaveras River.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San JoaquinLevee Mile: STA 6535+00Crest Elev.: 17.54Analysis By: G. JohnsonStudy Area: Left Bank Calaveras RiverRiver Mile: XX.XXL/S Toe Elev.: 4.10Checked By: M. Perlea, J. HogRiver Section: Index Point D5Analysis Case: Without Project ConditionsW/S Toe Elev.: -6.30Date: 9/19/2012

Water Surface	Unders	1 9		-Seepage	Stal	oility	Judg	ment	Combined		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	
4.10	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
7.20	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0869	0.9131	0.0869	0.9131	
10.00	0.0000	1.0000	0.0235	0.9765	0.0000	1.0000	0.1677	0.8323	0.1872	0.8128	
13.20	0.0001	0.9999	0.0356	0.9644	0.0000	1.0000	0.2427	0.7573	0.2698	0.7302	
17.54	0.0028	0.9972	0.1284	0.8716	0.0000	1.0000	0.3124	0.6876	0.4023	0.5977	

Reach-K.IP D5.Calaveras River.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Determination of Random Variables For Underseepage Reliability Analysis

Project: Lower San Joaquin **Channel:** Delta Front Brookside Study Area

Levee Mile: Sta. 166+50

Basin and Reach: Index Point D-BS

Crest Elev.: 18.00 Analysis By: G. Johnson
L/S Toe Elev.: -3.50 Checked By: J. Hogan, M. Perlea

Datum: NAVD 88

Coordinates: State Plane (ft), N 2183200, E 6311320

River Mile: XXXX L/S Toe Elev.: -3.50 Checked By: J. Hogan, N Analysis Case Without Project Conditions W/S Toe Elev.: -7.50 Date: 3/14/2013

		Blanket	Thickness Var	iable (z)			Aquifer	Thickness Vari	iable (d)]	Hydraulic Cond	Hydraulic Conductivity Vairables (Kb and Kf)						
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient		
	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	variation	of Variation		
WR2074 013C	21					24					CL	0.0028	SP-SM	2.835	1013						
WR2074_014C	17					24					CL	0.0028	SP-SM	2.835	1013						
WR2074 011B	24					14					CL-ML	0.0283	SP-SM	2.835	100						
WR2074_015C	9					35					CL	0.0028	SM	1.134	405						
WR2074 016C	8	18	6	67	33	30	20	0	111	45	CL	0.0028	SM	1.134	405	607	402	180640	66		
WR2074_008B	19	10	O	07	33	14	20	,	111	43	CL-ML	0.0283	SP-SM	2.835	100	007	402	180040	00		
WR2074 018C	24					15					CL	0.0028	SM	1.134	405						
WR2074_012B	23					10					OH-CL	0.0028	SP-SM	2.835	1013						
WR2074 020C	21					10					OH-CL	0.0028	SP-SM	2.835	1013						

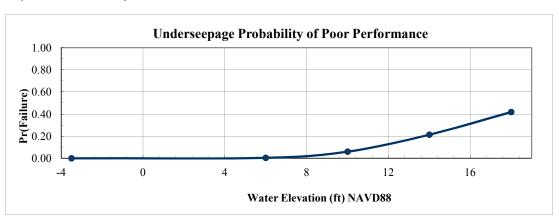
	Blanket Mat	erial 1 (lowest	permeability)	B	lanket Materia	12	Transformed Blanket	A	quifer Materia	l 1	A	quifer Materia	12	A	quifer Material	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	T HICKHESS (Z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR2074_013C	CL	21	0.0028				21	SP-SM	24	2.835							2.835
WR2074_014C	CL	17	0.0028				17	SP-SM	24	2.835							2.835
WR2074_011B	CL-ML	24	0.0283				24	SP-SM	14	2.835							2.835
WR2074 015C	CL	9	0.0028				9	SM	35	1.134							1.134
WR2074 016C	CL	8	0.0028				8	SM	30	1.134							1.134
WR2074_008B	CL-ML	19	0.0283				19	SP-SM	14	2.835							2.835
WR2074_018C	CL	24	0.0028				24	SM	15	1.134							1.134
WR2074_012B	OH-CL	23	0.0028				23	SP-SM	10	2.835							2.835
WR2074_020C	OH-CL	21	0.0028				21	SP-SM	10	2.835							2.835

IP Delta Front-Brookside.D-BS.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**

Project: Lower San Joaquin

Study Area: Delta Front Brookside Study Area


River Section: Index Point D-BS

Coordinates: State Plane (ft), N 2183200, E 6311320

	Random	Variables	
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %
Permaebility Ratio	607	402	66
Blanket Thickness (z)	18	6	33
Aquifer Thickness (d)	45		

	Blan	ket Theory	Analysis In	ıputs	
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket
NO	7A	100	138	∞	112

Levee Mile: Sta. 166+50 River Mile: XXXX Analysis Case Without Project Conditions

Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea **Date:** 3/14/2013

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	-3.50	0.0000
Elev. 6.0	9.50	6.00	0.0041
Elev. 10.0	13.50	10.00	0.0600
Elev. 14.0	17.50	14.00	0.2136
Crest	21.50	18 00	0.4180

Cre	est	Rh
Head =	21.50	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	607	18.00	20.00	98.50	467.46	0.0284	14.28	0.79		
2	1009	18.00	20.00	99.09	602.69	0.0238	15.43	0.86	0.012100	15.85
3	205	18.00	20.00	95.72	271.66	0.0396	11.56	0.64	0.012100	15.85
4	607	24.00	20.00	98.87	539.78	0.0258	14.94	0.62	0.060025	78.62
5	607	12.00	20.00	97.77	381.68	0.0324	13.29	1.11	0.000023	78.02
6	607	18.00	29.00	98.96	562.90	0.0363	15.13	0.84	0.004225	5.53
7	607	18.00	11.00	97.32	346.68	0.0189	12.81	0.71	0.004223	5.55

E[I] = 0.790000

Var[I] = 0.076350

 $\sigma[I] = 0.276315$

V(I) = 0.349766

Ic= 0.80

$E[\ln I] = -$	0.293429
----------------	----------

 $\sigma [ln I] = 0.339724$

ln(I crit) = -0.223144

β=	-0.863726
F(z) =	0.581952
Pr(f) % =	41 804848

0.076350

100.00

Total

Elev. 1	14.0	Rh
Head =	17.50	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	607	18.00	20.00	98.50	467.46	0.0284	11.62	0.65		
2	1009	18.00	20.00	99.09	602.69	0.0238	12.56	0.70	0.008100	16.66
3	205	18.00	20.00	95.72	271.66	0.0396	9.41	0.52	0.008100	10.00
4	607	24.00	20.00	98.87	539.78	0.0258	12.16	0.51	0.038025	78.20
5	607	12.00	20.00	97.77	381.68	0.0324	10.82	0.90	0.038023	78.20
6	607	18.00	29.00	98.96	562.90	0.0363	12.32	0.68	0.002500	5.14
7	607	18.00	11.00	97.32	346.68	0.0189	10.42	0.58	0.002300	5.14
								Total	0.048625	100.00

Datum: NAVD 88

Crest Elev.: 18.00

L/S Toe Elev.: -3.50

W/S Toe Elev.: -7.50

E[I] = 0.650000Var[I] = 0.048625

 $\sigma[I] = 0.220511$

V(I) = 0.339247

Ic= 0.80

E[ln I] =	-0.485250

0.330052 σ [ln I] =

ln(I crit) = -0.223144

-1.470225 F(z) =0.78644 Pr(f) % = 21.35576

Elev.	10.0	Rh
Head =	13.50	14.1

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean	n) 607	18.00	20.00	98.50	467.46	0.0284	8.96	0.50		
2	1009	18.00	20.00	99.09	602.69	0.0238	9.69	0.54	0.004900	16.05
3	205	18.00	20.00	95.72	271.66	0.0396	7.26	0.40	0.004900	10.03
4	607	24.00	20.00	98.87	539.78	0.0258	9.38	0.39	0.024025	78.71
5	607	12.00	20.00	97.77	381.68	0.0324	8.35	0.70	0.024023	70.71
6	607	18.00	29.00	98.96	562.90	0.0363	9.50	0.53	0.001600	5.24
7	607	18.00	11.00	97.32	346.68	0.0189	8.04	0.45	0.001000	3.24
	-					-		Total	0.030525	100.00

E[I] = 0.500000Var[I] = 0.030525 $E[\ln I] = -0.750748$

 $\sigma[I] = 0.174714$ V(I) = 0.349428

Ic= 0.80

 $\sigma [\ln I] = 0.339414$

ln(I crit) = -0.223144

-2.211894 0.939962 F(z) =6.00377 Pr(f) % =

Elev. 6.0	Rh
Head = 9.50	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	607	18.00	20.00	98.50	467.46	0.0284	6.31	0.35		
2	1009	18.00	20.00	99.09	602.69	0.0238	6.82	0.38	0.002500	17.33
3	205	18.00	20.00	95.72	271.66	0.0396	5.11	0.28	0.002300	17.33
4	607	24.00	20.00	98.87	539.78	0.0258	6.60	0.28	0.011025	76.43
5	607	12.00	20.00	97.77	381.68	0.0324	5.87	0.49	0.011023	70.43
6	607	18.00	29.00	98.96	562.90	0.0363	6.69	0.37	0.000900	6.24
7	607	18.00	11.00	97.32	346.68	0.0189	5.66	0.31	0.000900	0.24
						-	-	Total	0.014425	100.00

E[I] = 0.350000Var[I] = 0.014425

 $\sigma[I] = 0.120104$ V(I) = 0.343155

Ic= 0.80

 $E[\ln I] = -1.105483$

0.333650

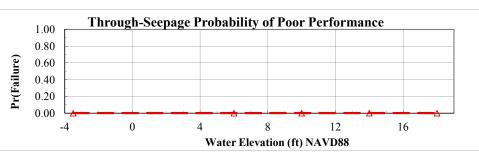
ln(I crit) = -0.223144

β	-3.313303
F(z)	= 0.995910
Pr(f) %	= 0.409050

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin

Study Area: Delta Front Brookside Study Area


River Section: Index Point D-BS

Coordinates: State Plane (ft), N 2183200, E 6311320

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,					
Tractive Stress (Tc)	25	2.5	10.00					
Initial Porosity (n)	0.5	0.05	10.00					
Initial Permeability (Ko)	1.00E-10	3.00E-11	30.00					

Pr(f)=0	
NO	

Datum: NAVD 88 Levee Mile: Sta. 166+50 Crest Elev.: 18.00 River Mile: XXXX **L/S Toe Elev.:** -3.50 Analysis Case Without Project Conditions W/S Toe Elev.: -7.50

Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea Date: 3/14/2013

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	-3.50	0.0000
Elev. 6.0	9.50	6.00	0.000000
Elev. 10.0	13.50	10.00	0.000000
Elev. 14.0	17.50	14.00	0.000000
Crest	21.50	18.00	0.000000

(Crest	Head =	21.50		Horizontal C	Gradient (Ix) = 0.410	_
				a			
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	25.00	0.50	1.00E-10	637.40	1554.62		
2	22.50	0.50	1.00E-10	573.66	1399.16	24168.580710	26.44
3	27.50	0.50	1.00E-10	701.14	1710.09	24108.380/10	20.44
4	25.00	0.45	1.00E-10	604.69	1474.85	6057.326543	6.63
5	25.00	0.55	1.00E-10	668.51	1630.50	0037.320343	0.03
6	25.00	0.50	7.00E-11	761.83	1858.13	61166 160006	66.02
7	25.00	0.50	1.30E-10	559.03	1363.50	61166.160886	66.93
E[FS] = Var[FS]=	1554.624736 91392.068138		$E[\ln FS] =$	7.330431	Total	91392.068138	100.00
σ[FS]= V(FS) =	302.311211 0.194459		$\sigma[\ln FS]=$	0.192658		$\frac{\beta}{F(z)} = \frac{\beta}{F(z)}$	
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	
Ele	ev. 10.0	Head =	13.50		Horizontal C	Gradient (Ix) = 0.260]

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	25.00	0.50	1.00E-10	637.40	2451.52		
2	22.50	0.50	1.00E-10	573.66	2206.37	60099.680730	26.44
3	27.50	0.50	1.00E-10	701.14	2696.68	00099.000730	20.44
4	25.00	0.45	1.00E-10	604.69	2325.72	15062.671477	6.63
5	25.00	0.55	1.00E-10	668.51	2571.18	13002.071477	0.03
6	25.00	0.50	7.00E-11	761.83	2930.13	152101.059836	66.93
7	25.00	0.50	1.30E-10	559.03	2150.13	132101.039830	00.93
E[FS] =	2451.523623		$E[\ln FS] =$	7.785907	Total	227263.412042	100.00
Var[FS]=	227263.412042					_	
$\sigma[FS]=$	476.721525		$\sigma[\ln FS]=$	0.192658		β =	40.413168
V(FS) =	0.194459					F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000

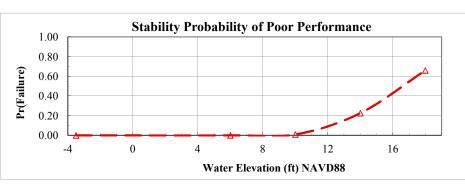
Ele	ev. 14.0	Head =	17.50		Horizontal G	radient (Ix) = 0.300	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	25.00	0.50	1.00E-10	637.40	2124.65		
2	22.50	0.50	1.00E-10	573.66	1912.19	45141.537971	26.44
3	27.50	0.50	1.00E-10	701.14	2337.12	43141.33/9/1	26.44
4	25.00	0.45	1.00E-10	604.69	2015.62	11313.739909	6.62
5	25.00	0.55	1.00E-10	668.51	2228.36	11313./39909	6.63
6	25.00	0.50	7.00E-11	761.83	2539.45	114244.796054	66.93
7	25.00	0.50	1.30E-10	559.03	1863.44	114244./90034	00.93
E[FS] = Var[FS]=	2124.653806 170700.073934		$E[\ln FS] =$	7.642806	Total	170700.073934	100.00
$\sigma[FS] = V(FS) =$	413.158655 0.194459		$\sigma[\ln FS]=$	0.192658		$\frac{\beta}{F(z)} = \frac{\beta}{F(z)}$	
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	

Elev. 6.0		Head = 9.50					
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	25.00	0.50	1.00E-10	637.40	3035.22		
2	22.50	0.50	1.00E-10	573.66	2731.70	92125.587695	26.44
3	27.50	0.50	1.00E-10	701.14	3338.74	92123.367093	20.44
4	25.00	0.45	1.00E-10	604.69	2879.46	23089.265121	6.63
5	25.00	0.55	1.00E-10	668.51	3183.37	23009.203121	0.03
6	25.00	0.50	7.00E-11	761.83	3627.78	233152.645009	66.93
7	25.00	0.50	1.30E-10	559.03	2662.06	233132.043009	00.93
E[FS] =	3035.219723		$E[\ln FS] =$	7.999481	Total	348367.497825	100.00
Var[FS]=	348367.497825					_	
$\sigma[FS]=$	590.226650		$\sigma[\ln FS]=$	0.192658		β =	41.521736
V(FS) =	0.194459	-				F(z) =	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	0.000000
V(FS) =	0.194459					F(z) =	

IP Delta Front-Brookside.D-BS.xls 8/19/2013

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4

Project: Lower San Joaquin


Study Area: Delta Front Brookside Study Area

River Section: Index Point D-BS

Coordinates: State Plane (ft), N 2183200, E 6311320

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,					
Levee Φ	30	4	13.00					
Levee Cohesion	50	20	40.00					
Levee γ	120	8	7.00					
Foundation Φ	26	3	13.00					
Foundation Cohesion	50	20	40.00					

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	-3.50	0.0000
Elev. 6.0	9.50	6.00	0.000000
Elev. 10.0	13.50	10.00	0.009394
Elev. 14.0	17.50	14.00	0.225632
Crest	21.50	18.00	0.659676

Analysis By: G. Johnson

Checked By: J. Hogan, M. Perlea

Date: 3/14/2013

Cr	est	Head =	21.50	Pr(f)=0	NO			
		Hend	21.00	11(1)	110			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	120	26	50	0.94		
2	26	50	120	26	50	0.86	0.007832	22.19
3	34	50	120	26	50	1.03	0.007832	22.19
4	30	30	120	26	50	0.90	0.024964	70.71
5	30	70	120	26	50	1.22	0.024904	70.71
6	30	50	112	26	50	0.91	0.000420	1.19
7	30	50	128	26	50	0.96	0.000420	1.17
8	30	50	120	23	50	0.91	0.001156	3.27
9	30	50	120	29	50	0.98	0.001130	3.27
10	30	50	120	26	30	0.91	0.000930	2.64
11	30	50	120	26	70	0.97	0.000930	2.04
E[FS] =				E[ln FS] =	-0.081463	Total	0.035303	100.00
Var[FS]=	0.035303							
$\sigma[FS]=$	0.187890			σ[ln FS]=	0.197929		β =	-0.411579
V(FS) =	0.199883	•					$\mathbf{F}(\mathbf{z}) =$	0.659676
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	65.967592
		-						
Elev	. 10.0	Head =	13.50	Pr(f)=0	NO			

22.19	
70.71	
1.19	
3.27	
2.64	
100.00	•
0.411579 0.659676 5.967592	
ariance	
79.39	
7.19	

Elev.	. 14.0	Head =	17.50	Pr(f)=0	NO			
Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	120	26	50	1.13		
2	26	50	120	26	50	1.02	0.008372	29.40
3	34	50	120	26	50	1.21	0.008372	28.40
4	30	30	120	26	50	1.08	0.004225	14.33
5	30	70	120	26	50	1.21	0.004223	14.55
6	30	50	112	26	50	1.13	0.002704	9.17
7	30	50	128	26	50	1.23		
8	30	50	120	23	50	1.10	0.008556	29.02
9	30	50	120	29	50	1.28	0.008330	29.02
10	30	50	120	26	30	1.08	0.005625	19.08
11	30	50	120	26	70	1.23	0.003023	19.08
E[FS] =				E[ln FS] =	0.113515	Total	0.029483	100.00
Var[FS]=	0.029483							
$\sigma[FS]=$				$\sigma[\ln FS]=$	0.150689		β =	
V(FS) =		•					F(z) =	
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	22.563248
Elev	. 6.0	Head =	9.50	Pr(f)=0	YES			

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	120	26	50	1.27		
2	26	50	120	26	50	1.12	0.012769	79.39
3	34	50	120	26	50	1.34	0.012769	/9.39
4	30	30	120	26	50	1.19	0.001156	7.19
5	30	70	120	26	50	1.26	0.001136	7.19
6	30	50	112	26	50	1.22	0.000016	0.10
7	30	50	128	26	50	1.23	0.000016	0.10
8	30	50	120	23	50	1.20	0.001722	10.71
9	30	50	120	29	50	1.29	0.001/22	10.71
10	30	50	120	26	30	1.21	0.000420	2.61
11	30	50	120	26	70	1.25	0.000420	2.01
E[FS] =	1.270000			$E[\ln FS] =$	0.234056	Total	0.016084	100.00
Var[FS]=	0.016084							
$\sigma[FS]=$	0.126821			σ[ln FS]=	0.099611		β =	2.349692
V(FS) =	0.099859						F(z) =	0.009394
FS req'd =	1.00			ln(FS req'd) =	0.000000		Pr(f) % =	0.939449

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	30	50	120	26	50	1.30		
2	26	50	120	26	50			
3	34	50	120	26	50			
4	30	30	120	26	50			
5	30	70	120	26	50			
6	30	50	112	26	50			
7	30	50	128	26	50			
8	30	50	120	23	50			
9	30	50	120	29	50			
10	30	50	120	26	30			
11	30	50	120	26	70			
E[FS] = Var[FS]=				E[ln FS] =		Total		

Var[FS]=	["]	
$\sigma[FS]=$	$\sigma[\ln FS]=$	β =
V(FS) =		F(z) =
FS req'd = 1.00	ln(FS req'd) = 0.000000	Pr(f) % = 0.000000

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Judgment Probability of Poor Performance Curve**

Project: Lower San Joaquin

Study Area: Delta Front Brookside Study Area

Levee Mile: Sta. 166+50 **River Mile:** XXXX

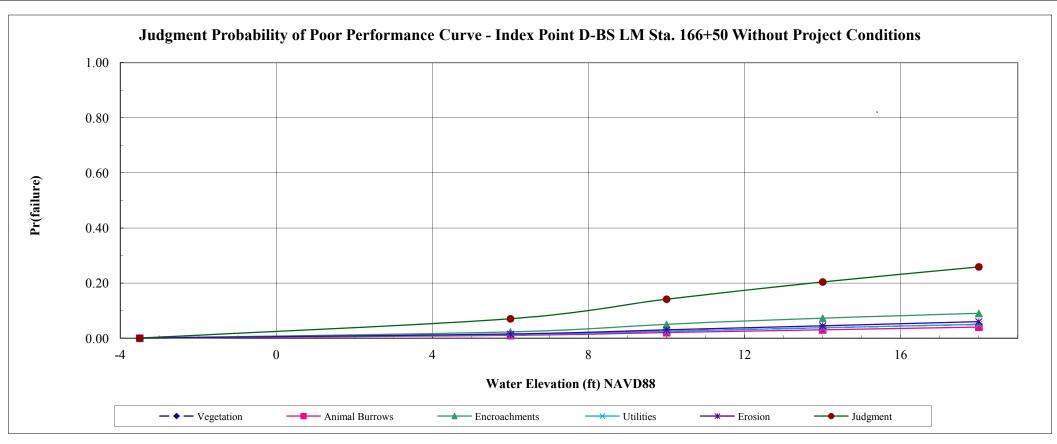
Analysis By: G. Johnson

River Section: Index Point D-BS

Checked By: J. Hogan, M. Perle

Coordinates: State Plane (ft), N 2183200, E 6311320

Analysis Case: Without Project Conditions


L/S Toe Elev.: -3.50 **W/S Toe Elev.:** -7.50

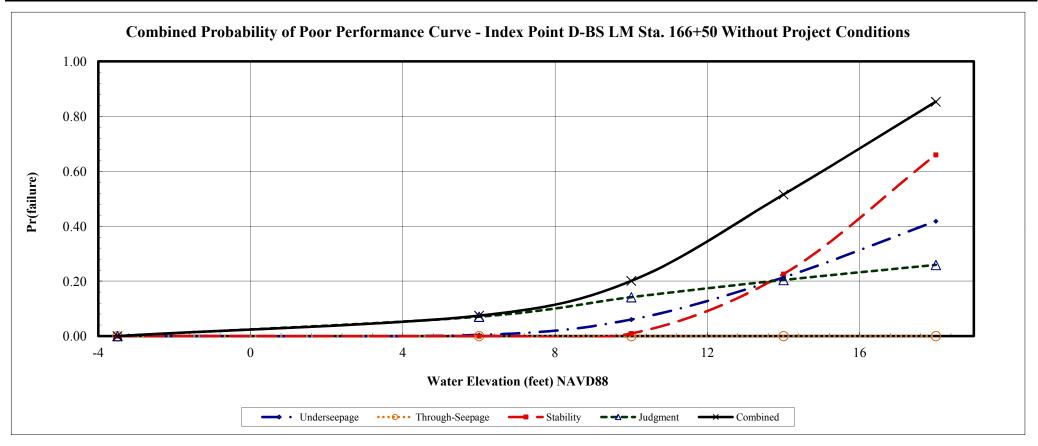
Crest Elev.: 18.00

Datum: NAVD 88

Date: 3/14/2013

Water Surface	Vege	tation	Animal	Burrows	Encroac	hments	Util	ities	Ero	sion	Judg	ment
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
-3.50	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
6.00	0.0125	0.9875	0.0100	0.9900	0.0225	0.9775	0.0125	0.9875	0.0150	0.9850	0.0705	0.9295
10.00	0.0250	0.9750	0.0200	0.9800	0.0500	0.9500	0.0250	0.9750	0.0300	0.9700	0.1415	0.8585
14.00	0.0375	0.9625	0.0300	0.9700	0.0725	0.9275	0.0375	0.9625	0.0450	0.9550	0.2040	0.7960
18.00	0.0500	0.9500	0.0400	0.9600	0.0900	0.9100	0.0500	0.9500	0.0600	0.9400	0.2589	0.7411

IP Delta Front-Brookside.D-BS.xls 8/19/2013


Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San Joaquin

Datum: NAVD 88

Study Area:Delta Front Brookside Study AreaLevee Mile:Sta. 166+50Crest Elev.:18.00Analysis By:G. JohnsonRiver Section:Index Point D-BSRiver Mile:XXXXL/S Toe Elev.:-3.50Checked By:J. Hogan, M. PerlCoordinates:State Plane (ft), N 2183200, E 6311320Analysis Case:Without Project ConditionsW/S Toe Elev.:-7.50Date:3/14/2013

Water Surface	1.8		Through-Seepage		Stab	oility	Judg	ment	Combined		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	
-3.50	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
6.00	0.0041	0.9959	0.0000	1.0000	0.0000	1.0000	0.0705	0.9295	0.0743	0.9257	
10.00	0.0600	0.9400	0.0000	1.0000	0.0094	0.9906	0.1415	0.8585	0.2006	0.7994	
14.00	0.2136	0.7864	0.0000	1.0000	0.2256	0.7744	0.2040	0.7960	0.5153	0.4847	
18.00	0.4180	0.5820	0.0000	1.0000	0.6597	0.3403	0.2589	0.7411	0.8532	0.1468	

IP Delta Front-Brookside.D-BS.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Determination of Random Variables For Underseepage Reliability Analysis

Project: Lower San Joaquin
Channel: Delta Front Lincoln Village
Basin and Reach: Index Point D-LV

Levee Mile: Sta. 162+50 River Mile: XXXX Datum: NAVD 88 Crest Elev.: 13.20

L/S Toe Elev.: 2.00 Che

Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea Date: 4/9/2013

Coordinates: State Plane (ft), N 2185939, E 6315555

Analysis Case Without Project Conditions

W/S Toe Elev.: 3.00

Date: 4

		Blanket	t Thickness Var	riable (z)			Aquifer	Thickness Var	iable (d)					Hydraulic Cond	uctivity Vairab	les (Kb and Ki	f)		
Boring #	Layer	Mean	Standard	Variation	Coefficient	Layer	Mean	Standard	Variation	Coefficient	Bla	nket	Aquifer	Material	Kf/Kb	Mean	Standard	Variation	Coefficient
	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Thickness (ft)	(MLV)	Deviation	variation	of Variation	Material	Kb (ft/day)	Material	Kf (ft/day)	KI/KD	(MLV)	Deviation	variation	of Variation
WR1608_005M	16					6					ОН	0.0284	SM	1.134	40				
WR1608_013B	14					12					ОН	0.0284	SP-SM	2.835	100				
WR1608_001B	4					28					ОН	0.0284	SP-SM	2.835	100				
WR1608_017C	6					26					ОН	0.0284	SP-SM	2.835	100				
WR1608_010B	6	12	7	60	58	32	21	0	161	42	CL	0.0028	SP-SM	2.835	1013	482	496	218512	98
WR1608_011B	22	12	/	68	36	20	21	9	101	43	CL	0.0028	SP-SM	2.835	1013	462	490	210312	90
WR1608_018C	18					24					CL	0.0028	SP-SM	2.835	1013				
													•						
											•								
											<u> </u>		_						

	Blanket Mat	erial 1 (lowest	permeability)	В	lanket Materia	12	Tuenoformed Blanket	A	quifer Materia	ıl 1	A	quifer Materia	12	A	quifer Materia	13	Transformed Aquifer
Boring #	Material	Thickness	Permeability	Material	Thickness	Permeability	Transformed Blanket Thickness (z)	Material	Thickness	Permeability	Material	Thickness	Permeability	Material	Thickness	Permeability	Horizontal Permeability
	Type	(z)	(Kb)	Type	(z)	(Kb)	T HICKHESS (Z)	Type	(d)	(Kf)	Type	(d)	(Kf)	Type	(d)	(Kf)	(kf)
WR1608_005M	ОН	16	0.0284				16	SM	6	1.134							1.134
WR1608_013B	ОН	14	0.0284				14	SP-SM	12	2.835							2.835
WR1608 001B	ОН	4	0.0284				4	SP-SM	28	2.835							2.835
WR1608_017C	ОН	6	0.0284				6	SP-SM	26	2.835							2.835
WR1608_010B	CL	6	0.0028				6	SP-SM	32	2.835							2.835
WR1608_011B	CL	22	0.0028				22	SP-SM	20	2.835							2.835
WR1608_018C	CL	18	0.0028				18	SP-SM	24	2.835							2.835

IP Delta Front-LincolnVillage.D-LV.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method **Underseepage Reliability Analysis With Blanket Theory Analysis**

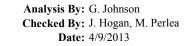
Underseepage Probability of Poor Performance

Project: Lower San Joaquin Study Area: Delta Front Lincoln Village

River Section: Index Point D-LV

Coordinates: State Plane (ft), N 2185939, E 6315555

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation, %					
Permaebility Ratio	482	472	98					
Blanket Thickness (z)	12	7	58					
Aquifer Thickness (d)	21	9	43					


Blanket Theory Analysis Inputs							
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket		
NO	7A	110	80	œ	112		

Levee Mile: Sta. 162+50 River Mile: XXXX Analysis Case Without Project Conditions

1.00 0.80 **2** 0.60 0.40 0.20 0.00

2

Datum: NAVD 88 Crest Elev.: 13.20 L/S Toe Elev.: 2.00 **W/S Toe Elev.:** 3.00

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	2.00	0.0000
Elev. 6.0	4.00	6.00	0.0115
Elev. 8.5	6.50	8.50	0.0602
Elev. 11.0	9.00	11.00	0.1443
Crest	11.20	13.20	0.2299

Aquitet 11	lickliess (u)	21	7	4	.3				
Blanket Theory Analysis Inputs									
Pr(f)=0	BTA Case No.	L1	L2	L3	γ Blanket				
NO	7A	110	80	∞	112				

Cr	Crest					
Head =	Head = 11.20					

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	482	12.00	21.00	106.49	348.52	0.0393	7.30	0.61		
2	954	12.00	21.00	108.19	490.41	0.0309	8.09	0.67	0.042025	19.43
3	10	12.00	21.00	48.16	49.29	0.1183	3.11	0.26	0.042023	19.43
4	482	19.00	21.00	107.75	438.54	0.0335	7.84	0.41	0.172225	79.63
5	482	5.00	21.00	102.00	224.97	0.0516	6.19	1.24	0.172223	79.03
6	482	12.00	30.00	107.51	416.56	0.0497	7.72	0.64	0.002025	0.94
7	482	12.00	12.00	104.02	263.45	0.0268	6.59	0.55	0.002023	0.94

E[I] = 0.610000Var[I] = 0.216275

 $\sigma[I] = 0.465054$ $\sigma [\ln I] = 0.676906$

V(I) = 0.762383

Ic= 0.80

E[ln I] =	-0.723397	
F1 X3	0.676006	

ln(I crit) = -0.223144

-1.068682 0.770056 Pr(f) % = 22.994448

0.216275

100.00

Total

Elev.	Rh	
Head =	9.00	

Water Elevation (ft) NAVD88

10

12

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	482	12.00	21.00	106.49	348.52	0.0393	5.86	0.49		
2	954	12.00	21.00	108.19	490.41	0.0309	6.50	0.54	0.027225	19.30
3	10	12.00	21.00	48.16	49.29	0.1183	2.50	0.21	0.027223	19.30
4	482	19.00	21.00	107.75	438.54	0.0335	6.30	0.33	0.112225	79.56
5	482	5.00	21.00	102.00	224.97	0.0516	4.98	1.00	0.112223	79.30
6	482	12.00	30.00	107.51	416.56	0.0497	6.21	0.52	0.001600	1.13
7	482	12.00	12.00	104.02	263.45	0.0268	5.30	0.44	0.001000	1.13

E[I] = 0.490000Var[I] = 0.141050

 $\sigma[I] = 0.375566$

V(I) = 0.766462

Ic= 0.80

[[ln I] =	-0.944419

 $\sigma [\ln I] = 0.679807$

ln(I crit) = -0.223144

β=	-1.38924
F(z) =	0.85565
Pr(f) % =	14.43449

0.141050

Total

100.00

Elev	Rh	
Head =	6.50	

Run	Kf/Kb	z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	482	12.00	21.00	106.49	348.52	0.0393	4.23	0.35		
2	954	12.00	21.00	108.19	490.41	0.0309	4.70	0.39	0.014400	19.83
3	10	12.00	21.00	48.16	49.29	0.1183	1.81	0.15	0.014400	19.83
4	482	19.00	21.00	107.75	438.54	0.0335	4.55	0.24	0.057600	79.31
5	482	5.00	21.00	102.00	224.97	0.0516	3.59	0.72	0.037000	79.31
6	482	12.00	30.00	107.51	416.56	0.0497	4.48	0.37	0.000625	0.86
7	482	12.00	12.00	104.02	263.45	0.0268	3.83	0.32	0.000023	0.80
						-		Total	0.072625	100.00

E[I] = 0.350000Var[I] = 0.072625 $E[\ln I] = -1.282587$

 $\sigma[I] = 0.269490$ V(I) = 0.769972

Ic= 0.80

0.682297

ln(I crit) = -0.223144

β=	-1.879807
F(z) =	0.939760
Pr(f) % =	6.024031
()	

Elev. 6.0	Rh
Head = 4.00	
	<u> </u>

Run	Kf/Kb	Z	d	x1	х3	\$	hx	I	Variance Component	% Variance
1 (Mean)	482	12.00	21.00	106.49	348.52	0.0393	2.61	0.22		
2	954	12.00	21.00	108.19	490.41	0.0309	2.89	0.24	0.005625	20.93
3	10	12.00	21.00	48.16	49.29	0.1183	1.11	0.09	0.003623	20.93
4	482	19.00	21.00	107.75	438.54	0.0335	2.80	0.15	0.021025	78.23
5	482	5.00	21.00	102.00	224.97	0.0516	2.21	0.44	0.021023	16.23
6	482	12.00	30.00	107.51	416.56	0.0497	2.76	0.23	0.000225	0.84
7	482	12.00	12.00	104.02	263.45	0.0268	2.36	0.20	0.000223	0.84
								Total	0.026875	100.00

E[I] = 0.220000Var[I] = 0.026875

 $\sigma[I] = 0.163936$ V(I) = 0.745163

Ic= 0.80

 $E[\ln I] = -1.734952$

0.664566

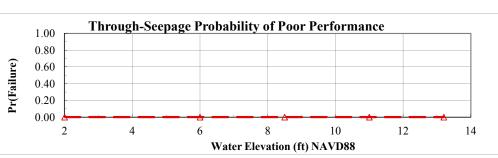
ln(I crit) = -0.223144

-2.610653 0.988543 F(z) =1.145657 Pr(f) % =

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Through-Seepage Reliability Analysis With Khilar's Extended Model

Project: Lower San Joaquin
Study Area: Delta Front Lincoln Village

River Section: Index Point D-LV


Coordinates: State Plane (ft), N 2185939, E 6315555

Random Variables								
Parameter	Expected Standard Value Deviation		Coefficient of Variation, %					
Tractive Stress (Tc)	25	2.5	10.00					
Initial Porosity (n)	0.5	0.05	10.00					
Initial Permeability (Ko)	1.00E-10	3.00E-11	30.00					

Pr(f)=	0
NO	

Levee Mile: Sta. 162+50
River Mile: XXXX
Analysis Case Without Project Conditions

Datum: NAVD 88
Crest Elev.: 13.20
L/S Toe Elev.: 2.00
W/S Toe Elev.: 3.00

Analysis By: G. Johnson Checked By: J. Hogan, M. Perlea Date: 4/9/2013						
Analysis Case	Head	Elevation	Pr(f)			

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	2.00	0.0000
Elev. 6.0	4.00	6.00	0.000000
Elev. 8.5	6.50	8.50	0.000000
Elev. 11.0	9.00	11.00	0.000000
Crest	11.20	13.20	0.000000

	Crest	Head =	11.20		Horizontal C	Gradient (Ix) = 0.160	
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	25.00	0.50	1.00E-10	637.40	3983.73		
2	22.50	0.50	1.00E-10	573.66	3585.35	158700.719428	26.44
3	27.50	0.50	1.00E-10	701.14	4382.10	138/00./19428	20.44
4	25.00	0.45	1.00E-10	604.69	3779.29	39774.866868	6.63
5	25.00	0.55	1.00E-10	668.51	4178.17	39774.800808	0.03
6	25.00	0.50	7.00E-11	761.83	4761.46	401641.861129	66.93
7	25.00	0.50	1.30E-10	559.03	3493.96	401041.801129	00.93
E[FS] = Var[FS]=	3983.725887 600117.447424		$E[\ln FS] =$	8.271414	Total	600117.447424	100.00
$\sigma[FS] = V(FS) =$	774.672478 0.194459		$\sigma[\ln FS]=$	0.192658		<u>β</u> :	
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % :	
E	lev. 8.5	Head =	6.50		Horizontal C	Gradient (Ix) = 0.100	

Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	25.00	0.50	1.00E-10	637.40	6373.96		
2	22.50	0.50	1.00E-10	573.66	5736.57	406273.841735	26.44
3	27.50	0.50	1.00E-10	701.14	7011.36	4002/3.841/33	20.44
4	25.00	0.45	1.00E-10	604.69	6046.87	101823.659182	6.63
5	25.00	0.55	1.00E-10	668.51	6685.07	101823.039182	0.03
6	25.00	0.50	7.00E-11	761.83	7618.34	1028203.164490	66.93
7	25.00	0.50	1.30E-10	559.03	5590.33	1028203.164490	00.93
E[FS] =	6373.961419		$E[\ln FS] =$	8.741418	Total	1536300.665407	100.00
Var[FS]=	1536300.665407					<u></u>	
$\sigma[FS]=$	1239.475964		$\sigma[\ln FS]=$	0.192658		β =	45.372802
V(FS) =	0.194459					$\mathbf{F}(\mathbf{z}) =$	0.000000
FS req'd =	1.00		ln(FS req'd) =	0.000000		Pr(f) % =	

	Elev. 11.0	Head =	9.00	Horizontal Gradient (Ix) = 0.140			_
Run	Tractive Stress (Tc)	Initial Porosity (n)	Initial Permeability (Ko)	Critical Gradient (Ic)	FS	Variance Component	% Variance
1 (Mean)	25.00	0.50	1.00E-10	637.40	4552.83		
2	22.50	0.50	1.00E-10	573.66	4097.55	207282.572314	26.44
3	27.50	0.50	1.00E-10	701.14	5008.11	20/282.3/2314	20.44
4	25.00	0.45	1.00E-10	604.69	4319.19	51950.846521	6.63
5	25.00	0.55	1.00E-10	668.51	4775.05	31930.840321	0.03
6	25.00	0.50	7.00E-11	761.83	5441.67	524502 451270	66.02
7	25.00	0.50	1.30E-10	559.03	3993.10	524593.451270	66.93
E[FS] = Var[FS]=			$E[\ln FS] =$	8.404946	Total	783826.870105	100.00
σ[FS]= V(FS) =	885.339974		$\sigma[\ln FS]=$	0.192658		$\beta = F(z) = F(z)$	
FS req'd =			ln(FS req'd) =	0.000000		Pr(f) % =	

radient (Ix) = 0.010	Head = 4.00 Horizontal Gradient (Ix) = 0.0				Elev. 6.0	
Variance Component	FS	Critical Gradient	•	Initial Porosity (n)	Tractive Stress (Tc)	Run
	63739.61		1.00E-10	0.50	25.00	1 (Mean)
40.625204.152.400	57365.65	573.66	1.00E-10	0.50	22.50	2
4062/384.1/3499	70113.58	701.14	1.00E-10	0.50	27.50	3
10102275 010150	60468.71	604.69	1.00E-10	0.45	25.00	4
10182365.918159	66850.67	668.51	1.00E-10	0.55	25.00	5
102020217 440005	76183.41	761.83	7.00E-11	0.50	25.00	6
102820316.449005	55903.34	559.03	1.30E-10	0.50	25.00	7
153630066.540663	Total	11.044003	E[ln FS] =		63739.614192	E[FS] =
					153630066.540663	Var[FS]=
β =		0.192658	$\sigma[\ln FS]=$		12394.759640	$\sigma[FS]=$
F(z) =				_	0.194459	V(FS) =
Pr(f) % =		0.000000	ln(FS req'd) =		1.00	FS req'd =
=	Variance Component 40627384.173499 10182365.918159 102820316.449005	FS Variance Component 63739.61 57365.65 70113.58 60468.71 66850.67 76183.41 55903.34 Total β = F(z) =	Critical (1c) FS Variance Component 637.40 63739.61 573.66 57365.65 40627384.173499 701.14 70113.58 40627384.173499 604.69 60468.71 10182365.918159 668.51 66850.67 102820316.449005 761.83 76183.41 102820316.449005 11.044003 Total 153630066.540663 0.192658 β = F(z) =	Initial Permeability (Ko) (Ic) 1.00E-10 637.40 63739.61 1.00E-10 573.66 57365.65 1.00E-10 701.14 70113.58 1.00E-10 604.69 60468.71 1.00E-10 668.51 66850.67 7.00E-11 761.83 76183.41 1.30E-10 559.03 55903.34 E[ln FS] = 11.044003 Total 153630066.540663	Initial Porosity (n)	Tractive Stress (Tc)

IP Delta Front-LincolnVillage.D-LV.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Landside Long-Term Stability Analysis With UTEXAS4


Project: Lower San Joaquin Study Area: Delta Front Lincoln Village

River Section: Index Point D-LV

Coordinates: State Plane (ft), N 2185939, E 6315555

Random Variables								
Parameter	Expected Value	Standard Deviation	Coefficient of Variation,					
Levee Φ	27	4	13.00					
Levee Cohesion	50	20	40.00					
Levee γ	120	8	7.00					
Foundation Φ	28	4	13.00					
Foundation Cohesion	25	10	40.00					

Elev. 11.0

Elev. 6.0

Analysis By:	G. Johnson
Checked By:	J. Hogan, M. Perlea
Date:	4/9/2013

Analysis Case	Head	Elevation	Pr(f)
Toe	0.00	2.00	0.0000
Elev. 6.0	4.00	6.00	0.000000
Elev. 8.5	6.50	8.50	0.000000
Elev. 11.0	9.00	11.00	0.000000
Crest	11.20	13.20	0.000000

	Crest	Head =	11.20	Pr(f)=0	NO
--	-------	--------	-------	---------	----

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	27	50	120	28	25	1.83		
2	23	50	120	28	25	1.74	0.003906	15.00
3	31	50	120	28	25	1.86	0.003900	13.00
4	27	30	120	28	25	1.79	0.001764	6.77
5	27	70	120	28	25	1.87	0.001704	0.77
6	27	50	112	28	25	1.87	0.001190	4.57
7	27	50	128	28	25	1.80	0.001190	4.37
8	27	50	120	24	25	1.62	0.018906	72.61
9	27	50	120	32	25	1.89	0.018900	72.01
10	27	50	120	28	15	1.81	0.000272	1.05
11	27	50	120	28	35	1.85	0.000272	1.03
E[FS] =	1.830000			$E[\ln FS] =$	0.600443	Total	0.026039	100.00
Var[FS]=	0.026039							
$\sigma[FS]=$	0.161366			$\sigma[\ln FS]=$	0.088007		β =	6.822640
V(FS) =	0.088178						F(z) =	0.000000

Elev. 8.	.5	Head =	6.50	Pr(f)=0	YES		
FS req'd =	1.00			ln(FS req'd) =	0.000000	Pr(f) % =	0.000
V(FS) =	0.088178	178				F(z) =	0.000
0[F5]-	0.101300	300		o[m rs]–	0.088007	р –	0.8220

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	27	50	120	28	25	2.04		
2	23	50	120	28	25			
3	31	50	120	28	25			
4	27	30	120	28	25			
5	27	70	120	28	25			
6	27	50	112	28	25			
7	27	50	128	28	25			
8	27	50	120	24	25			
9	27	50	120	32	25			
10	27	50	120	28	15			
11	27	50	120	28	35			
E[FS] =				$E[\ln FS] =$		Total		

Var[FS]=			
$\sigma[FS]=$		σ[ln FS]=	
V(FS) =			
FS req'd =	1.00	ln(FS req'd) =	0.000000

β =	
F(z) =	
Pr(f) % =	0.000000

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	27	50	120	28	25	1.94		
2	23	50	120	28	25			
3	31	50	120	28	25			
4	27	30	120	28	25			
5	27	70	120	28	25			
6	27	50	112	28	25			
7	27	50	128	28	25			
8	27	50	120	24	25			
9	27	50	120	32	25			
10	27	50	120	28	15			
11	27	50	120	28	35			

YES

Pr(f)=0

Pr(f)=0

E[FS] =			$E[\ln FS] =$		Total
Var[FS]=					
$\sigma[FS]=$			$\sigma[\ln FS]=$		
V(FS) =					
FS req'd =	1.00		ln(FS req'd) =	0.000000	

4.00

Head =

9.00

Head =

Run	Levee Φ	Levee Cohesion	Levee γ	Foundation Φ	Foundation Cohesion	FS	Variance Component	% Variance
1 (Mean)	27	50	120	28	25	2.13		
2	23	50	120	28	25			
3	31	50	120	28	25			
4	27	30	120	28	25			
5	27	70	120	28	25			
6	27	50	112	28	25			
7	27	50	128	28	25			
8	27	50	120	24	25			
9	27	50	120	32	25			
10	27	50	120	28	15			
11	27	50	120	28	35			
E[FS] =				$E[\ln FS] =$		Total		

YES

E[FS] =		$E[\ln FS] =$	
Var[FS]=			
$\sigma[FS]=$		$\sigma[\ln FS]=$	
V(FS) =		_	
S req'd =	1.00	ln(FS req'd) =	0.000000

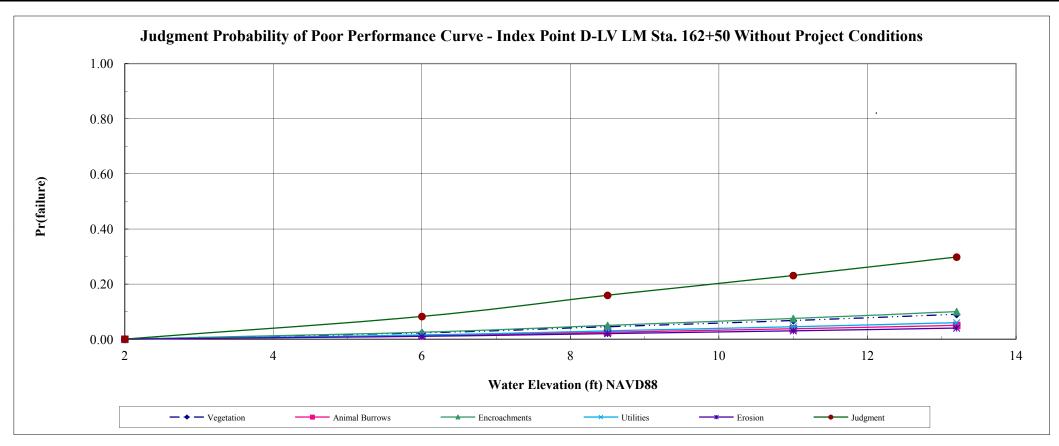
F(z) =

Pr(f) % =

0.000000

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Judgment Probability of Poor Performance Curve

Project: Lower San Joaquin


Study Area: Delta Front Lincoln Village

Levee Mile: Sta. 162+50

Crest Elev.: 13.20

Study Area: Delta Front Lincoln VillageLevee Mile: Sta. 162+50Crest Elev.: 13.20Analysis By: G. JohnsonRiver Section: Index Point D-LVRiver Mile: XXXXL/S Toe Elev.: 2.00Checked By: J. Hogan, M. PerlCoordinates: State Plane (ft), N 2185939, E 6315555Analysis Case: Without Project ConditionsW/S Toe Elev.: 3.00Date: 4/9/2013

Water Surface	Water Surface Vegetation		Animal	Animal Burrows Encroachments		Utilities		Erosion		Judgment		
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
2.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
6.00	0.0225	0.9775	0.0125	0.9875	0.0250	0.9750	0.0150	0.9850	0.0100	0.9900	0.0822	0.9178
8.50	0.0450	0.9550	0.0250	0.9750	0.0500	0.9500	0.0300	0.9700	0.0200	0.9800	0.1591	0.8409
11.00	0.0675	0.9325	0.0375	0.9625	0.0750	0.9250	0.0450	0.9550	0.0300	0.9700	0.2309	0.7691
13.20	0.0900	0.9100	0.0500	0.9500	0.1000	0.9000	0.0600	0.9400	0.0400	0.9600	0.2979	0.7021

IP Delta Front-LincolnVillage.D-LV.xls

Geotechnical Risk and Uncertainty Analysis - Taylor Series Method Combined Probability of Poor Performance Curve

Project: Lower San Joaquin

Datum: NAVD 88

Study Area: Delta Front Lincoln Village

Levee Mile: Sta. 162+50

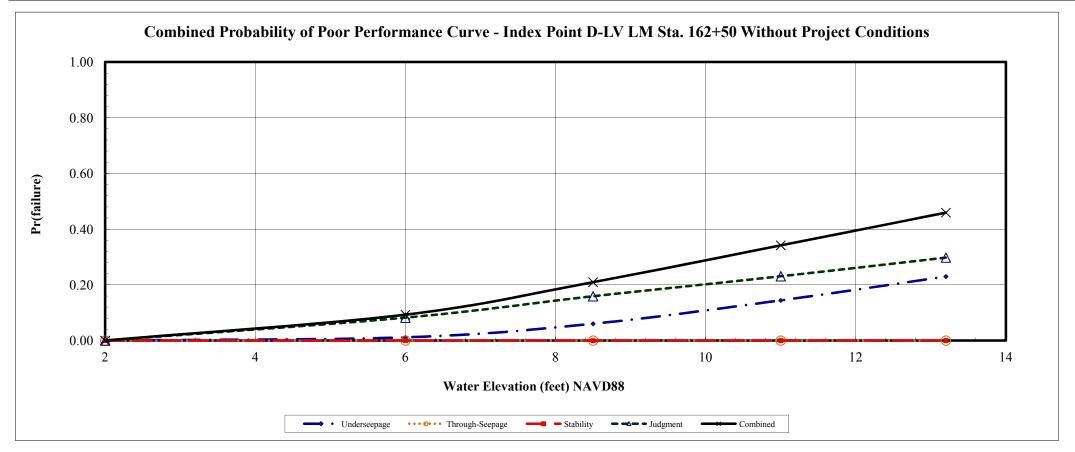
River Section: Index Point D-LV

River Mile: XXXX

Coordinates: State Plane (ft), N 2185939, E 6315555

Analysis Case: Without Project Conditions

Crest Elev.: 13.20


L/S Toe Elev.: 2.00

Checked By: J. Hogan, M. Perle

W/S Toe Elev.: 3.00

Date: 4/9/2013

Water Surface	Underseepage		Through-Seepage		Stability		Judgment		Combined	
Elevation	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R	Pr(f)	R
2.00	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
6.00	0.0115	0.9885	0.0000	1.0000	0.0000	1.0000	0.0822	0.9178	0.0928	0.9072
8.50	0.0602	0.9398	0.0000	1.0000	0.0000	1.0000	0.1591	0.8409	0.2098	0.7902
11.00	0.1443	0.8557	0.0000	1.0000	0.0000	1.0000	0.2309	0.7691	0.3419	0.6581
13.20	0.2299	0.7701	0.0000	1.0000	0.0000	1.0000	0.2979	0.7021	0.4593	0.5407

IP Delta Front-LincolnVillage.D-LV.xls

LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY

GEOTECHNICAL REPORT

ENCLOSURE E4 SEISMIC AND LIQUEFACTION ANALYSES

LOWER SAN JOAQUIN LEVEE Seismic Vulnerability Evaluation

1. <u>Introduction and Scope</u>

The purpose of this study was to assess the vulnerability to seismic action of the levees in the Lower San Joaquin Levee System. Some of the levees in the northern portion of the system are frequently hydraulically loaded and, therefore, their severe damaging due to a strong earthquake in vicinity may induce immediately loss of flood protection capability.

The vulnerability evaluation considered only the significant loss of strength of cohesionless or low plasticity soils through liquefaction due to dynamic loading. The liquefaction and seismic evaluation was focused on examining potential layers that could experience liquefaction and their associated impact to global slope stability of the levee. The computed factors of safety against slope stability refer exclusively to failure surfaces potentially affected by liquefaction; in some cases the static factor of safety can be lower than the computed factor of safety affected by liquefaction. The static stability, which can be controlled by the presence of weak cohesive soils was not within the scope of this analysis, even if the strength of these materials may be affected by the seismic action.

In most of the cases/segments it was determined that liquefaction was primarily isolated to the deeper foundation layers and that it had minimal effect on the global stability of the levee and foundation. In four of the examined cases only, three in RD 17 Unit and one in RD 404 Unit, the liquefiable layer was shallow enough such that it could pose a significant effect on the stability of the levee (list the locations).

Even though global instability resulting from liquefaction does not appear to be a primary concern when the layer is located at greater depths, there could be other seismic performance concerns given the geologic nature of the area and the potential for differential settlement. The foundations for many of the segments consist of numerous geomorphologic channels that run orthogonal to the levee axis. As a result there are variable foundation conditions along the axis of the levee. The variability of the foundation coupled with the potential for transverse cracking due to liquefaction and differential settlement is a concern and should be carefully considered in the alternatives evaluation.

2. Study Area and Sites Seismicity

The main units of the Lower San Joaquin Levee System are presented on Figure 1.1 and will be separately evaluated from the seismic vulnerability point of view:

- RD (River District) 17 Southern part
- RD 17 Northern part
- RD 404
- Calaveras River

- Stockton Diverting Canal
- Mormon Slough
- Brookside
- Lincoln Village

The USGS Interactive Deaggregations (Beta) accessible at the following URL address: https://geohazards.usgs.gov/deaggint/2008/ was used for the seismicity assessment at locations along the levee. The following parameters were used as input:

- Location, through latitude and longitude; the coordinates corresponding to each unit were used in evaluations.
- Exceedance probability of the seismic event within a given exposure period of time. The 20% exceedance probability in 50 years was selected, which corresponds approximately to the average return period (ARP) of 224 years. This was considered an appropriate approximation of the 200-year ARP recommended by California Department of Water Resources (DWR) for urban levee seismic evaluation (ULE).
- Spectral period. For liquefaction triggering evaluation the Peak Ground Acceleration (PGA) was the main desired result of the seismicity assessment.
- Shear wave velocity of the upper 30 m of the site (Vs_{30}) .

Shear wave velocity measurements were not available; therefore, correlation with N (SPT) was used to estimate the median Vs_{30} ; for each unit N_{60} was evaluated based on available deep borings, as shown in Appendix B.

 Vs_{30} was evaluated through correlations with N_{60} available in literature, as shown in Figure 2.1 [Figures 23 for large data base of all types of soils and Figure 24 for granular soils, from USACE WES (1987)]. Based on these graphs, the data in Table 2-1 were suggested for use in this study and other evaluations.

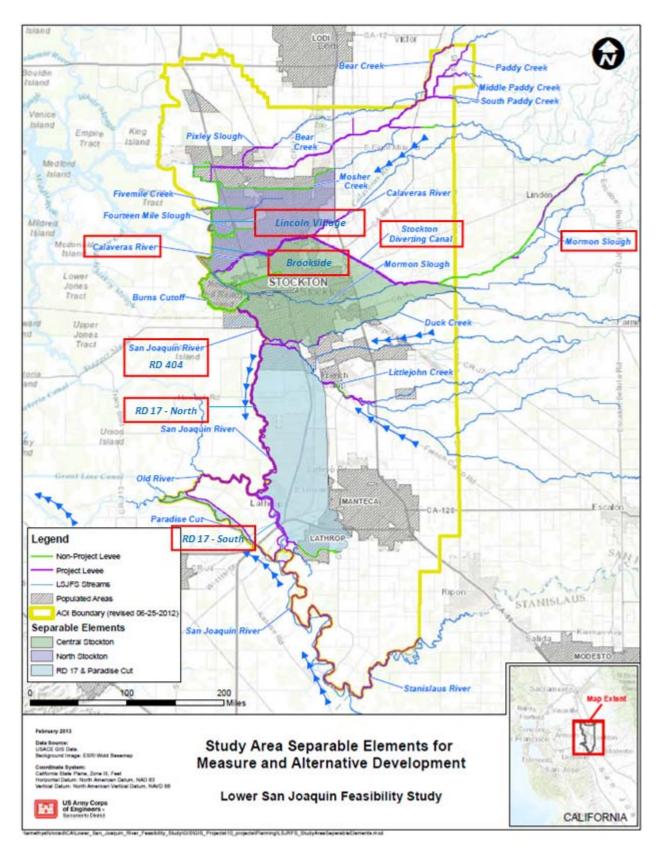


Figure 1.1. Main units of the Lower San Joaquin Levee System.

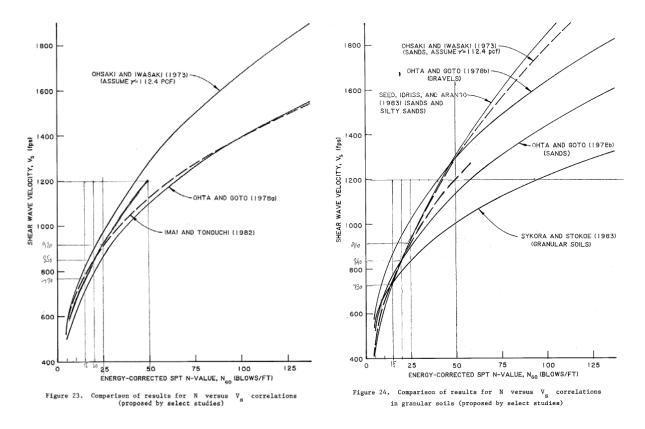


Figure 2.1. Excerpt of USACE WES (1987): Average curves were considered that pass through the point represented by $N_{60} = 50$ and $V_{80} = 1200$ fps, which is the boundary between stiff soil and soft rock in USGS classification.

Table 2-1. Suggested Correlation between Vs and N₆₀

Mean N ₆₀	Vs (m/s)	Mean N ₆₀	Vs (m/s)	Mean N ₆₀	Vs (m/s)	Mean N ₆₀	Vs (m/s)
<u>< 7</u>	180*	15	230	23	270	32.5	308
8	181	16	235	24	275	35	317
9	189	17	241	25	279	37.5	326
10	197	18	246	26	283	40	334
11	204	19	251	27	287	42.5	342
12	211	20	256	28	291	45	349
13	217	21	261	29	295	50	364
14	224	22	266	30	299	100	474

Note: * The minimum Vs accepted by the USGS 2008 Interactive Deaggregations web program is 180 m/s, which corresponds to the boundary between stiff and soft soils (USGS Site Classes D and E).

In what follows the parameters for each units are listed, as well as the corresponding site seismicity parameters obtained from the USGS web site. Details on parameter evaluation are included in Appendix B.

2.1. **RD 17 – Southern part** (Stations 1480 to 1840)

Mid-point coordinates: latitude 37.809, longitude -121.321

Harmonic mean SPT – N_{60} : 21.6

Evaluated Vs₃₀: 265 m/s (detail in Appendix B)

Peak Ground Acceleration: 0.21g Moment magnitude: 6.4

2.2. **RD 17 – Northern part** (Stations 1000 to 1480)

Mid-point coordinates: latitude 37.890, longitude -121.329

Harmonic mean SPT – N_{60} : 18.9

Evaluated Vs₃₀: 252 m/s (detail in Appendix B)

Peak Ground Acceleration: 0.225g Moment magnitude: 6.4

2.3. **RD 404**

Mid-point coordinates: latitude 37.937, longitude -121.334

Harmonic mean SPT – N_{60} : 22.0

Evaluated Vs₃₀: 267 m/s (detail in Appendix B)

Peak Ground Acceleration: 0.20g Moment magnitude: 6.4

2.4. Calaveras River

Western end coordinates: latitude 37.966, longitude -121.370

No deep boring was available; N₆₀ and Vs₃₀ were assumed as for RD 404.

Peak Ground Acceleration: 0.20g Moment magnitude: 6.4

2.5. Stockton Diverting Canal and Mormon Slough

Western end coordinates: latitude 37.994, longitude -121.280 Eastern end coordinates: latitude 37.961, longitude -121.165

No deep boring was available; N₆₀ and Vs₃₀ were assumed as for RD 404.

Peak Ground Acceleration: 0.18g (0.165g for Mormon Slough)

Moment magnitude: 6.4

2.6. Brookside and Lincoln Village

Mid-point coordinates: latitude 38.014, longitude -121.370

No deep boring was available; N₆₀ and Vs₃₀ were assumed as for RD 404.

Peak Ground Acceleration: 0.20g Moment magnitude: 6.4

3. First Screening.

It would have been no need for seismic evaluation if PGA < 0.1g; however, with the estimated PGA = 0.165g to 0.225g we should proceed with liquefaction assessment on all sections.

4. Water Level Conditions.

Two water elevations are of interest:

- Level of ground water when SPT's were done;
- Coincident water level with seismic action.

They were not readily available. For each zone the water level during investigation was approximated from piezometer readings at the same time of the year (sometimes in a different year than when the investigation had been done).

When information was available, the coincident water level was assumed the maximum occurred in a year without flood event; if this was not found, the conservative assumption of water at the ground surface was considered (i.e. unsaturated material in levee and saturated material – therefore potentially liquefiable – in the entire foundation soil).

The influence on the liquefaction assessment results of the ground water level during field testing is relatively minor. However, the assumed coincident water elevation (CWE) is of huge impact:

- Primarily because of relative location of some potentially liquefiable layers with respect to CWE: if these layers are above CWE they should be considered non-saturated and, therefore, non-liquefiable.
- Secondly, but not much less important, CWE has a major impact on the ratio between the total vertical stress and the effective vertical stress at the depth analyzed for liquefaction. The cyclic stress ratio (CSR) varies in direct proportionality with this ratio, which roughly can vary between 1.0 and 2.0. Consequently CSR may vary between simple and double depending on CWE and FS_{liq} may vary between a maximum value when CWE is exactly at the depth of evaluation and half of that when CWE is at the ground surface.

Taking into account the major impact of CWE selection, there is a low confidence in the calculated FS_{liq} when CWE is not well defined. The (believed) conservative assumption of CWE at the ground surface may be over-conservative. This aspect is detailed based on some actual evaluations in Appendix E.

5. <u>Liquefaction Triggering Analysis</u>.

The liquefaction triggering analysis was based on the procedure described in the summary report of the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, published as part of the Journal of Geotechnical and Geoenvironmental Engineering, dated October 2001 (Youd et al., October 2001). This is also the procedure recommended by the draft ETL 1110-2-580.

An Excel spreadsheet developed by the Geotechnical Branch, USACE Sacramento District, was used in this analysis. The corresponding procedure calculates the vertical stresses induced by the levee surcharge and takes them into account in normalization of N-data and, consequently, in calculation of the cyclic resistance ratio, CRR. However, these additional stresses were not included in the calculation of CSR, the cyclic stress ratio; therefore the calculated factor of safety against liquefaction corresponds to the free field, without the influence of the surcharge, for compliance with how PGA was defined. It is conservative to assume that if liquefaction would occur in free field it will also occur in the immediate vicinity of the levee and underneath it.

It was postulated that the materials labeled with soil type CL (based on either laboratory tests or visual examination by the field geologist) are not liquefiable. Although theoretically some cohesive soils, including some CL materials, may be susceptible to liquefaction, this possibility was not taken into account based on the relatively low seismicity of the zone. However, where Atterberg Limits were available, CL or ML materials were considered liquefiable when PI < 10.

6. Seismic Vulnerability Evaluation.

The results of seismic evaluations are presented in appendices as follows:

Appendix A shows primarily the location of the evaluated borings:

```
Plate 1 - RD 17 – Southern part (Stations 1480 to 1840):
                                                             8 borings
Plate 2 - RD 17 – Northern part (Stations 1000 to 1480):
                                                            11 borings
Plate 3 - RD 404:
                                                            10 borings
                                                             9 borings
Plate 4 - Calaveras River:
                                                             5 borings
       - Stockton Diverting Canal:
       - Mormon Slough:
                                                             2 borings
Plate 5 - Brookside:
                                                             9 borings
                                                            14 borings
Plate 6 - Lincoln Village:
                             Total analyzed borings:
                                                            68
```

Appendix B includes copies of Excel files used for the evaluation of harmonic mean N_{60} , correlated with the average shear wave velocity, at all locations were borings with SPT deeper than 100 feet were available:

```
RD 17 – Northern Part: average Vs<sub>30</sub> based on 5 borings RD 17 – Southern Part: average Vs<sub>30</sub> based on 4 borings RD 404: average Vs<sub>30</sub> based on 1 boring
```

The results of the liquefaction triggering evaluation are presented in Appendix C. Each plot of the factor of safety against liquefaction with depth is followed by the corresponding Excel spreadsheet. Only the first spreadsheet (for boring WR0017_063B) includes the bottom notes; however, they apply to all spreadsheets. A summary of the results follows. In the tables corresponding to each unit, the locations where liquefaction was found probable under the assumption of design earthquake occurrence had the boring number shown in bold on shaded background and the corresponding boring log was included in Appendix D.

6.1. **RD 17 – Southern part** (Stations 1480 to 1840)

Station	Boring	Figure	CWE	Comments
1506+19	WR0017_063B	C-1	8.0	Mostly clayey soils in the upper 40 feet of foundation. No SPT data for thin cohesionless layers. Marginally liquefiable soil 40+ feet below the levee base.
1553+82	WR0017_069B (see App. D)	C-2	8.7	One test showed potentially liquefiable soil; both above and below that, the soil was found marginally liquefiable.
1595+33	WR0017_074B (see App. D)	C-3	7.7	Liquefaction predicted at two depths and marginally liquefiable soil above, below, and inbetween. A 12-foot layer is clearly liquefiable.
1642+75	WR0017_080B	C-4	7.5	No liquefaction predicted. Marginally liquefiable soil immediately below CWE.
1684+57	WR0017_085B	C-5	7.4	No liquefaction predicted.
1724+68	WR0017_090B	C-6	7.1	No liquefaction predicted.
1784+83	WR0017_096B	C-7	6.8	No liquefaction predicted. Marginally liquefiable soil immediately below CWE.
1825+94	WR0017_102B	C-8	6.8	No liquefaction predicted. Marginally liquefiable soil between elevations -15 and -25 and at about elevation -31. See Appendix E for the effect of CWE selection.

6.2. **RD 17 – Northern part** (Stations 1000 to 1480)

Station	Boring	Figure	CWE	Comments		
1007+42	WR0017_002B	C-9	2.8	Mostly clayey soils in the upper 50 feet of foundation. Thin marginally liquefiable SM layer at approximately elevation -31.0. See Appendix E for the effect of CWE selection		
1048+79	WR0017_007B	C-10	2.8	No liquefaction predicted. See Appendix E for the effect of CWE selection.		

Station	Boring	Figure	CWE	Comments			
1099+90	WR0017_013B	C-11	3.6	No liquefaction predicted. Mostly clayey soils in the upper 50 feet of foundation.			
1151+06	WR0017_019B (see App. D)	C-12	4.4 A liquefiable layer was detected between elevations +1 and -2.				
1191+43	WR0017_024B (see App. D)	C-13	4.6	Two liquefiable layers were detected: one at about elevation -3.0 and another one between elevations -13.2 and -20.3.			
1231+82	WR0017_029B	C-14	4.8	No liquefaction predicted. Marginally liquefiable SM soils were detected through tests at elevations +1 and -4.			
1292+29	WR0017_036B	C-15	4.8	No liquefaction predicted. Marginally liquefiable SM soils were detected through tests at elevations -26 and -31.			
1330+01	WR0017_041B	C-16	5.0	No liquefaction predicted			
1377+73	WR0017_047B	C-17	5.3	No liquefaction predicted. Marginally liquefiable soils were detected through tests at elevations +1, -20 and -24. See Appendix E for the effect of CWE selection.			
1416+93	WR0017_052B	C-18	5.5	No liquefaction predicted.			
1455+64	WR0017_057B	C-19	7.0	No liquefaction predicted. Marginally liquefiable soils were detected through tests at elevations +7 and -8.			

6.3. **RD 404**

Station	Boring	Figure	CWE	Comments			
1003+04	WR0404_030B	C-20	0.0	No liquefaction predicted. Clayey soils with PI of 10 or greater were detected in the upper 44 feet of foundation.			
1201+00	WR0404_040B	C-21	4.1	No liquefaction predicted.			
1175+01	WR0404_041B (see App. D)	C-22	4.1	Liquefiable SW-SM layer between elevations +1.3 and -4.7 was detected through one test at elevation -1.1.			
1139+55	WR0404_044B	C-23	0.0	No liquefaction predicted.			
1112+49	WR0404_047B	C-24	0.0	No liquefaction predicted. One marginally liquefiable spot was found at elevation -47, too deep for affecting the levee.			
1108+07	WR0404_048B	C-25	0.0	No liquefaction predicted. Mostly clayey soils or ML with PI = 10 were detected in the upper 60 feet of foundation.			

Station	Boring	Figure	CWE	Comments			
1087+77	WR0404_053B	C-26	0.0	No liquefaction predicted.			
1070+28	WR0404_056B	C-27	0.0	No liquefaction predicted. A shallow marginally liquefiable SM/ML layer was detected at the approximate elevation -2.			
1042+70	WR0404_059B	C-28	0.0	No liquefaction predicted.			
1028+00	WR0404_060B	C-29	0.0	No liquefaction predicted.			

From the above table it is evident the levees in the unit RD 404 have a low seismic vulnerability. Only one of the ten analyzed borings predicted liquefaction occurrence (10%). The ten analyzed borings had sufficient SPT information (especially with reference to type of sampler and delivered energy efficiency).

Recently URS performed a similar study on the levees of RD 404, analyzing 22 borings. Of these 22 borings, 17 (77%) predicted liquefaction. In general, the results obtained by the Corps and URS on the same borings were similar. Most of them did not predict liquefaction; however, in two cases in which the Corps did not consider liquefaction because the material was CL, URS found that the PI was less than 10 so liquefaction was determined to be possible. The big difference was that URS analyzed several borings that the Corps did not have access to; including, where multiple tests (up to 6 in some borings) with predicted liquefaction: Borings 1-B2, 1-B4, 1-B5, 1-B6, 1-B8, 1-B9, 1-B12, WR0404_003B, _015B, _018B, _023B, _032B, _053B, and _061B.

The length of levees (on each side of the San Joaquin River) of RD 404 is about 22,000 feet; therefore, with ten analyzed borings the average distance between them was 2200 feet (actually the distance between borings was up to 4200 feet). Such "spot checking" may not detect problem zones if they are of local extent. It should be noted that all borings the Corps did not have access to but that URS analyzed showed liquefaction potential. They may have included incomplete characterization and conservative assumptions (e.g. with respect to energy efficiency).

6.4. Calaveras River

Station	Boring	Figure	CWE	Comments			
				No liquefaction predicted.			
6505+30	WR1614_017B	C-30	3.4*	A blowcount of zero at elevation -35 indicated			
				$FS_{liq} = 0.53$, but it was in soil with PI = 61.			
3072+94	WR2074_016B	C-31	-1.0	No liquefaction predicted.			
3087+75	WCNBCR_010B	C-32	-1.0	No liquefaction predicted.			
6565+02	WR1614_018B	C-33	1.4*	An SP-SM layer between elevations -18.4 and			
0303+02	(see App. D)	C-33	1.4"	-23 was determined as liquefiable (FS _{liq} = 0.4).			
3130+53	WCNBCR_011B	C-34	-1.0	No liquefaction predicted.			
				No liquefaction predicted.			
3156+02	WCNBCR_012B	C-35	-1.0	Marginally liquefiable material (FS _{liq} = 1.08)			
	_			was found at elevation -14.			

Station	Boring	Figure	CWE	Comments	
6669+40	6669+40 WR1614_019B (see App. D)		4.0	Liquefiable material (FS _{liq} = 0.6) was found at elevation -12 (layer -10.8 to -16.0).	
3238+00	WCNBCR_013B	C-37	-1.0	No liquefaction predicted.	
6762+29	WCSBCR 004B	C-38	3.0	No liquefaction predicted.	

Note: * CWE could not be evaluated and was conservatively considered at the ground surface elevation.

6.5. Stockton Diverting Canal and Mormon Slough

Station	Boring	Figure	CWE	Comments
811+98	98 WCSBDC 001B		24.8*	No liquefaction predicted.
883+93	WCSBDC_005B	C-40	24.2*	No liquefaction predicted.
940+82	WCSBDC_008B	C-41	27.4*	No liquefaction predicted.
978+49	WCSBDC_013B	C-42	33.0*	No liquefaction predicted.
1029+16	WCSBDC_014B	C-43	35.0*	No liquefaction predicted.
2527+95	WCSBMS_003B	C-44	44.0*	No liquefaction predicted.
2583+28	WCSBMS_002B	C-45	51.4*	No liquefaction predicted.

Note: * CWE could not be evaluated and was conservatively considered at the ground surface elevation or slightly (less than 1 foot) below.

From the above table it is evident that liquefaction was not predicted even with a very conservative CWE assumed. Therefore, it was not necessary to evaluate a more credible CWE along Stockton Diverting Canal and Mormon Slough.

6.6. **Brookside**

Station	Boring	Figure	CWE	Comments		
117+51	WR2074_003M (see App. D)	C-46	3.2	There are two liquefiable layers: between elevations -15.5 and -18 and between elevations -21 and -23 (the deeper layer was disregarded).		
118+02	WR2074_009B (see App. D)	C-47	1.1 There is one liquefiable layer between elevation -22.4 and -31.9.			
133+44	WR2074_010B	C-48	-0.6*	No liquefaction predicted.		
133+82	WR2074_007B (see App. D)	C-49	5.5*	There are two 2-foot liquefiable layers: between elevations -9.8 and -11.8 and between elevations -20.8 and -22.8 (FS _{liq} = 0.99 in both cases).		
160+48	WR2074_011B	C-50	0.6*	No liquefaction predicted.		
185+70	WR2074_008B	C-51	1.1	No liquefaction predicted. Marginal liquefiability (FS $_{liq}$ = 1.23) was detected at elevation -28.5.		
217+77	WR2074_012B	C-52	0.9*	No liquefaction predicted.		

Station	Boring	Figure	CWE	Comments		
247+31	WR2074_013B	C-53	-1.1*	No liquefaction predicted.		
248+41	WR2074_005M	C-54	3.2	No liquefaction predicted. Marginal liquefiability (FS _{liq} = 1.27) was detected at elevation -17.6.		

Note: * CWE was considered at the ground surface.

6.7. Lincoln Village

Station	Boring	Figure	CWE	Comments			
5+23	WR1608_002B	C-55	5.4*	No liquefaction predicted. However, only one SPT was performed for 16 feet of cohesionless soil.			
43+00	WR1608_002M (see App. D)	C-56	3.3*	Liquefiable SM layer was detected between elevations -10.7 and -26.7.			
43+58	WR1608_001M	C-57	3.3*	No liquefaction predicted. Marginally liquefiable SM layer (FS _{liq} = 1.01 and 1.11) was found between elevations -7.4 and -26.7, probably the same as the SM above.			
50+79	WR1608_004B	C-58	5.4*	No liquefaction predicted. Marginally liquefiable SP-SM layer (FS _{liq} = 1.19 and 1.02, based on Standard California sampler**) was found between elevations -7.1 and -26.6, probably the same as the SM above.			
89+65	WR1608_004M	C-59	5.7*	No liquefaction predicted. However, the boring penetrated 22 feet only in foundation soil (down to elevation -16.5).			
89+67	WR1608_003M	C-60	4.8*	No liquefaction predicted. Except for a 2-foot non-liquefiable cohesionles layer, only clayey soils were encountered down to 40 feet in depth (elevation -36.7).			
109+90	WR1608_008B (see App. D)	C-61	1.0*	A thin liquefiable layer was detected (FS _{liq} = 0.89, based on Standard California sampler**).			
150+00	WR1608_013B	C-62	3.2*	No liquefaction predicted. A marginally liquefiable SP-SM layer was detected ($FS_{liq} = 1.25$, based on Standard California sampler**).			
159+20	WR1608_001B	C-63	3.1*	No liquefaction predicted. A marginally liquefiable SP-SM layer was detected ($FS_{liq} = 1.27$, based on Standard California sampler**).			
159+41	WR1608_009B	C-64	4.1*	No liquefaction predicted. A marginally liquefiable SM layer was detected $(FS_{liq} = 1.27$, based on Standard California sampler**).			

Station	Boring	Figure	CWE	Comments		
159+48	WR1608_010B (see App. D)	C-65	3.7*	Liquefiable SM or SP-SM layer was detected between elevations -7.8 and -25.3.		
164+99	WR1608_011B (see App. D)	C-66	3.6*	Liquefiable ML layer was detected between elevations -27.4 and -30.4. Marginally liquefiable layers were detected be above and below the liquefiable layer, but separated by non-liquefiable layers.		
142+28	WR1608_005M	C-67	No liquefaction predicted.			
201+51	WCNBFM_001 B (see App. D)	C-68	6.6*	Liquefiable SM layer was detected between elevations -17 and -27. Marginally liquefiable soil was found at elevation -3.		

Notes: * CWE could not be evaluated and was conservatively considered at the ground surface elevation.

** Many SPT's at Lincoln Village unit were performed with a "Standard California" sampler (also known as Dames & Moore sampler). A factor of 0.55 was applied to blowcounts obtained with the California sampler for converting them to regular SPT; however, there is a large scatter in correlation data; also ASTM D6066 "Determining the Normalized Penetration Resistance of Sands for Evaluation of Liquefaction Potential" states: "6.3.3 Larger diameter split barrel samplers, 3 and 31/2-in. (75 and 88 mm) O.D., can be used with and without retainers to recover coarse grained soils. They are not acceptable for determining penetration resistance *N* values." Therefore, conventional SPT data were always preferred and Standard California data (multiplied by 0.55) were used only when regular SPT's were not at all available in a particular boring or in other borings in vicinity.

7. Post-Earthquake Stability Evaluation.

7.1. General

In accordance with draft ETL 1110-2-580 "Guidelines for Seismic Evaluation of Levees" at all locations where liquefaction potential was detected a post-earthquake stability analysis should be performed assuming residual shear strength mobilized in all potentially liquefiable layers. This analysis was performed using UTexas4 and the results are presented in Appendix F.

In accordance with the above referenced ETL, the selection of the residual strength should be done based on two state-of-the-practice procedures and selecting the lowest obtained factor of safety as final result.

The two state-of-the-practice procedures for the evaluation of the residual (post-liquefaction) undrained shear strength, S_r , of soils were: Seed and Harder, 1990 and Olson and Stark, 2002. (See references in ETL 1110-2-580.) An average relationship (actually corresponding to the

lower third of the specified range) for the first procedure was recommended by Idriss and Boulanger, 2007:

a. Seed and Harder, 1990 approach:

$$S_r = \exp \{(N_I)_{60cs-Sr} / 5.1 - [(N_I)_{60cs-Sr} / 16.5]^2 + [(N_I)_{60-cs-Sr} / 21.4]^3 + 0.8\} / 0.0479$$
 (psf)

where:

$$(N_1)_{60cs-Sr} = (N_1)_{60cs} + \Delta(N_1)_{60cs-Sr}$$

and

 $\Delta(N_I)_{60cs\text{-}Sr}$ is a function of fines content, as shown in Table 7-1.

Fines Content, F (% < 0.074 mm) $\Delta(N_I)_{60cs\text{-}Sr}$ ≤ 5 0 10 1 25 2 50 4 75 5

Table 7-1. Correction for Fines

Interpolation between values in table was based on the curve and equation in Figure 7.1.

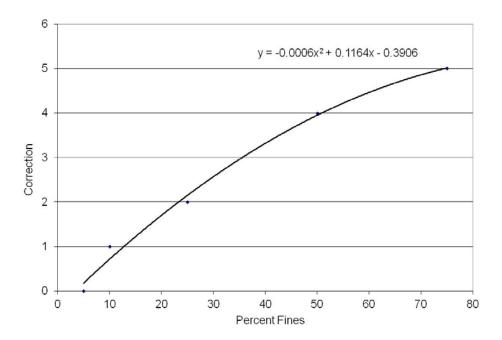


Figure 7.1. Correction for fines.

The undrained shear strength obtained through the Seed and Harder, 1990 procedure is presented in graphical form in Figure 7.2.

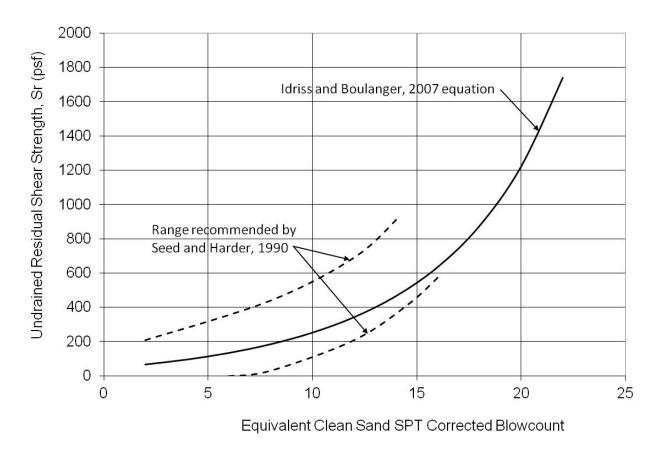


Figure 7.2. Results of Idriss and Boulanger, 2007 equation for approximation of Seed and Harder, 1990 procedure.

b. Olson and Stark, 2002 approach:

$$S_r/\sigma'_{v0} = 0.03 + 0.0075 [(N_1)_{60}]$$

(Note that no correction for fines is applied.)

The calculated S_r , which under this definition varies with depth, was input in the limit equilibrium evaluations as an equivalent Φ -angle defined as follows:

$$\Phi_{\text{eq}} = \tan^{-1}(S_r/\sigma'_{v\theta})$$
 and $S_r = \tan \Phi_{\text{eq}} * \sigma'_{v\theta}$

The results are summarized below. The minimum factors or safety are shown in bold if they are less than one; they are also shown on shaded background if they are critical for a given variant. Therefore, a shaded zone on a line identifies location where the levee can fail during a 200-year earthquake.

7.1. **RD 17 – Southern part** (Stations 1480 to 1840)

a. Seed and Harder, 1990 approach:

Station		Liquefiable	Layer(s)	Factor of safety (FS)			
	Boring	Elevations	Cr (not)	Water Side		Land Side	
		Elevations	Sr (psf)	Circle	Wedge	Circle	Wedge
1553+82	69B	+1.3 to -5.7	365	0.84	0.95	1.49	1.61
1595+33	74B	+10.0 to -2.0	133	1.07*	1.19	1.26	1.26

Note: * Critical slip circle does not affect the levee.

b. Olson and Stark, 2002 approach:

Station Bori		Liquefiable Layer(s)		Factor of safety (FS)			
	Boring	Elevations	Φ_{eq}	Water Side		Land Side	
		Elevations	(degrees)	Circle	Wedge	Circle	Wedge
1553+82	69B	+1.3 to -5.7	6.9	0.37	0.80	1.29	1.37
1595+33	74B	+10.0 to -2.0	3.9	0.95*	1.07	1.32	1.27

Note: * Critical slip circle does not affect the levee.

7.2. **RD 17 – Northern part** (Stations 1000 to 1480)

a. Seed and Harder, 1990 approach:

		Liquefiable Layer(s)		Factor of safety (FS)			
Station Boring	Boring	Elevations	Sr (psf)	Water Side		Land Side	
				Circle	Wedge	Circle	Wedge
1151+06	19B	+1.0 to -2.0	201	1.00	1.15	1.93	1.59
1101+42	24D	-2.7 to -3.7	164	0.88	1.38	1.62	1.31
1191+43	24B	-13.2 to -20.3	111				

b. Olson and Stark, 2002 approach:

		Liquefiable Layer(s)		Factor of safety (FS)				
Station B	Boring	Elevations	Φ_{eq}	Water Side		Land Side		
			(degrees)	Circle	Wedge	Circle	Wedge	
1151+06	19B	+1.0 to -2.0	5.2	0.87	1.15	1.86	1.54	
1191+43	24B	-2.7 to -3.7	4.3	1.19	1.37	1.61	1.60	
		-13.2 to -20.3	2.7					

7.3. **RD 404**

a. Seed and Harder, 1990 approach:

Station Borin		Liquefiable Layer(s)		Factor of safety (FS)			
	Boring	Elevations	Sr (psf)	Water Side		Land Side	
		Elevations		Circle	Wedge	Circle	Wedge
1175+01	41B	+1.3 to -4.7	113	0.88	0.73	1.40	1.15

b. Olson and Stark, 2002 approach:

		Liquefiable	Layer(s)	Factor of safety (FS)			
Station Boring		Elevations	$\Phi_{ m eq}$	Water Side		Land Side	
		Elevations	(degrees)	Circle	Wedge	Circle	Wedge
1175+01	41B	+1.3 to -4.7	3.6	0.82	0.65	1.38	1.12

7.4. Calaveras River

a. Seed and Harder, 1990 approach:

Station		Liquefiable Layer(s)		Factor of safety (FS)				
	Boring	Elevations	Sr (psf)	Water Side		Land Side		
				Circle	Wedge	Circle	Wedge	
6565+02	18B	-18.4 to -23.0	77	1.76	1.40	N/A	N/A	
6669+40	19B	-10.8 to -16.0	98	2.10	1.97	N/A	N/A	

b. Olson and Stark, 2002 approach:

		Liquefiable Layer(s)		Factor of safety (FS)			
Station Bo	Boring	Elevations	$\Phi_{ m eq}$	Water Side		Land Side	
			(degrees)	Circle	Wedge	Circle	Wedge
6565+02	18B	-18.4 to -23.0	2.6	1.80	1.45	N/A	N/A
6669+40	19B	-10.8 to -16.0	1.7	2.04	1.86	N/A	N/A

7.5. Stockton Diverting Canal and Mormon Slough

No potential liquefaction was detected.

7.6. **Brookside**

a. Seed and Harder, 1990 approach:

Station		Liquefiable Layer(s)		Factor of safety (FS)				
	Boring	Elevations	Sr (psf)	Water Side		Land Side		
				Circle	Wedge	Circle	Wedge	
117+51	3M	-15.5 to -18.0	189	N/A	N/A	3.78	3.14	
118+02	9M	-22.4 to -31.9	151	N/A	N/A	2.17	1.58	
133+82	7B	-9.8 to -11.8	242	N/A	N/A	1.62	1.68	

b. Olson and Stark, 2002 approach:

		Liquefiable Layer(s)		Factor of safety (FS)				
Station Borin	Boring	Boring Elevations	Φ_{eq}	Water Side		Land Side		
			(degrees)	Circle	Wedge	Circle	Wedge	
117+51	3M	-15.5 to -18.0	4.3	N/A	N/A	3.69	2.95	
118+02	9M	-22.4 to -31.9	4.3	N/A	N/A	2.21	1.71	
133+82	7B	-9.8 to -11.8	5.1	N/A	N/A	1.48	1.49	

7.7. Lincoln Village

a. Seed and Harder, 1990 approach:

Station Borin		Liquefiable Layer(s)		Factor of safety (FS)				
	Boring	Elevations	Sr (psf)	Wate	Water Side		Side	
				Circle	Wedge	Circle	Wedge	
43+57	2M	-10.7 to -26.7	201	1.67	1.61	1.55	1.52	
109+90	8B	-13.0 to -16.0	282	1.60	1.49	2.01	2.31	
159+48	10B	-7.8 to -25.3	207	1.68	1.64	1.40	1.42	
164+99	11B	-27.4 to -30.4	224	4.47	4.03	3.79	3.22	
201+51	1B	-17.0 to -27.0	201	3.83	4.01	3.59	4.05	

b. Olson and Stark, 2002 approach:

		Liquefiable	Layer(s)) Factor of safety (FS)			
Station Boring		oring Elevations	Φ_{eq}	Water Side		Land Side	
		Elevations	(degrees)	Circle	Wedge	Circle	Wedge
43+57	2M	-10.7 to -26.7	4.7	1.58	1.53	1.41	1.42
109+90	8B	-13.0 to -16.0	6.0	1.44	1.27	1.84	1.63
159+48	10B	-7.8 to -25.3	5.1	1.53	1.51	1.24	1.21
164+99	11B	-27.4 to -30.4	3.4	4.36	3.86	3.69	3.04
201+51	1B	-17.0 to -27.0	4.7	3.65	4.01	3.41	3.75

The following sections have been identified as susceptible of flow failures under the loading with the 200-year earthquake; therefore, immediately after the earthquake occurrence the levee flood retention capability may be compromised:

• **RD 17 – Southern part** 1553+82

• **RD 17 – Northern part** 1151+06 1191+43

• **RD 404** 1175+01

The following section has the minimum factor of safety between 1.0 and 1.2, so the levee at this location may experience significant deformation under the loading with the 200-year earthquake:

• **RD 17 – Southern part** 1595+33

However, the factor of safety is marginally 1.2 (1.19 and 1.07 with residual strength per Seed and Harder, 1990 and per Olson and Stark, 2002 for a very shallow potential failure surface); therefore, additional deformation analysis was not considered necessary for this location.

8. Conclusions.

Fifteen of the 68 borings evaluated indicated potentially liquefiable material under the 200-year earthquake loading. It is noted that not all layers had SPT's and in some cases the less reliable tests with the Standard California sampler had to be considered. However, the upper 50 feet of the soil were found generally non-liquefiable, including non-liquefiable cohesive soils that are predominant.

The fifteen locations with possible liquefaction occurrence were evaluated for post-earthquake stability. In three cases the potential for flow failure, i.e. complete loss of levee capability for flood protection were found. Four locations with potential flow failure condition were found in units RD 17 and RD 404. The corresponding segments of levees should be further investigated for potential vulnerability.

The rest of levee units will likely not be affected by the 200-year design level earthquake. This is due to both the relatively rare presence of liquefiable layers and in some cases their depth. In general, it was found that the layer was only vulnerable if the liquefiable layer was above or slightly below the elevation 0.0, i.e. at shallow depth in foundation. For these cases the levee was found vulnerable to the seismic action.

Report prepared by Vlad Perlea Laszlo Nagy Soil Design Section

APPENDIX A

<u>Plates</u>

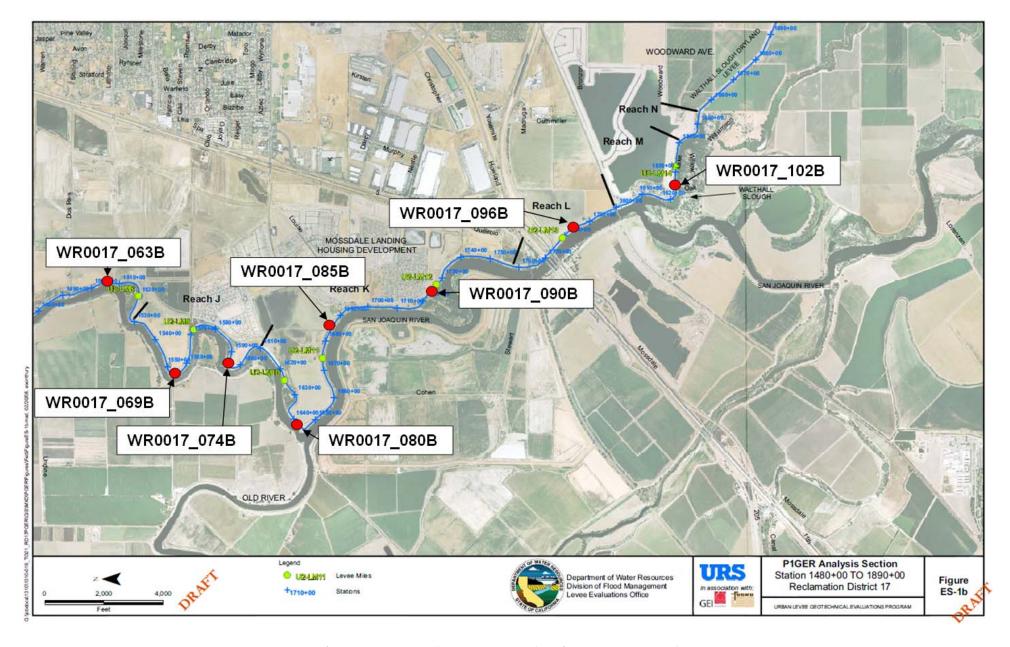


Plate 1. **RD 17 – Southern part** (Stations 1480 to 1840).

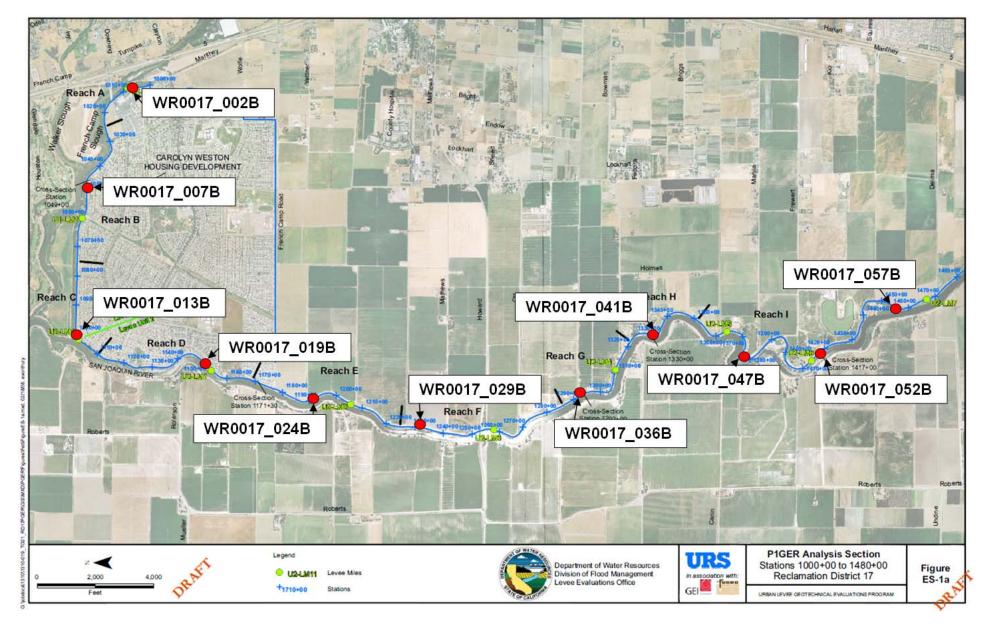
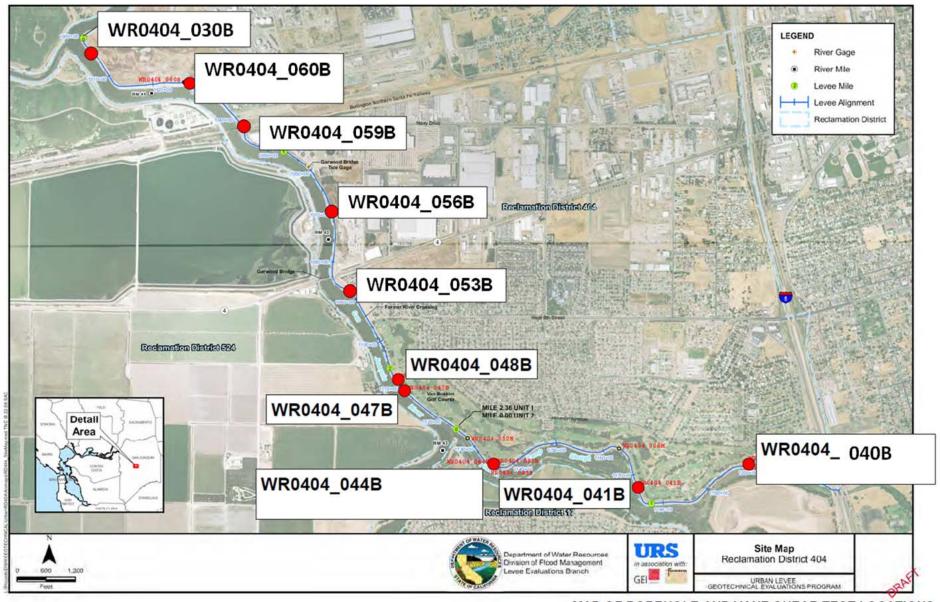



Plate 2. **RD 17 – Northern part** (Stations 1000 to 1480).

MAP OF BOREHOLE AND VANE SHEAR TEST LOCATIONS: RD404 STUDY AREA

Plate 3. **RD 404.**

Plate 4. Calaveras River, Stockton Diverting Canal and Mormon Slough

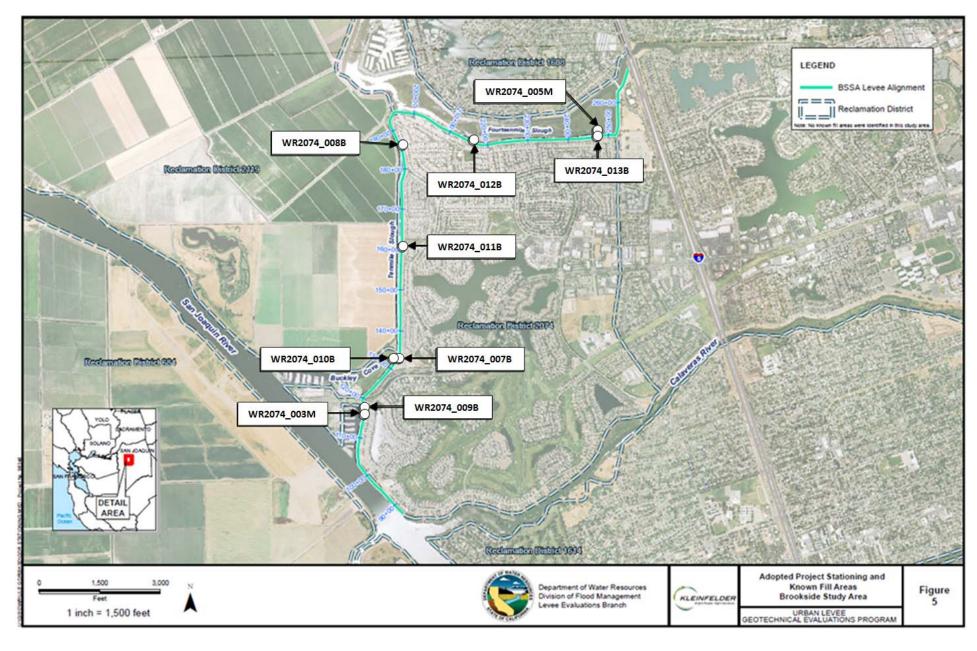


Plate 5. **Brookside**

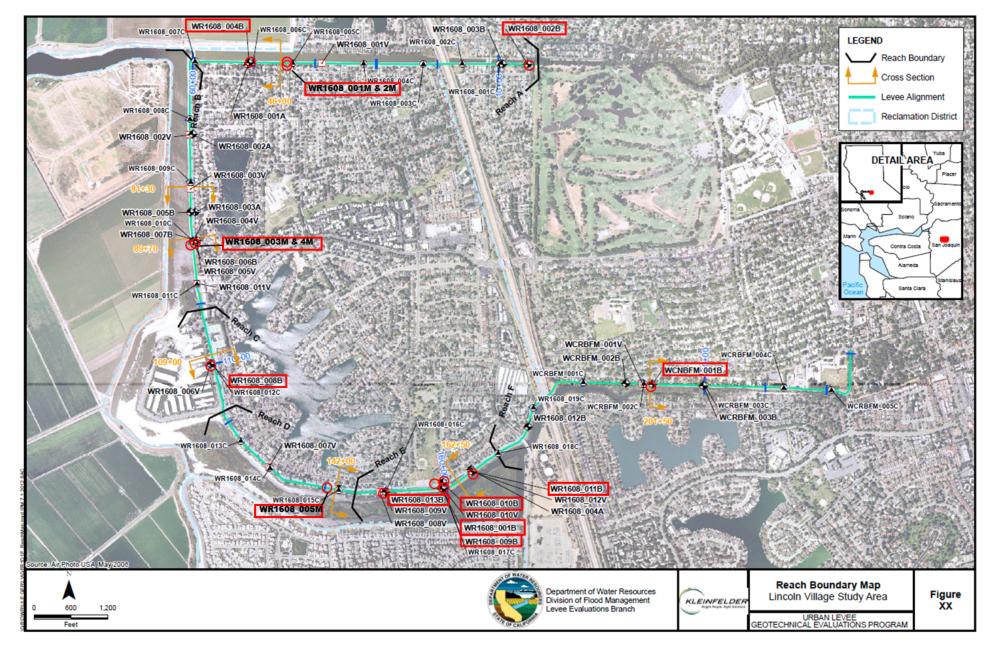


Plate 6. Lincoln Village

APPENDIX B

Evaluation of Weighted Harmonic Mean N (SPT)

RD 17 – Northern part: Harmonic mean of N corrected for hammer efficiency (N60) for borings 100 feet deep.

A	В	C	D	E	F	G	H	1	1	K	L	M	N	0	P	Q	R	S	T	U
1	002 B				007 B				019 B				036 B				041 B			
2	N	Interval	(C)/(B)		N	Interval														
3	11	5	0.4545455		10	5	0.5		6	5	0.833333		6	5	0.833333		7	5	0.714286	
4	9	5	0.555556		12	5	0.416667		8	5	0.625		8	5	0.625		5	5	1	
5	4	5	1.25		16	5	0.3125		9	5	0.555556		32	5	0.15625		17	5	0.294118	
6	17	5	0.2941176		1	5	5		16	5	0.3125		25	5	0.2		19	5	0.263158	
7	14	5	0.3571429		12	5	0.416667		18	5	0.277778		11	5	0.454545		31	5	0.16129	
8	19	5	0.2631579		38	5	0.131579		10	5	0.5		20	5	0.25		17	5	0.294118	
9	13	5	0.3846154		34	5	0.147059		19	5	0.263158		12	5	0.416667		31	5	0.16129	
10	13	5	0.3846154		28	5	0.178571		29	5	0.172414		17	5	0.294118		21	5	0.238095	
11	18	5	0.2777778		9	5	0.555556		17	5	0.294118		34	5	0.147059		8	5	0.625	
12	13	5	0.3846154		12	5	0.416667		2	5	2.5		47	5	0.106383		19	5	0.263158	
13	40	5	0.125		24	5	0.208333		32	5	0.15625		39	5	0.128205		23	5	0.217391	
14	38	5	0.1315789		43	5	0.116279		29	5	0.172414		9	5	0.555556		37	5	0.135135	
15	56	5	0.0892857		24	5	0.208333		21	5	0.238095		40	5	0.125		75	5	0.066667	
16	43	5	0.1162791		34	5	0.147059		34	5	0.147059		41	5	0.121951		66	5	0.075758	
17	42	5	0.1190476		45	5	0.111111		28	5	0.178571		49	5	0.102041		65	5	0.076923	
18	44	5	0.1136364		50	5	0.1		8	5	0.625		37	5	0.135135		34	5	0.147059	
19	21	5	0.2380952		47	5	0.106383		27	5	0.185185		46	5	0.108696		36	5	0.138889	
20	43	5	0.1162791		45	5	0.111111		34	5	0.147059		42	5	0.119048		66	5	0.075758	
21	43	5	0.1162791		41	5	0.121951		24	5	0.208333		55	5	0.090909		57	5	0.087719	
22	100	5	0.05		22	5	0.227273		61	5	0.081967		73	5	0.068493		38	5	0.131579	
23														ľ						
24																				
25																				
26																				
27																				
28																				
29																		100	5.16739	
30																			19.4	
31																				
32	Sums:	100	5.8216244			100	9.533098			100	8.47379			100	5.038388		Hammer	Efficiency:	72	
33	Sum (C)	/ Sum (D):	17.2				10.5				11.8				19.8		Correcte	d Mean N:	23.2	
34																				
35	Hammer	Efficiency:	72		Hammer	Efficiency:	72		Hammer	Efficiency:	72		Hammer	Efficiency:	72					
36	Correcte	d Mean N:	20.6		Correcte	d Mean N:	12.6		Correcte	d Mean N:	14.2		Correcte	d Mean N:	23.8					

RD 17 – **Southern part:** Harmonic mean of N corrected for hammer efficiency (N60) for borings 100 feet deep.

Summary for both northern and southern parts of RD 17

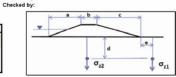
U	. V	W	Х		AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	A١
as La	052 B N	Internal		063 B	Interval			090 B	Interval			102 B N	Internal				C	
	_	Interval		N	_			N	Interval			_	Interval				Summary	
	12		0.416667	6	1.76	0.833333		6	- 1.X	0.833333		12	1.4	0.416667		Sta. 1000	1	
le .	16	5	0.3125	8	5			9		0.555556		11		0.454545			20.6	
5	32	5		12		0.416667		10	5			10	5				12.6	
5	38	-	0.131579	21	_	0.238095		9	_	0.555556		4	5				14.2	
7	8	5	0.625	9		0.555556		12	-	0.416667		13		0.384615			23.8	
3	26	5	0.192308	40	5	0.125		35	5	0.142857		22	5	0.227273			23.2	
9	19	5	0.263158	31	5	0.16129		43	5	0.116279		15	5	0.333333		Average:	18.9	
.0	20	5	0.25	15	5	0.333333		38	5	0.131579		16	5	0.3125		Vs30 =	252 m/s	
1	6	5	0.833333	56	5	0.089286		33	5	0.151515		27	5	0.185185		Sta. 1400	- 1860	
2	38	5	0.131579	52	5	0.096154		36	5	0.138889		21	5	0.238095			26.7	
3	28	5	0.178571	22	5	0.227273		26	5	0.192308		23	5	0.217391			17.4	
4	25	5	0.2	13	5	0.384615		14	5	0.357143		49	5	0.102041			22.0	
.5	66	5	0.075758	29	5	0.172414		14	5	0.357143		18	5	0.277778			20.2	
.6	68	5	0.073529	23	5	0.217391		30	5	0.166667		12	5	0.416667		Average:	21.6	
.7	30	5	0.166667	3	5	1.666667		26	5	0.192308		51	5	0.098039		Vs30 =	265 m/s	
8	32	5	0.15625	23	5	0.217391		45	5	0.111111		65	5	0.076923			ROSCOSLANA ROSCOSCIONIO	
9	51	_	0.098039	20	5			18	_	0.277778		45	_	0.111111				
.0	87		0.057471	49	5	0.102041		57	-	0.087719		50	5					
21	51		0.098039	43	-	0.116279		65	-	0.076923		41		0.121951				
22	62	-	0.080645	77	_	0.064935		51	_	0.098039		46	_	0.108696				
23		_							_				_					
24																		
25																		
26																		
.7		100	4.497343															
18		100	22.2															
.8			22.2										100	5.932811				
	U	TEE: -:	70		100	6 00070							100					
0		Efficiency:	72		100									16.9				
1	corrected	d Mean N:	26.7			14.5								70				
32													Efficiency:	72				
33					r Efficiency:	72						Correcte	d Mean N:	20.2				
34				Correcte	d Mean N:	17.4												
35																		
86																		
37									100	5.459369								
88										18.3								
39																		
10								Hammer	Efficiency:	72								
1								Corrected	d Mean N:	22.0								

RD 404: Harmonic mean of N corrected for hammer efficiency (N60) for the only one available boring deeper than 100 feet.

030B - RD	404	
N	Interval	
3	2.5	0.833333
4	7	1.75
26	3	0.115385
26	5	0.192308
24	5	0.208333
13	5	0.384615
22	5	0.227273
19	5	0.263158
23	5	0.217391
21	5	0.238095
34	5	0.147059
22	5	0.227273
39	5	0.128205
60	5	0.083333
57	5	0.087719
39	5	0.128205
12	5	0.416667
59	5	0.084746
29	3	0.103448
	90.5	5.836547
		15.5
Hammer E	fficiency:	85
Corrected	Mean N:	22.0

APPENDIX C

<u>Liquefaction Triggering Evaluation</u>


 Project:
 Lower San Joaquin

 Study Area:
 RD 17

 River Section:
 Sta. 1506+19

oundwater Elevation for Analysis (ft)

Boring Number Input Parameters Embankment Crest Elevation (ft) Rod Length Above GS. (ft) Base Elevation (ft) 17.1 ft Sampler without Liner? (Y/N) PGA (g's) 0.225 Height below Crest of Embankment (ft) 0.0 ft Borehole Dia. (inch) 4.5 oundwater Elevation during Drilling (ft) 0.6 ft Hammer Efficiency 72 Assumed Embankment UW (pcf)

Vlad Perlea

Prepared by:

5/6/2013

Date:

Date:

Date:

Date:

Boring WR0017_063B
Boring on the crest
SPT Ground Elevation Used in Analys
28.60 ft

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	C ₈	C _R	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,68}) _{cs} [Liao&Whit man]	CRR _{I.5}	r _d	CSR ³	K,	f paramet er	K,	FS against Liquefa ction
1.0	27.6	10	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	15.3	1.55	1.03	17.3	n.a.	1.00	#N/A	1.00	0.72	#N/A	#N/A
6.0	22.6	25	SC	36	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	40.8	5.00	1.20	54.0	n.a.	0.99	#N/A	1.00	0.60	#N/A	#N/A
11.0	17.6	16	CL	94	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	1	0.85	1.00	20.7	5.00	1.20	29.8	n.a.	0.97	#N/A	1.00	0.67	#N/A	#N/A
13.5	15.1	6	SC	42	Unsaturated	120	125	1619.4	1619.4	1379.4	1620.0	1620.0	1.14	1	0.95	1.00	7.2	5.00	1.20	13.6	n.a.	0.97	0.14	1.00	0.80	1.00	#N/A
16.0	12.6	6	CL	94	Unsaturated	120	125	1913.8	1913.8	1373.8	1920.0	1920.0	1.05	1	0.95	1.00	7.2	5.00	1.20	13.6	n.a.	0.96	0.14	1.00	0.80	1.00	#N/A
21.0	7.6	8	CL	94	Clay	120	125	2476.6	2476.6	1336.6	1142.0	1117.0	0.92	.1	0.95	1.00	n.a.	5.00	1.20	n.a.	2.00	0.95	0.14	1.00	0.60	1.00	#N/A
26.0	2.6	12	CL	94	Clay	120	125	3011.5	3011.5	1271.5	1767.0	1430.0	0.84	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.94	0.17	1.00	0.60	1.00	#N/A
31.0	-2.4	21	CL	94	Clay	120	125	3548.4	3361.2	1193.4	2392.0	1743.0	0.79	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.92	0.18	1.00	0.60	1.00	#N/A
36.0	-7.4	9	CL	94	Clay	120	125	4092.6	3593.4	1112.6	3017.0	2056.0	0.77	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.88	0.19	1.00	0.60	1.00	#N/A
42.5	-13.9	40	CL	94	Clay	120	125	4804.4	3899.6	1011.9	3829.5	2462.9	0.74	1	- 1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.83	0.19	1.00	0.60	0.94	#N/A
46.0	-17.4	31	SC	22		120	125	5191.3	4068.1	961.3	4267.0	2682.0	0.72	1	1	1.00	26.8	3.93	1.09	33.3	2.00	0.80	0.19	1.00	0.62	0.91	3.00
51.0	-22.4	15	SC	20		120	125	5749.2	4314.0	894.2	4892.0	2995.0	0.70	1	1	1.00	12.6	3.61	1.08	17.2	0.18	0.76	0.18	1.00	0.74	0.91	1.39
56.0	-27.4	56	SC	20		120	125	6313.4	4566.2	833.4	5517.0	3308.0	0.68	1	1	1.00	45.7	3.61	1.08	53.0	2.00	0.72	0.18	1.00	0.60	0.84	3.00

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

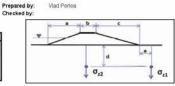
Based on You'd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1995 NCEER and 1996 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013


 Project:
 Lower San Joaquin

 Study Area:
 RD 17

 River Section:
 Sta 1553+82

 Boring Number:
 WR0017_069B

		Input Parameters			
Embankment Crest Elevation (ft)	29.4 ft	Rod Length Above GS. (ft)	7.	Magnitude, M	6.4
Base Elevation (ft)	11.9 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	.0.225
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	3.4 ft	Hammer Efficiency	72	Assumed Embani-	ment UW (pcf)
Crowndwater Elevation for Analysis (#)	8.7 ()			120.0 pet	

Surcharge Information										
Waterside/Upstream Slope, a (ft)	40.3 ft									
Crest Width, b (ft)	21.0 ft									
Landside/Downstream Slope, c (ft)	36.8 ft									
Dist. of Boring from Levee Toe [1] (ft)	-47.3 ft									
Embankment Height, H (ft)	17.5 ft									

5/6/2013

Boring	WR0017_069B
Boring or	the crest
SPT Grou	and Elevation Used in Analysis
29,40 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Content	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	C ₀	CR	C _s	N _{1,68} [Liao& Whitma n]	Alpha	Beta	(N _{4,68}) _{cs} [Liao&Whit man]	CRR _{7,5}	r _d	CSR ³	K,	f paramet er	Κ _σ	FS agains Liquef ction
1.0	28,4	31	SM	15	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	47.4	2.50	1.05	52.2	na	1,00	AN/A	1.00	0.60	MN/A.	MN/A
7.5	21.9	13	SP-SM	5	Unsaturated	120	125	900.0	900.0	0.0	Embankment	Embankment	1.53	1	0.85	1.00	20.3	0.00	1.00	20.3	n.a.	0.98	#N/A	1.00	0.67	#N/A	#N/A
12.5	16.9	5	SP	2	Unsaturated	120	125	1500.0	1500.0	0.0	Embankment	Embankment	1.19	1	0.85	1.00	6.1	0.00	1.00	6.1	6.0	0.97	WN/A	1.00	0.80	AWW	#N/A
18.0	11.4	7	ML	50	Unsaturated	120	125	2160.0	2160.0	2100.0	2160.0	2160.0	0.99	1	0.95	1.00	7.9	5.00	1.20	14.5	n.a.	0.96	0.14	1.00	0.79	1.00	MN/A
23.0	6.4	12	SM	19		120	125	2745.7	2745.7	2085.7	671.5	528.0	0.88	1	0.95	1.00	12.0	3.43	1.07	16.3	0.17	0.95	0.18	1.00	0.75	1.00	1.48
26.0	3.4	16	SP-SM	6		120	125	3075.8	3075.8	2055.8	1046.5	715.8	0.83	.10		1.00	15.9	0.03	1.00	16.0	0.17	0.94	0.20	1.00	0.71	1.00	1,27
35.0	-5.6	13	SP-SM	- 6	-	120	125	4036.7	3475.1	1891.7	2171.5	1279.2	0.78	1	1 1	1.00	12.2	0.03	1.00	12.3	0.13	0.89	0.22	1.00	0.75	1,00	9.93
36.0	-6.6	9	ML	50		120	125	4139.9	3515.9	1869.9	2296.5	1341.8	0.78	1	1	1.00	8.4	5:00	1.20	15.1	0.16	0.88	0.22	1.00	0.79	1.00	1.09
44.5	-15.1	14	ML	50		120	125	5012.6	3858.2	1680.1	3359.0	1873.9	0.74	1	1 1	1.00	12.4	5.00	1.20	19.9	0.21	0.81	0.21	1.00	0.75	1.00	1.51
47.5	-18.1	17	SM	15		120	125	5322.3	3980.7	1614.8	3734.0	2081.7	0.73	1	1	1.00	14.9	2.50	1.05	18.1	0.19	0.79	0.21	1.00	0.72	1.00	1.39
55.0	-25.6	30	SM	26		120	125	6106.3	4296.7	1461.3	4671.5	2531.2	0.70	1	1 1	1.00	25.3	4.39	1.12	32.7	2.00	0.73	0.20	1.00	0.64	0.94	3.00
57.5	-28.1	58	SP	- 4		120	125	6371.3	4405.7	1413.8	4984.0	2687.7	0.69	1	. 36	1.00	48.2	0.00	1.00	48.2	2.00	0.71	0.19	1.00	0.68	0.91	3.00
65.0	-35.6	58	SM	27		120	125	7178.1	4744.5	1283.1	5921.5	3157.2	0.67	1	1	1.00	46.5	4.48	1.13	57.0	2.00	0.64	0.18	1.00	0.60	0.85	3.00
73.0	-43.6	-16	CI		Clay	120	125	8057.1	5124.3	1162.1	6921.5	3658.0	0.64	1	- 1	1.00	ne.	0.00	1.00	n a	2.00	0.58	0.16	1.00	0.60	0.80	BELLIA

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

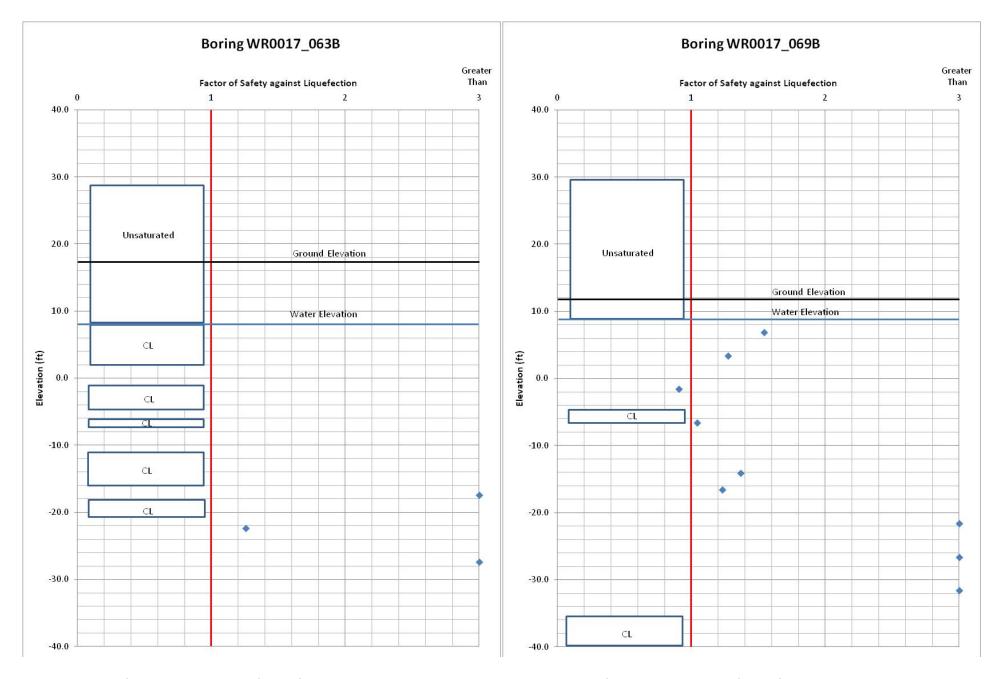
[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1896 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.



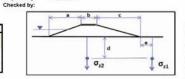

Fig. C-1. RD 17 South, Station 1506+19

Fig. C-2. RD 17 South, Station 1553+82

Project: Lower San Joaquin Study Area:

RD 17 Sta. 1595+33 WR0017_074B River Section:

		Input Parameters	The second second	·	
mbankment Crest Elevation (ft)	29.9 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
ase Elevation (ft)	19.9 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.225
eight below Crest of Embankment (ft)	0.011	Borehole Dia. (inch)	4.5		
roundwater Elevation during Drilling (ft)	4.4 ft	Hammer Efficiency	72	Assumed Embank	ment UW (pcf
roundwater Elevation for Analysis (ft)	7.7 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	35.0 ft
Crest Width, b (ft)	18.0 ft
Landside/Downstream Slope, c (ft)	43.0 ft
Dist. of Boring from Levee Toe ^[1] (ft)	-52.0 ft
Embankment Height, H (ft)	10.0 ft

5/6/2013

Date:

Date:

Boring	WR0017_074B
Baring an	the crest
SPT Grou	and Elevation Used in Analysis
20 00 8	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	C _B	CR	Cs	N _{1,68} [Liao& Whitma n]	Alpha	Beta	(N _{t.te}) _{ce} [Liao&Whit man]	CRR _{E,5}	r _d	CSR ³	K _e	f paramet er	K _e	FS against Liquefa ction
4.0	25.9	30	CL	94	Unsaturated	120	125	480.0	480.0	0.0	Embankment	Embankment	1,70	1	0.8	1.00	49.0	5.00	1.20	63.8	n.a.	0.99	#N/A	1.00	0.60	#N/A	#N/A
6.0	23.9	12	SP.	4	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	19.6	0.00	1.00	19.6	n.a.	0.99	#N/A	1.00	0.68	#N/A	#N/A
12.0	17.9	- 6	ML	65	Unsaturated	120	125	1439.4	1439.4	1199.4	1440.0	1440.0	1.21	1	0.85	1.00	7.4	5.00	1.20	13.9	n.a	0.97	0.14	1.00	0.80	1.00	#N/A
20.0	9.9	6	CL	94	Unsaturated	120	125	2354.2	2354.2	1154.2	2400.0	2400.0	0.95	1.	0.95	1.00	6.5	5.00	1.20	12.8	n.a.	0.95	0.14	1.00	0.80	0.98	#N/A
23.0	6.9	7	SP-SM	12		120	125	2680.9	2680.9	1120.9	1564.0	1514.1	0.89	1	0.95	1.00	7.1	1.55	1.03	8.9	0.10	0.95	0.14	1.00	0.80	1.00	1.08
26.0	3.9	- 5	SP-SM	11		120	125	3005.7	2974.5	1083.2	1939.0	1701.9	0.84	1	1	1.00	5.1	1.21	1.03	6.4	0.08	0.94	0.16	1.00	0.80	1.00	0.79
32.0	-2.1	10	SP-SM	11		120	125	3675.7	3270.1	1003.2	2689.0	2077.5	0.80	1	1	1.00	9.7	1.21	1.03	11.1	0.12	0.91	0.17	1.00	0.77	1.00	1.07
36.0	-6.1	13	SC	14		120	125	4122.5	3467.3	950.0	3189.0	2327.9	0.78	1.	1	1.00	12.2	2.20	1.04	14.9	0.16	0.88	0.18	1.00	0.75	0.98	1.32
42.5	-12.6	12	SC	13		120	125	4853.2	3792.4	868.2	4001.5	2734.8	0.75	1	1	1.00	10.8	1.89	1.04	13.0	0.14	0.83	0.18	1.00	0.76	0.94	1.12
47.5	-17.6	11	SW-SC	- 11		120	125	5420.4	4047.6	810.4	4626.5	3047.8	0.72	1.	1	1.00	9.5	1.21	1.03	11.0	0.12	0.79	0.17	1.00	0.77	0.92	0.97
51.0	-21.1	4.1	SW	4		120	.125	5820.3	4229.1	772.8	5064.0	3266.9	0.71	1	1 1	1.00	34:8	0.00	1.00	34.8	2.00	0.76	0.17	1.00	0.60	0.84	3.00
57.5	-27.6	30	SC	13		120	125	6569.1	4572.3	709.1	5876.5	3673.8	0.68	1	1	1.00	24.5	1.89	1.04	27.3	0.35	0.71	0.17	1.00	0.64	0.82	2.58
61.0	-31.1	39	SC	13		120	125	6975.5	4760.3	678.0	6314.0	3892.9	0.67	1	- 1	1.00	31.2	1.89	1.04	34.2	2.00	0.68	0.16	1.00	0.60	0.78	3.00

Prepared by:

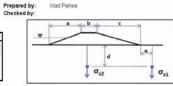
Vlad Perlea

NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on You'd et Al., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER Morshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.


[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for inter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

Lower San Joaquin RD 17 Project: Study Area: River Section: Sta. 1642+75 WR0017_080B Boring Number:

		Input Parameters			
Embankment Crest Elevation (ft)	30.6 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	18.6 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.225
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	6.1 ft	Hammer Efficiency	72	Assumed Embani	ment UW (pcf)
Control of the Contro	756			400.0 - 4	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	36.0 ਜੋ
Crest Width, b (ft)	17.0 ft
Landside/Downstream Slope, c (ft)	40.8 ft
Dist. of Boring from Levee Toe [13](ft)	-49.3 ft
Embankment Height, H (ft)	12.0 ft

5/6/2013

Date:

Date:

Boring	WR0017_080B
Boning on	the crest
SPT Grou	and Elevation Used in Analysis
30.60 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption ^p l		Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	Cs	C _R	Cs	N _{1,50} [Liao& Whitma n]	Alpha	Beta	(N _{1,88}) _{cs} [Liso&Whit man]	CRR _{zs}	r _d	CSR ³	Ke	f paramet er	K _e	FS agains Liquef ction
1.0	29.6	13	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	19.9	1.55	1.03	22.1	n.a	1.00	#N/A	1.00	0.68	WN/A	MN/A
7.5	23.1	- 8	SP	1	Unsaturated	120	125	900.0	900.0	0.0	Embankment	Embankment.	1.53	1	0.85	1.00	12.5	0.00	1.00	12.5	n.a.	0.98	#N/A	1.00	0.74	WN/A	MN/A
11.0	19.6	5	ML	50	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	1	0.85	1.00	6.5	5.00	1.20	12.7	n.a.	0.97	#N/A	1.00	0.80	WN/A	MN/A
16.0	14.6	- 6	CL	94	Unsaturated	120	125	1914.0	1914.0	1434.0	1920.0	1920.0	1.05	- 1	0.95	1.00	7.2	5.00	1.20	13.6	n a	0.96	0.14	1.00	0.80	1.00	MN/A
21.0	9.6	8	SP-SM	8	Unsaturated	120.	125	2472.7	2472.7	1392.7	2520.0	2520.0	0.93	1	0.95	1.00	8.4	0.30	1.01	8.8	n.a.	0.95	0.14	1.00	0.79	0.96	#N/A
26.0	4.6	9	SM	17		120	125	3010.4	2916.8	1322.9	1694.5	1513.5	0.85	1	1	1.00	9.2	3.01	1.06	12.8	0.14	0.94	0.15	1.00	0.78	1.00	1.35
31.0	-0.4	18	SM	26		120	125	3554.4	3148.8	1241.9	2319.5	1826.5	0.82	1	3	1.00	17.7	4.39	1.12	24.3	0.28	0.92	0.17	1.00	0.69	1.00	2.44
36.0	-5.4	13	CL	94	Clay	120	125	4097.0	3379.4	1159.5	2944.5	2139.5	0.79	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.88	0.18	1.00	0.60	1.00	#N/A
41.0	-10.4	39	SP-SM	- 11		120	125	4642.7	3613.1	1080.2	3569.5	2452.5	0.77	1	31 1	1.00	35.8	1.21	1.03	38.0	2.00	0.84	0.18	1.00	0.60	0.94	3.00
47.5	-16.9	53	SP-SM	-11		120	125	5359.9	3924.7	984.9	4382.0	2859.4	0.73		1 1	1.00	46.7	1.21	1.03	49.1	2.00	0.79	0.18	1.00	0.60	0.89	3.00
51:0	-20.4	44	SW	4		120	125	5750.4	4096.8	937.9	4819.5	3078.5	0.72	1	1	1.00	37.9	0.00	1.00	37.9	2.00	0.76	0.17	1.00	0.60	0.86	3.00
56.0	-25.4	65	SP	4		120	125	6313.3	4347.7	875.8	5444.5	3391.5	0.70	.1	1	1.00	54.4	0.00	1.00	54.4	2.00	0.72	0.17	1.00	0.60	0.83	3.00
60.0	-29.4	50	Sp	- 4		120	125	6767.8	4552.6	830.3	5944.5	3641.9	0.68	1	1	1.00	48.3	0.00	1.00	48.3	2.00	0.69	0.16	1.00	0.60	0.80	3.00

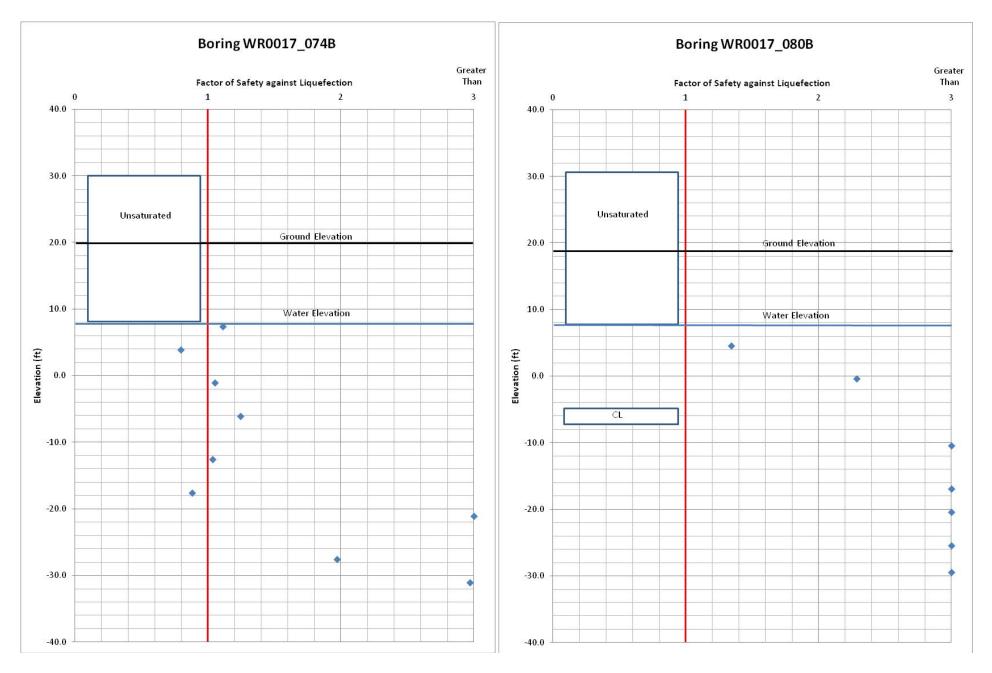
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available Easted on You'd. All, "Luight-fictor Resistance of Soils," Journal of Gestechnical and Geoen/normerical Engineering, October 2001.

Surchange from embankment calculation is presented in Poulos & Davis (1978) which based on Boussiness formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embanisment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted



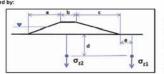

Fig. C-3. RD 17 South, Station 1595+33

Fig. C-4. RD 17 South, Station 1642+75

Project: Lower San Joaquin Study Area: RD 17

Sta. 1684+57 River Section: Boring Number

Input Parameters mbankment Crest Elevation (ft) Rod Length Above GS. (ft) 18.9 ft Base Elevation (ft) Sampler without Liner? (Y/N) PGA (g's) 0.225 Height below Crest of Embankment (ft) Borehole Dia (inch) roundwater Elevation during Drilling (ft) roundwater Elevation for Analysis (ft) 4.9ft Hammer Efficiency 72 Assumed Embankment UW (pcf

Surcharge Information	6
Waterside/Upstream Slope, a (ft)	42.5 ft
Crest Width, b (ft)	18.0 ft
Landside/Downstream Slope, c (ft)	30.0 ft
Dist. of Boring from Levee Toe P1 (ft)	-39.0 ft
Embankment Height, H (ft)	12.5 ft

5/6/2013

Date:

Date:

Boring	WR0017_085B
	the crest
SPT Grou	and Elevation Used in Analysis
31,40 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	C ₀	C _R	C _s	N _{1,69} [Liao& Whitma n]	Alpha	Beta	(N _{1,tel}) _{cs} [Liao&Whit man]	CRR _{t,5}	r _d	CSR ³	K,	f paramet er	K _e	FS against Liquefa ction
1.0	30.4	. 24	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1.	0.75	1.00	36.7	1.55	1.03	39.4	n.a	1.00	#N/A	1.00	0.60	WN/A	#N/A
7.5	23.9	26.	SM	31	Unsaturated	120	125	900.0	900.0	0.0	Embankment	Embankment	1.53	1.	0.85	1.00	40.7	4.77	1.16	52.0	n.a.	0.98	#N/A	1.00	0.60	#N/A	#N/A
11.0	20.4	24	SP	20	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27		0.85	1.00	31.0	3.61	1.08	37.1	n.a.	0.97	#N/A	1.00	0.60	#N/A	#N/A
17.5	13.9	9	CL	94	Unsaturated	120	125	2088.8	2088.8	1488.8	2100.0	2100.0	1.01	1	0.95	1.00	10.3	5.00	1.20	17.4	n.a	0.96	0.14	1.00	0.77	1.00	MN/A
22.5	8.9	13	SP-SC	8	Unsaturated	120	125	2638.0	2638.0	1438.0	2700.0	2700.0	0.90	1	0.95	1.00	13.3	0.30	1.01	13.7	n.a.	0.95	0.14	1.00	0.74	0.94	#N/A
26.0	5.4	13	SM	21		120	125	3005.0	3005.0	1385.0	1630.0	1505.2	0.84	1	1	1.00	13:1	3.78	1.09	18.0	0.19	0.94	0.15	1.00	0.74	1.00	1.93
31.0	0.4	10	ML	63		120	125	3541.2	3260.4	1298.7	2255.0	1818.2	0.81	1	3	1.00	9.7	5.00	1.20	16.6	0.18	0.92	0.17	1.00	0.77	1.00	1.58
36.0	-4.6	28	SM	15		120	125	4077.7	3484.9	1210.2	2880.0	2131.2	0.78	1	1	1.00	26.2	2.50	1.05	29.9	0.46	0.88	0.17	1.00	0.63	1.00	3.00
42.5	-11:1	40	SW-SC	6		120	125	4780.4	3782.0	1100.4	3692.5	2538.1	0.75	.1	- 31	1.00	35.9	0.03	1.00	36.1	2.00	0.83	0.18	1.00	0.60	0.93	3.00
46.0	-14.6	35	SM	15		120	125	5163.0	3946.2	1045.5	4130.0	2757.2	0.73	1	1	1.00	30.8	2.50	1.05	34.7	2.00	0.80	0.18	1.00	0.60	0.90	3.00
51.0	-19.6	37	SM.	15		120	125	5715.3	4186.5	972.8	4755.0	3070.2	0.71	1	131	1.00	31.6	2.50	1.05	35.6	2.00	0.76	0.17	1.00	0.60	0.86	3.00
56.0	-24.6	31.	SP	4		120	125	6274.3	4433.5	906.8	5380.0	3383.2	0.69	1	1	1.00	25:7	0.00	1.00	25.7	0.31	0.72	0.17	1.00	0.63	0.84	2.32
62.5	-31.1	43	SW	4		120	125	7010.6	4764.2	830.6	6192.5	3790.1	0.67	1	- 24	1.00	34.4	0.00	1.00	34.4	2.00	0.67	0.16	1.00	0.60	0.79	3.00

Prepared by:

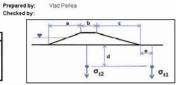
Vlad Perlea

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on You'd et. Al., "Uquefaction Resistance of Soils," Journal of Geolechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1878) which based on Boussinesq formulas for stresses generated by infinite length trapezuidal loading on elastic half-space.


[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

Project: Lower San Joaquin RD 17 Sta. 1724+68 Study Area: River Section: WR0017_090B Boring Number:

		Input Parameters			
Embankment Crest Elevation (ft)	32.1 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	15.1 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.225
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	5.111	Hammer Efficiency	72	Assumed Embanis	ment UW (pcf)
Groundwater Elevation for Analysis (ft)	7.1ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	54.4 ft
Crest Width, b (ft)	20.0 ft
Landside/Downstream Slope, c (ft)	40.8 ft
Dist. of Boring from Levee Toe [1] (ft)	-50.8 ft
Embankment Height, H (ft)	17.0 ft

5/6/2013

Date:

Date:

Boring	WR0017_090B
Boring on	the crest
SPT Grou	and Elevation Used in Analysis
32.10 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liso&Whitman]	Cn	C _R	Cs	N _{Lse} [Liao& Whitma n]	Alpha	Beta	(N _{t,te}) _{ce} [Liao&Whit man]	CRR _{r.s}	r _d	CSR ³	K,	f paramet er	K _e	FS against Liquefa ction
1.0	31.1	14	ML	50	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1,70	1	0.75	1.00	21.4	5.00	1.20	30.7	n.a.	1.00	MNUA	1.00	0.67	MN/A	MN/A
7.5	24.6	6	CL/SC	51	Unsaturated	120	125	900.0	900.0	0.0	Embankment	Embankment	1.53	1.	0.85	1.00	9.4	5.00	1.20	16.3	n.a.	0.98	#N/A	1.00	0.78	MNJA	#N/A
11.0	21.1	- 6	CL	94	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	1	0.85	1.00	7.7	5.00	1.20	14.3	n.a.	0.97	WN/A	1.00	0.79	MN/A	#N/A
16.0	16.1	9	ML	50	Unsaturated	120	125	1920.0	1920.0	0.0	Embankment	Embankment	1,05	1.	0.95	1.00	10.8	5.00	1.20	17.9	n.a.	0.96	#N/A	1.00	0.76	#N/A	#N/A
23.5	8.6	10	CL	94	Unsaturated	120	125	2800.3	2800.3	2020.3	2820.0	2820.0	0.87	1	0.95	1.00	9.9	5.00	1.20	16.9	h.a.	0.95	0.14	1.00	0.77	0.94	#N/A
26.0	6.1	9	ML	74		120	125	3075.6	3075.6	1995.6	1085:0	1022.6	0.83	1.	1	1.00	9.0	5.00	1.20	15.7	0.17	0.94	0.15	1.00	0.78	1.00	1.73
31.0	1.1	12	SMML	46		120	125	3622.8	3373.2	1922.8	1710.0	1335.6	0.79	.1.	1	1.00	11.4	5.00	1.20	18.7	0.20	0.92	0.17	1.00	0.78	1.00	1.74
36.0	-3.9	35	SP-SC	6		120	125	4157.7	3596.1	1832.7	2335.0	1648.6	0.77	3	- (1	1.00	32.2	0.03	1.00	32.4	2.00	0.88	0.18	1.00	0.60	1.00	3.00
41.0	-8.9	43	SM/ML	18		120	125	4686.5	3812.9	1736.5	2960.0	1961.6	0.74	1	1	1.00	38.4	3.23	1.07	44.2	2.00	0.84	0.19	1.00	0.60	1.00	3.00
46.0	-13.9	38	SP	4		120	125	5215.4	4029.8	1640.4	3585.0	2274.6	0.72	1	- 1	1.00	33.0	0.00	1.00	33.0	2.00	0.80	0.18	1.00	0.60	0.97	3.00
51.0	-18.9	33	SP	4		120	125	5747.5	4249.9	1547.5	4210.0	2587.6	0.71	1	1 1	1.00	27.9	0.00	1.00	27.9	0.37	0.76	0.18	1.00	0.62	0.93	2.83
56.0	-23.9	36	SP-SM	6		120	125	6284.6	4475.0	1459.6	4835.0	2900.6	0.69	1	- 1	1.00	29.7	0.03	1.00	29.9	0.46	0.72	0.18	1.00	0.60	0.88	3.00
61.0	-28.9	26	SP-SM	- 6	-	120	125	6827.4	4705.8	1377.4	5460.0	3213.6	0.67	1	1	1.00	20.9	0.03	1.00	21.0	0.23	0.68	0.17	1.00	0.67	0.87	1.78

NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.
[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1998 NCEER and 1998 NCEER MSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1976) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for inter (1.5 inch inside diameter) but the liner is not inserted.

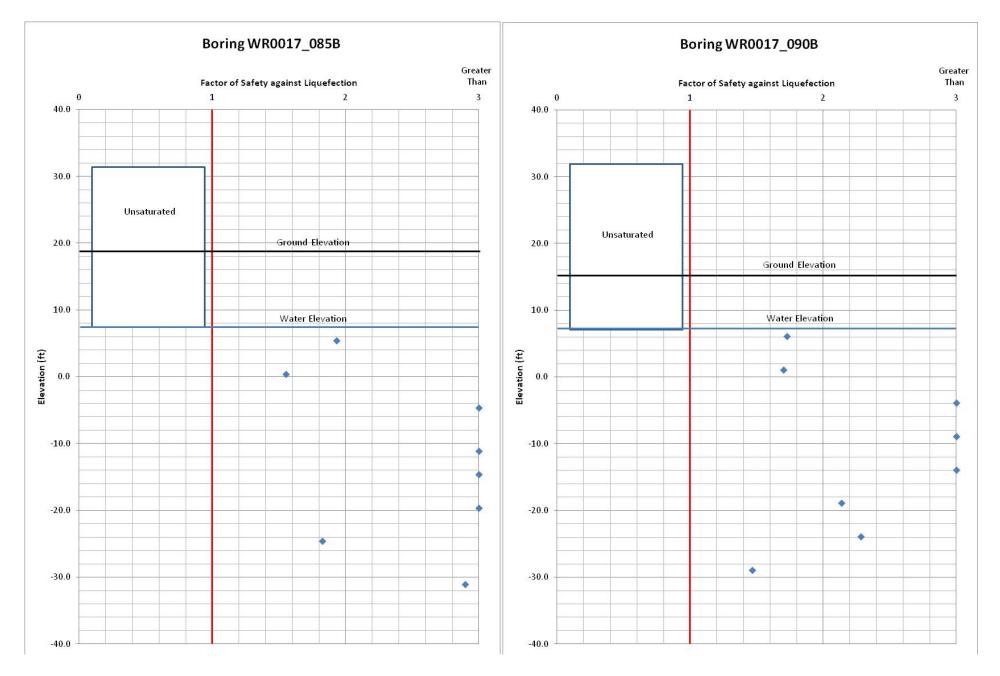
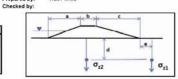



Fig. C-5. RD 17 South, Station 1684+57

Fig. C-6. RD 17 South, Station 1724+68

Project: Lower San Joaquin Study Area: RD 17 River Section: Sta. 1784+83

WR0017 096B Boring Number Input Parameters 32.8 ft 19.3 ft Embankment Crest Elevation (ft) Base Elevation (ft) Height below Crest of Embankment (ft) Sampler without Liner? (Y/N) PGA (g's) 0.225 0.0 ft 4.5 Borehole Dia (inch) coundwater Elevation during Drilling (ft) coundwater Elevation for Analysis (ft) Hammer Efficiency 72 3.8 ft Assumed Embankment UW (pcf 120.0 pcf

Surcharge Information	
Waterside/Upstream Stope, a (ft)	47.3ft
Crest Width, b (ft)	18.0 ft
Landside/Downstream Slope, c (ft)	41.9 ft
Dist of Boring from Levee Toe ⁽¹⁾ (ft)	-50.9 ft
Embankment Height, H (ft)	13.5ft

5/6/2013

Date:

Date:

Date:

Date:

Boring	WR0017_096B
Boring on	the crest
SPT Grou	ind Elevation Used in Analysis
32.80 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	Cu	C _R	C _s	N _{1,68} [Liao& Whitma n]	Alpha	Beta	(N _{1,68}) _{cs} [Liao&Whit man]	CRR _{zs}	r _d	CSR ³	K,	f paramet er	K _e	FS against Liquefa ction
1.0	31.8	8	SP-SM	8	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	12.2	0.30	1.01	12.7	n.a.	1.00	MINIA	1.00	0.75	#N/A	#N/A
6.0	26.8	19	SP-SM	6	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	31.0	0.03	1.00	31.2	n.a.	0.99	#N/A	1.00	0.60	#N/A	#N/A
11.0	21.8	5	SP-SC	12	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	1	0.85	1.00	6.5	1.55	1.03	8.2	n.a.	0.97	#IN/A	1.00	0.80	#N/A	#N/A
16.0	16.8	6	SC	20	Unsaturated	120	125	1918.6	1918.6	1618.6	1920.0	1920.0	1.05	1	0.95	1.00	6.6	3.61	1.08	10.7	n.a.	0.96	0.14	1.00	0.80	1.00	#N/A
23.5	9.3	3	CL	94	Unsaturated	120	125	2765.6	2765.6	1565.6	2820.0	2820.0	0.87	1	0.95	1.00	3.0	5.00	1.20	8.6	n.a.	0.95	0.14	1.00	0.80	0.94	#N/A
28.5	4.3	9	SC	16		120	125	3295.8	3295.8	1495.8	1812.5	1656.5	0.80	1	1	1.00	8:7	2.77	1.05	11.9	0.13	0.93	0.15	1.00	0.78	1.00	1.31
31.0	1.8	9	SC	16		120	125	3566.3	3441.5	1456.3	2125.0	1813.0	0.78	1	1	1.00	8.5	2.77	1.05	11.7	0.13	0.92	0.16	1.00	0.79	1.00	1:22
36.0	-3.2	17	SC	16		120	125	4109.3	3672.5	1374.3	2750.0	2126.0	0.76	1	1	1.00	15.5	2.77	1.05	19.1	0.20	0.88	0.17	1.00	0.72	1.00	1:84
41.0	-8.2	17	SC	16		120	125	4652.6	3903.8	1292.6	3375.0	2439.0	0.74	1	1.	1.00	15.0	2.77	1.05	18.6	0.20	0.84	0.17	1.00	0.72	0.96	1:68
46.0	-13.2	23	SC	16		120	125	5199.0	4138.2	1214.0	4000.0	2752.0	0.72	1	1	1.00	19.7	2.77	1.05	23.6	0.27	0.80	0.17	1.00	0.68	0.92	2.16
51.0	-18.2	48	SP-SM	- 11	V	120	125	5750.1	4377.3	1140.1	4625.0	3065.0	0.70	1	1	1.00	40.0	1.21	1.03	42.3	2.00	0.76	0.17	1.00	0.60	0.86	3.00
56.0	-23.2	56	SW-SM	12		120	125	6306.4	4621.6	1071.4	5250.0	3378.0	0.68		1	1.00	45.5	1.55	1.03	48.5	2.00	0.72	0.16	1.00	0.60	0.83	3.00
61.0	-28.2	63	SP	4		120	125	6868.1	4871.3	1008.1	5875.0	3691.0	0.66	1	1	1.00	49.8	0.00	1.00	49.8	2.00	0.68	0.16	1.00	0.60	0.80	3,00

Prepared by:

Viad Perlea

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils," Summary Report from the 1998 NCEER and 1998 NCEER an

72

PGA (g's)

0.225

Assumed Embankment UW (pcf

Surcharge from embanisment calculation is presented in Poulos & Davis (1976) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Hammer Efficiency

Updated April 2013

Lower San Joaquin Project: Study Area: RD 17 Sta. 1825+94 River Section: WR0017 102B

oundwater Elevation during Drilling (ft)

undwater Elevation for Analysis (ft)

Boring Number: Input Parameters Rod Length Above GS. (ft) Sampler without Liner? (Y/N) Embankment Crest Elevation (ft) 34.5 ft 14.0 ft Base Elevation (ft) Height below Crest of Embankment (ft) Borehole Dia. (inch) 5.9 ft

Prepared by: Vlad Perlea Checked by: .0 σ_{z2} σ_{z1}

Surcharge Information 34.9 ft 13.0 ft Crest Width, b (ft) 43.1 ft Dist. of Boring from Levee Toe[1](ft) -49.6 ft bankment Height, H (ft)

5/6/2013

Boring WR0017_102B SPT Ground Elevation Used in Analysis

Depth (ft)	Elevation (ft)		USCS Soil Type/Descr iption ^[2]		Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	C ₆	C _R	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,60}) _{cs} [Liao&Whit man]	CRR _{r.s}	r _d	CSR ³	K,	f paramet er	K _e	FS against Liquefa ction
1.0	33.5	10	SC	42	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1.	0.75	1.00	15.3	5.00	1.20	23.4	n.a.	1.00	#N/A	1.00	0.72	#N/A	#N/A
6.0	28.5	4	ML.	50	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	6.5	5.00	1.20	12.8	n.a.	0.99	#N/A	1.00	0.80	#N/A	#IN/A
11.0	23.5	5	CL.	94	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	Τ	0.85	1.00	6.5	5.00	1.20	12.7	n.a.	0.97	WN/A	1.00	0.80	#N/A	#N/A
18.5	16.0	7	CL	94	Unsaturated	120	125	2220.0	2220.0	0.0	Embankment	Embankment	0.98	1	0.95	1.00	7.3	5.00	1.20	13.8	n.a.	0.96	#N/A	1.00	0.80	#N/A	#N/A
23.5	11.0	11	CL CL	94	Unsaturated	120	125	2812.5	2812.5	2452.5	2820.0	2820.0	0.87	1	0.95	1.00	10.9	5.00	1.20	18.1	n.a.	0.95	0.14	1.00	0.76	0.93	#N/A
33.5	1.0	10	CL	94	Clay	120	125	3822.8	3517.1	2238.3	1589.0	1227.1	0.78	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.90	0.17	1.00	0.60	1.00	#N/A
36.0	-1.5	4	CL	94	Clay	120	125	4060.7	3599.0	2163.7	1901.5	1383.6	0.77	1.	- 1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.88	0.18	1.00	0.60	1.00	#N/A
41.0	-6.5	13	SC	39		120	125	4534.8	3761.0	2012.8	2526.5	1696.6	0.75	1.	- 1	1.00	11.7	5.00	1.20	19.0	0.20	0.84	0.18	1.00	0.75	1.00	1.67
46.0	-11.5	22	SP	4		120	125	5014.4	3928.6	1867.4	3151.5	2009.6	0.73	4	-1.	1.00	19.4	0.00	1.00	19.4	0.21	0.80	0.18	1.00	0.68	1.00	1.70
51.0	-16.5	15	SP-SM	7		120	125	5503.9	4106.1	1731.9	3776.5	2322.6	0.72	-1	-1	1.00	12.9	0.12	1.01	13.2	0.14	0.76	0.18	1.00	0.74	0.98	1.15
56.0	-21.5	16	SP-SM	7		120	125	6004.8	4295.1	1607.8	4401.5	2635.6	0.70	- 1	-1	1.00	13.5	0.12	1.01	13.7	0.15	0.72	0.18	1.00	0.74	0.94	1.19
61.0	-26.5	27	SP-SM	7		120	125	6517.4	4495.7	1495.4	5026.5	2948.6	0.69	1.	-1	1.00	22.2	0.12	1.01	22.5	0.25	0.68	0.17	1.00	0.66	0.89	1.98
66.0	-31.5	21	SP-SM	7		120	125	7041.1	4707.3	1394.1	5651.5	3261.6	0.67	- 1	-1	1.00	16.9	0.12	1.01	17.2	0.18	0.64	0.16	1.00	0.70	0.88	1.49

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

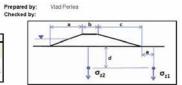


Fig. C-7. RD 17 South, Station 1784+83

Fig. C-8. RD 17 South, Station 1825+94

Project: Study Area: Lower San Joaquin RD 17 River Section: Sta. 1007+42

oning number: YYROU1/_0020					
		Input Parameters			
mbankment Crest Elevation (ft)	20.2 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Sase Elevation (ft)	12.7 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.21
leight below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	1.7 tt	Hammer Efficiency	72	Assumed Embanka	ment UW (pcf)
From dwater Elevation for Analysis (III)	200			120 0 pcf	

Vlad Perlea

Surcharge Information	
Waterside/Upstream Slope, a (ft)	15.8 ft
Crest Width, b (ft)	40.0 ft
Landside/Downstream Slope, c (ft)	37.5 ft
Dist. of Boring from Levee Toe ^[1] (ft)	-57.5 ft
Embankment Height, H (ft)	7.5 ft

5/3/2013

Date:

Date:

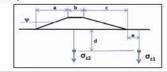
Boring	WR0017_002B
Boring or	the crest
SPT Grou	and Elevation Used in Analysis
20.20 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption ^{pi}	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	C _B	CR	Cs	N _{1,68} [Liao& Whitma n]	Alpha	Beta	(N _{Lee}) _{ce} [Liao&Whit man]	CRR _{r.s}	F _d	CSR ³	K,	f paramet er	К,	FS against Liquefa ction
1.0	19.2	10	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	15.3	1.55	1.03	17.3	n.a.	1.00	#NVA	1.00	0.72	#IN/A	#N/A
6.0	14.2	6	SM	15	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	9.8	2.50	1.05	12.8	n.a.	0.99	#N/A	1.00	0.77	#N/A	#N/A
11.0	9.2	7	SM	15	Unsaturated	120	125	1319.3	1319.3	899.3	1320.0	1320.0	1.27	1	0.85	1.00	9.0	2.50	1.05	12.0	n.a.	0.97	0.13	1.00	0.78	1.00	#N/A
16.0	4.2	11	CL	94	Unsaturated	120	125	1911.3	1911.3	891.3	1920.0	1920.0	1.05	1	0.95	1.00	13.2	5.00	1.20	20.8	n.a	0.96	0.13	1.00	0.74	1.00	#N/A
21.0	+0.8	9	CL.	94	Clay	120	125	2503.1	2347.1	870.6	1638.0	1413.4	0.95	1	0.95	1.00	0.8	5.00	1.20	n.a	2.00	0.95	0.15	1.00	0.60	1.00	#N/A
26.0	-5.8	- 4	CL.	94	Clay	120	125	3095.8	2627.8	838.3	2263.0	1726.4	0.90		31	1.00	n.a.	5.00	1:20	n.a.	2.00	0.94	0.17	1.00	0.60	1.00	#N/A
32.5	-12.3	17	CL.	94	Clay	120	125	3855.9	2982.3	785.9	3075.5	2133.3	0.84	1	1	1.00	n.a.	5.00	1.20	n.a	2.00	0.91	0.18	1.00	0.60	1.00	#N/A
36.0	-15.8	14	a	94	Clay	120	125	4263.1	3171.1	755.6	3513.0	2352.4	0.82	1	. 1	1.00	D.8.	5.00	1.20	n.a.	2.00	0.88	0.18	1.00	0.60	0.96	#N/A
42.5	-22.3	19	CL.	94	Clay	120	125	5019.2	3521.6	699.2	4325.5	2759.3	0.78	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.83	0.18	1.00	0.60	0.90	#N/A
46.0	-25.8	13	CH	100	Clay	120	125	5427.5	3711.5	670.0	4763.0	2978.4	0.76	1	. 15:	1.00	n.a.	5.00	1.20	n.a.	2.00	0.80	0.17	1.00	0.60	0.87	#N/A
51.0	-30.8	13	SM	15		120	125	6012.7	3984.7	630.2	5388.0	3291.4	0.73	1	1	1.00	11.4	2.50	1.05	14.4	0.15	0.76	0.17	1.00	0.76	0.90	1.23
56.0	-35.8	18	CL.	94	Clay	120	125	6600.7	4260.7	593.2	6013.0	3604.4	0.70	1	18	1.00	n.a:	5.00	1.20	n.a.	2.00	0.72	0.16	1.00	0.60	0.81	#N/A

NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1998 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001


Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embanisment to reflect free-field condition consistent with the PGA used.
[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

Project: Lower San Joaquin Prepared by: Vlad Perlea Date: Study Area: RD 17 Checked by: Date: Sta. 1048+79 WR0017 007E River Section: Boring Number

Embankment Crest Elevation (ft)	21.7 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	8.7 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.21
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (mch)	4.5		
Groundwater Elevation during Drilling (ft)	1.7 ft	Hammer Efficiency	72	Assumed Embank	ment UW (pcf)
Groundwater Elevation for Analysis (ft)	2.8 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	39.0 ft
Crest Width, b (ft)	15.0 ft
Landside/Downstream Slope, c (ft)	45.5 ft
Dist. of Boring from Levee Toe [11] (ft)	-53.0 ft
Embankment Height, H (ft)	13.0 ft

5/6/2013

Boring	WR0017_007B
Boring on	the crest
SPT Grou	and Elevation Used in Analysis
21.70 ft	

Depth (ft)	Elevation (ft)		USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Cn	Ca	Cs	N _{1,88} [Liao& Whitma n]	Alpha	Beta	(N _{1,50}) _{ce} [Liao&Whit man]	CRR _{z,s}	r _d	CSR ³	K,	f paramet er	K _e	FS against Liquefa ction
1.0	20.7	17	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	- 1	0.75	1.00	26.0	1.55	1.03	28.4	n.a.	1.00	#N/A	1.00	0.63	#N/A	#N/A
6.0	15.7	7	CL	94	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	- 1	0.8	1.00	11.4	5.00	1.20	18.7	n.a.	0.99	#N/A	1.00	0.76	#WA	#N/A
11.0	10.7	. 7	CL	94	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	- 1	0.85	1.00	9.0	5.00	1.20	15.8	n.a.	0.97	#N/A	1.00	0.78	#N/A	#N/A
16.0	5.7	10	CL	94	Unsaturated	120	125	1916.6	1916.6	1556.6	1920.0	1920.0	1.05	- 1	0.95	1.00	12.0	5.00	1.28	19.4	n.a.	0.96	0.13	1.00	0.75	1.00	#N/A
22.5	-0.8	12	SC	23		120	125	2650.6	2494.6	1498.1	1158.0	933.4	0.92	1	0.95	1.00	12.6	4.06	1.10	17.9	0.19	0.95	0.16	1.00	0.74	1.00	1.79
26.0	4.3	16	SC	23		120	125	3035.2	2660.8	1445.2	1595.5	1152.5	0.89	1 1	1	1.00	17.1	4.06	1.10	22.9	0.26	0.94	0.18	1.00	0.70	1.00	2.16
31.0	+9.3	1	CL	94	Clay	120	125	3575.5	2889.1	1360.5	2220.5	1465.5	0.86	.1	1	1.00	n.a.	5.00	1:20	n.a.	2.00	0.92	0.19	1.00	0.60	1.00	mN/A
36.0	-14.3	12	CL	94	Clay	120	125	4113.9	3115.5	1273.9	2845.5	1778.5	0.82	1	.1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.88	0.19	1.00	0.60	1.00	iiN/A
41.0	-19.3	38	ML	54		120	125	4655.1	3344.7	1190.1	3470.5	2091.5	0.80	- 4	1	1.00	36.3	5.00	1.20	48.5	2.00	0.84	0.19	1.00	0.60	1.00	3.00
46.0	-24.3	34	ML	54		120	125	5201.4	3579.0	1111.4	4095.5	2404.5	0.77	1	1 .	1.00	31.4	5.00	1.20	42.6	2.00	0.80	0.19	1.00	0.60	0.95	3.00
52.5	-30.8	28	CL	94	Clay	120	125	5920.4	3892.4	1017.9	4908.0	2811.4	0.74	.1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.75	0.18	1.00	0.60	0.89	#N/A
56.0	-34.3	9	CL	94	Clay	120	125	6311.8	4065.4	971.8	5345.5	3030.5	0.72	-1	1	1.00	n.a.	5.00	1.20	n a	2.00	0.72	0.17	1.00	0.60	0.87	#N/A

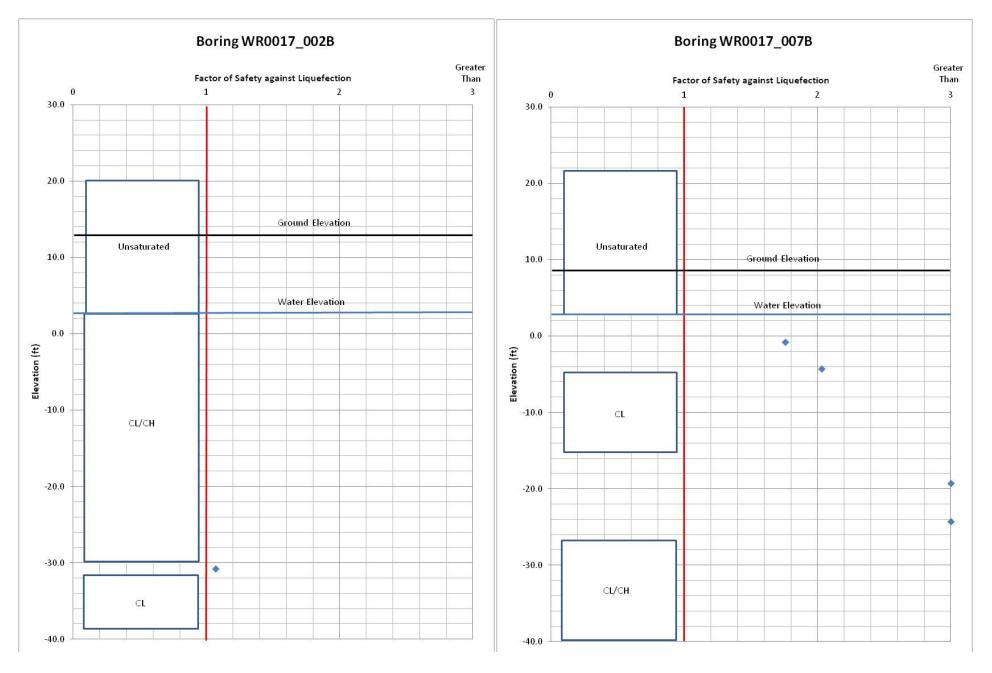
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Solis," Journal of Geotechnical and Geoem/commental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space. [3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted



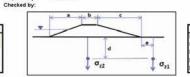

Fig. C-9. RD 17 North, Station 1007+42

Fig. C-10. RD 17 North, Station 1048+79

Project: Lower San Joaquin RD 17 Study Area:

River Section: Sta. 1099+90

		Input Parameters	,	·	The second second
Embankment Crest Elevation (ft)	228ft	Rod Length Above GS (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	9.8 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.21
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	2.8 ft	Hammer Efficiency	72	Assumed Embank	ment UW (pcf
Groundwater Elevation for Analysis (ft)	3.6 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	31.2 ft
Crest Width, b (ft)	25.0 ft
Landside/Downstream Slope, c (ft)	52.0 ft
Dist. of Boring from Levee Toe [1] (ft)	-64.5 ft
Embankment Height, H (ft)	13.0 ft

5/6/2013

Date:

Date:

Date:

Boring	WR0017_013B
Boring or	the crest
SPT Grou	and Elevation Used in Analysis
22.80 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Cu	Ca	Cs	N _{1,68} [Liao& Whitma n]	Alpha	Beta	(N _{t.se)} _{ce} [Liao&Whit man]	CRR _{r.s}	r _d	CSR ²	K,	f paramet er	K _e	FS against Liquefa ction
1.0	21.8	-11	GC:	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	16.8	1.55	1.03	18.9	n.a:	1.00	#N/A	1.00	0.70	#N/A	#N/A
8.5	14.3	15	CL	94	Unsaturated	120	125	1020.0	1020.0	0.0	Embankment	Embankment	1.44	1	0.85	1.00	22.0	5.00	1.20	31.4	n.a.	0.98	#N/A	1.00	0.66	#N/A	#N/A
13.5	9.3	18	SM:	26	Unsaturated	120	125	1620.0	1620.0	1560.0	1620.0	1620.0	1.14	- 1	0.95	1.00	23.5	4.39	1.12	30.7	n.a.	0.97	0.13	1.00	0.65	1.00	#N/A
16.0	6.8	7	SM	30	Unsaturated	120	125	1918.7	1918.7	1558.7	1920.0	1920.0	1.05	1	0.95	1.00	8.4	4.71	1.15	14.4	n.a.	0.96	0.13	1.00	0.79	1.00	#N/A
21.0	1.8	- 6	CL	94	Clay	120	125	2504.3	2441.9	1539.3	969.0	856.7	0.93	1	0.95	1.00	n.a.	5.00	1.20	n.a.	2.00	0.95	0.15	1.00	0.60	1.00	#N/A
26.0	-3.2	- 3	CL	94	Clay	120	125	3082.6	2708.2	1492.6	1594.0	1169.7	0.88	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.94	0.17	1.00	0.60	1,00	#N/A
31.0	-8.2	24	ML/SM	48		120	125	3642.4	2956.0	1427.4	2219.0	1482:7	0.85	- 1		1.00	24.4	5.00	1.20	34.2	2.00	0.92	0.19	1:00	0.64	1.00	3.00
36.0	-13.2	3	CL.	94	Clay	120	125	4193.6	3195.2	1353.6	2844.0	1795.7	0.81	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.88	0.19	1.00	0.60	1.00	#N/A
41.0	-18.2	20	CL	94	Clay	120	125	4742.8	3432.4	1277.8	3469.0	2108.7	0.79	1	1.	1.00	n.a.	5.00	1.20	n.a.	2.00	0.84	0.19	1.00	0.60	1.00	#N/A
46.0	-23.2	18	CL	94	Clay	120	125	5293.6	3671.2	1203.6	4094.0	2421.7	0.76	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.80	0.18	1.00	0.60	0.95	#N/A
51.0	-28.2	18	CL	94	Clay	120	125	5848.1	3913.7	1133.1	4719.0	2734.7	0.74	- 1	- 1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.76	0.18	1.00	0.60	0.90	#N/A
56.0	-33.2	20	CH	100	Clay	120	125	6407.1	4160.7	1067.1	5344.0	3047.7	0.71	- 1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.72	0.17	1.00	0.60	0.86	#N/A

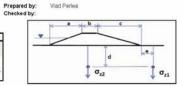
Prepared by:

Vlad Perlea

[1] "e" is the distance from landside toe, positive downstream and negative going upstream

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Upperfaction Resistance of Solis. Summary Report from the 1998 INCEER and 1998 INCEER NSF Worstrops on Evaluation of Liquetaction Resistance of Solis," Journal of Geotechnical and Geoenvironmental Engineering, October 2001. Surcharge from embarkment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.


[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

Lower San Joaquin RD 17 Project: Study Area: River Section: Sta. 1151+06

<u> </u>		Input Parameters			
Embankment Crest Elevation (ft)	22.9 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Blevation (ft)	9.9 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.21
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-0.1 ft	Hammer Efficiency	72	Assumed Embank	ment UW (pcf)
Groundwater Elevation for Analysis (ft)	44#			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	19.5 ft
Crest Width, b (ft)	23.0 ft
Landside/Downstream Slope, c (ft)	28.6 ft
Dist. of Boning from Levee Toe [1] (ft)	-40.1ft
Embankment Height, H (ft)	13.0 ft

5/6/2013

Boring	WR0017_019B
	the crest
22.90 ft	und Elevation Used in Analysis :

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Cu	C _R	Cs	N _{i,se} [Liao& Whitma n]	Alpha	Beta	(N _{1,6a}) _{ca} [Liao&Whit man]	CRR _{7,5}	r _d	CSR ³	K _e	f paramet er	K _o	FS against Liquefa ction
6.0	16.9	6	CL	80	Unsaturated	120	125	720,0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	9.8	5.00	1.20	16.8	n.a.	0.99	WN/A	1.00	0.77	#N/A	#N/A
10.0	12.9	7	SC-SM	30	Unsaturated	120	125	1200.0	1200.0	0.0	Embankment	Embankment	1.33	1	0.85	1.00	9.5	4.71	1.15	15.7	h.a.	0.98	#N/A	1.00	0.78	#N/A	#N/A
14.0	8.9	6	SC	16	Unsaturated	120	125	1679.9	1679.9	1559.9	1680.0	1680.0	1.12	11	0.95	1.00	7.7	2.77	1.05	10.9	n.a.	0.97	0.13	1.00	0.79	1.00	#N/A
18.5	4.4	6	CL	94	Unsaturated	120	125	2206.2	2206.2	1546.2	2220.0	2220.0	0.98	- 1	0.95	1.00	6.7	5.00	1.20	13.0	0.8	0.96	0.13	1.00	0.80	0.99	ボWA
22.5	0.4	8	SP-SC	6	- Set III - Set	120	125	2643.4	2643.4	1503.4	1160.0	910.4	0.89	1	0.95	1.00	8.2	0.03	1.00	8.2	0.10	0.95	0.16	1.00	0.79	1.00	10.89
26.0	-3.1	9	CL	94	Clay	120	125	3020.2	2833.0	1445.2	1597.5	1129.5	0.86	- 14	.1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.94	0.18	1:00	0.60	1.00	#N/A
31.0	-8.1	16	ML	50		120	125	3544.6	3045.4	1344.6	2222.5	1442.5	0.83	- 1	1	1.00	16.0	5.00	1.20	24.2	0.28	0.92	0.19	1.00	0.71	1.00	2.14
36.0	-13.1	18	ML	50		120	125	4063.8	3252.6	1238.8	2847.5	1755.5	0.81	1	1	1.00	17.4	5.00	1.20	25.9	0.31	0.88	0.20	1.00	0.70	1.00	2.39
41.0	-18.1	10	CL	94	Clay	120	125	4587.4	3464.2	1137.4	3472.5	2068.5	0.78	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.84	0.19	1.00	0.60	1.00	#N/A
46.0	-23.1	. 19	CL	94	Clay	120	125	5119.4	3684.2	1044.4	4097.5	2381.5	0.76	- 1	.1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.80	0.19	1.00	0.60	0.95	#N/A
51.0	-28.1	29	SM	26		120	125	5681.0	3913.8	961.0	4722.5	2694.5	0.74	1	1	1.00	25.6	4.39	1.12	33.1	2.00	0.76	0.18	1.00	0.63	0.92	3.00
56.0	-33.1	17	CL	94	Clay	120	125	6211.9	4152.7	886.9	5347.5	3007.5	0.71	1	- 1	1.00	0.8	5.00	1.20	n.a.	2.00	0.72	0.17	1.00	0.60	0.87	#N/A

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils." Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussiness formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.
[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

If it is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside dismeter) but the liner is not inserted.

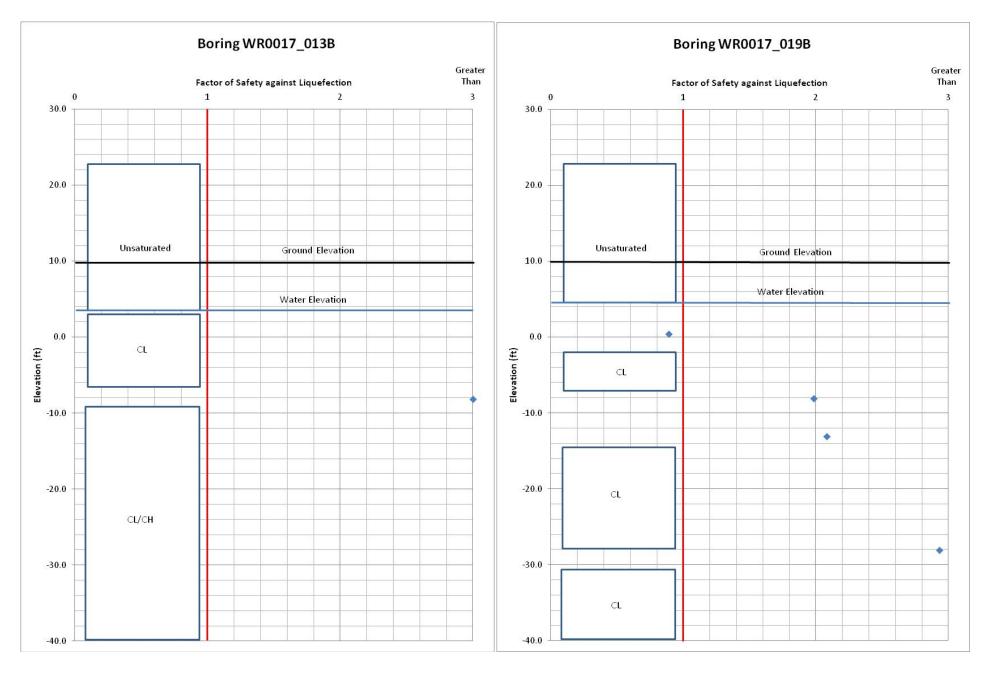


Fig. C-11. RD 17 North, Station 1099+90

Fig. C-12. RD 17 North, Station 1151+06

Project: Lower San Joaquin Study Area: RD 17

River Section: Sta. 1191+43

Boring Number: WR0017_024B					
		Input Parameters			
mbankment Crest Elevation (ft)	22.8 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
lase Elevation (ft)	7.8 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.21
leight below Crest of Embankment (ft)	0.0 ft	Borehole Dia: (inch)	4.5		
Froundwater Elevation during Drilling (ft)	-0.2ft	Hammer Efficiency	72	Assumed Embank	ment UW (pcf)
Froundwater Elevation for Analysis (ft)	4.6 ft			120.0 pcf	

Checked by: σ₂₂

Vlad Perlea

Prepared by:

Surcharge Information	
Waterside/Upstream Slope, a (ft)	31.5 ft
Crest Width, b (ft)	34.0 ft
Landside/Downstream Slope, c (ft)	36.0 ft
Dist. of Boring from Levee Toe [1] (ft)	-53.0 ft
Embankment Height, H (ft)	15.0 ft

5/6/2013

Date:

Date:

Date:

Date:

Boring	WR0017_024B
	the crest
SPT Grou	and Elevation Used in Analysi
22.80 ft	

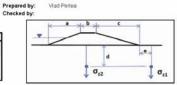
Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	C _B	C _R		N _{Les} [Liao& Whitma n]	Alpha	Beta	(N _{LES}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ke	f paramet er	K _o	FS against Liquefa ction
1.0	21.8	13	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	U.S.	0.75	1.00	19.9	1.55	1.03	22.1	n.a.	1.00	mN/A	1.00	0.88	#N/A	mN/A
6.0	16.8	13	CL.	63	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	21.2	5.00	1.20	30.5	n.a.	0.99	#N/A	1.00	0.67	#N/A	#N/A
11.0	11.8	9	CL	94	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	1	0.85	1.00	11.6	5.00	1.20	18.9	n.a.	0.97	#N/A	1,00	0.75	AVAW	#N/A
18.5	4.3	- 6	CH	100	Clay	120	125	2218.5	2218.5	1798.5	421.5	402,8	0.98	1	0.95	1.00	n.a.	5.00	1.20	n.a.	2.00	0.96	0.14	1.00	0.60	1.00	#N/A
23.5	-0.7	6	CL	69	Clay	120	125	2804.1	2772.9	1781.6	1046.5	715.8	0.87	. 1	0.95	1.00	n.a.	5.00	1.20	n.a.	2.00	0.95	0.19	1.00	0.60	1.00	mN/A:
26.0	-3.2	6	SM	15		120	125	3098.6	2911.4	1763.6	1359.0	872.3	0.85	1	- 1	1.00	6.1	2.50	1.05	8.9	0.10	0.94	0.20	1.00	0.80	1.00	2574
31.0	-8.2	14	ML	90		120	125	3669.4	3170.2	1709.4	1984.0	1185.3	0.82	1	10	1.00	13:7	5.00	1.20	21.5	0.23	0.92	0.21	1.00	0.73	1.00	1.67
36.0	-13.2	16	SC	28		120	125	4222.5	3411.3	1637.5	2609.0	1498.3	0.79	1	1	1.00	15.1	4.56	1.14	21.8	0.24	0.88	0.21	1.00	0.72	1.00	1.71
41.0	-18.2	3	SC	28		120	125	4766.2	3643.0	1556:2	3234.0	1811.3	0.76	4	10	1.00	2.7	4.56	1.14	7.7	0.09	0.84	0.20	1.00	0.80	1.00	0.08
46.0	-23.2	31	SC	27		120	125	5306.7	3871.5	1471.7	3859.0	2124.3	0.74	1	- 1	1.00	27.5	4.48	1.13	35.6	2.00	8.80	0.20	1.00	0.62	1.00	3.00
51.0	-28.2	10	CH	100	Clay	120	125	5848.3	4101.1	1388.3	4484.0	2437.3	0.72	140	1.	1.00	n.a.	5.00	1.20	n.a.	2.00	0.76	0.19	1.00	0.60	0.95	#N/A
56.0	-33.2	21	CL	94	Clay	120	125	6393.3	4334.1	1308.3	5109.0	2750.3	0.70	- 1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.72	0.18	1.00	0.60	0.90	#N/A

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on You'd et. Al., "Upgefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussiness formulas for stresses generated by infinite length trapezoidal loading on elastic half-space


[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

Project: Lower San Joaquin Study Area: River Section: RD 17 Sta. 1231+82

	Input Parameters												
Embankment Crest Bevation (ft)	23.7 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4								
Base Elevation (ft)	11.2 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.21								
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5										
Groundwater Elevation during Drilling (ft)	0.7 ft	Hammer Efficiency	72	Assumed Embank	ment UW (pcf)								
Groundwater Elevation for Analysis (ft)	48 tt			120.0 pcf									

Surcharge Information								
Waterside/Upstream Slope, a (ft)	25.0 ft							
Crest Width, b (ft)	35.0 ft							
Landside/Downstream Slope, c (ft)	36.3 ft							
Dist. of Boring from Levee Toe ^[1] (ft)	-53.8 ft							
Embankment Height, H (ft)	12.5 ft							

5/6/2013

Boring	WR0017_029B
Boring or	the crest
SPT Gro	and Elevation Used in Analysis
23.70 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption PI	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	C ₈	Ca	Cs	N _{t,te} [Liao& Whitma n]	Alpha	Beta	(Nus)cs [Liao&Whit man]	CRR _{r,5}	r _d	CSR ³	К	f paramet er	K,	FS against Liquefa ction
1.0	22.7	21	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	32.1	1.55	1.03	34.7	n.a.	1.00	#N/A	1.00	0.60	#N/A	#N/A
6.0	17.7	6.	SC	51	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	9.8	5.00	1.20	16.8	n.a	0.99	#N/A	1.00	0.77	#N/A	#N/A
12.5	11.2	8	SM	38	Unsaturated	120	125	1500.0	1500.0	1500.0	Embankment	Embankment	1,19	1	0.85	1.00	9.7	5.00	1.20	16.6	n.a.	0.97	#N/A	1.00	0.77	MN/A	MN/A
17:5	6.2	8	Q.	94	Unsaturated	120	125	2096.4	2096.4	1496.4	2100.0	2100.0	1.00	1	0.95	1.00	9.2	5:00	1.20	16.0	n.a.	0.96	0.13	1.00	0.78	1.00	#N/A
22.5	1,2	- 6	SM	37		120	125	2675.4	2675.4	1475.4	1218.0	993.4	0.89	1	0.95	1.00	6.1	5.00	1.20	12.3	0.13	0.95	0.16	1.00	0.80	1.00	1.27
27.5	-3.8	11	SM	15		120	125	3254,6	2973.8	1432.1	1843.0	1306.4	0.84	10	- 1	1.00	11.1	2.50	1.05	14.2	0.15	0.94	0.18	1.00	0.76	1:00	1.26
32.5	-8.8	19	SP	- 4		120	125	3819.4	3226.6	1371.9	2468.0	1619.4	0.81	1	1	1.00	18.5	0.00	1.00	18.5	0.20	0.91	0.19	1.00	0.69	1.00	1.56
36.0	-12.3	20	a.	94	Clay	120	125	4208.8	3397.6	1323.8	2905.5	1838.5	0.79	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.88	0.19	1.00	0.60	1.00	WN/A
41.0	-17.3	9.	a	94	Clay	120	125	4761.5	3638.3	1251.5	3530.5	2151.5	0.76		1	1.00	n:a:	5.00	1.20	n.a.	2.00	0.84	0.19	1.00	0.60	0.99	#N/A
46.0	-22.3	17	SC	42		120	125	5313.8	3878.6	1178.8	4155.5	2464.5	0.74	1	1.	1.00	15:1	5.00	1.20	23.1	0.26	0.80	0.18	1.00	0.72	0.96	2.02
51.0	-27.3	20	SC	26		120	125	5868.6	4121.4	1108.6	4780.5	2777.5	0.72	1	1	1.00	17.2	4.39	1.12	23.7	0.27	0.76	0.18	1.00	0.70	0.92	2.08
56.0	-32.3	27	SC	26		120	125	6427.4	4368.2	1042.4	5405.5	3090.5	0.70	1	- 4	1.00	22.6	4.39	1.12	29.7	0.45	0.72	0.17	1.00	0.66	0.88	3.00

[1] "e" is the distance from landside toe, positive downstream and negative going upstream

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Solls. Summary Report from the 1998 NCEER and

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.
[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

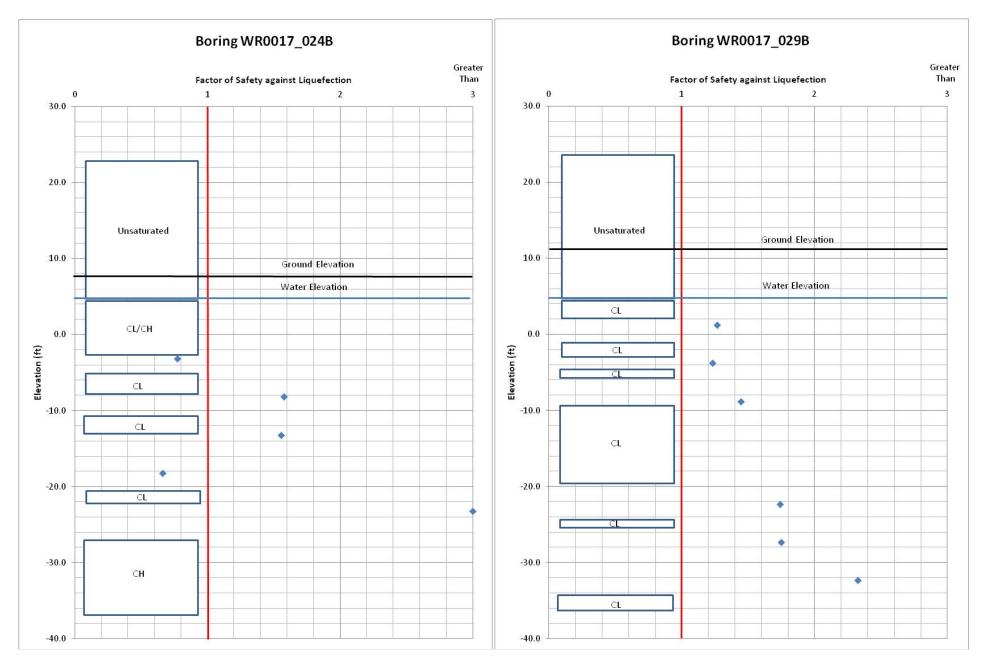
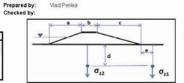



Fig. C-13. RD 17 North, Station 1191+43

Fig. C-14. RD 17 North, Station 1231+82

Project: Lower San Joaquin RD 17 Study Area: River Section: Sta 1292+29

Boring Number WR0017 036B Input Parameters 12.7 ft 0.21 Base Elevation (ft) Sampler without Liner? (Y/N) PGA (g's) 4.5 Height below Crest of Embankment (ft) 0.0 ft Borehole Dia. (inch) roundwater Elevation during Drilling (ft) 2.2ft 4.8ft Hammer Efficiency 72 Assumed Embankment UW (pcf 120.0 pcf

Vlad Perlea

Surcharge Information	
Waterside/Upstream Slope, a (ft)	33.8 ft
Crest Width, b (ft)	19.0 ft
Landside/Downstream Slope, c (ft)	37.5 ft
Dist. of Boring from Levee Toe [1] (ft)	-47.0 ft
Embankment Height, H (ft)	12.5 ft

5/6/2013

Date:

Boring	WR0017_036B
Boring on	the crest
SPT Grou	ind Elevation Used in Analysis
25,20 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	C _B	Ca	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Influence Overburden Correction Factor, Cu (Pressure for Analysis (psf) Analysis (psf) Influence (psf) Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Analysis (psf) Influence Guring Drilling Pressure for Factor, Cu (Psi) Influence Guring Drilling Guring Drilling Guring Drilling Guring Drilling Guring Gur								FS against Liquefa ction
1.0	24.2	8	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	- 1	0.75	1.00	12.2	1.55	1.03	14.2	n.a.	1.00	#N/A	1.00	0.75	#N/A	#N/A
6.0	19.2	6	CL	94	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	9.8	5.00	1.20	16.8	n.a.	0.99	#N/A	1.00	0.77	#N/A	#N/A
12.5	12.7	- 5	ML	50	Unsaturated	120	125	1500.0	1500.0	1500:0	Embankment	Embankment	1.19	1	0.85	1.00	6.1	5.00	1.20	123	n.a.	0.97	#N/A	1.00	0.80	#N/A	#N/A
16.0	9.2	4	ML.	50	Unsaturated	120	125	1916.2	1916.2	1496.2	1920.0	1920.0	1.05	1	0.95	1.00	4.8	5.00	1.20	10.8	n.a.	0.96	0.13	1.00	0.80	1.00	#N/A
21.0	42	6	CL	94	Clay	120	125	2480.6	2480.6	1460.6	1023.0	985.6	0.92	1	0.95	1.00	na.	5.00	1.20	n.a.	2.00	0.95	0.13	1.00	0.60	1.00	#N/A
27.5	-23	8	CL	94	Clay	120	125	3190.3	2909.5	1367.8	1835.5	1392.5	0.85	3.	- 31	1.00	n.a.	5.00	1.20	n.a.	2.00	0.94	0.17	1.00	0.60	1.00	#N/A
31.0	-5.8	32	SM.	15		120	125	3568.3	3069.1	1308.3	2273.0	1611.6	0.83	1	1 1	1.00	31.9	2.50	1.05	35.9	2.00	0.92	0.18	1.00	0.60	1.00	3.00
36.0	-10.8	25	CL	94	Clay	120	125	4106.0	3294.8	1221.0	2898.0	1924.6	0.80	3	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.88	0.18	1.00	0.60	1.00	#N/A
41.0	-15.8	11	CL	94	Clay	120	125	4646.3	3523.1	1136.3	3523.0	2237.6	0.77	1	1	1.00	na;	5.00	1.20	n.a.	2.00	0.84	0.18	1.00	0.60	0.98	#N/A
46.0	-20.8	20	CL	94	Clay	120	125	5191.7	3756.5	1056.7	4148.0	2550.6	0.75	24	- 1	1,00	n.a.	5.00	1.20	n.a.	2.00	0.80	0.18	1.00	0.60	0.93	#N/A
51.0	-25.8	12	SM	15.		120	125	5743.6	3995.4	983.6	4773.0	2863.6	0.73	1	1	1.00	10.5	2.50	1.05	13.5	0.15	0.76	0.17	1.00	.0.77	0.93	1.17
56.0	-30.8	17	SM	15		120	125	6302.0	4242.8	917.0	5398.0	3176.6	0.71	25	- 1	1,00	14.4	2.50	1.05	17.6	0.19	0.72	0.17	1.00	0.73	0.89	1.51
61.0	-35.8	34	SM	15		120	125	6866.8	4495.6	856.8	6023.0	3489.6	0.69	1	1	1.00	28.0	2.50	1.05	31.8	2.00	0.68	0.16	1.00	0.62	0.82	3.00

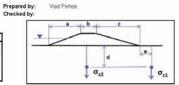
[1] "e" is the distance from land side toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER and 1998 NCEER (Soils) on Evaluation of Liquefaction Resistance of Soils;" Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from enthankment calculation is presented in Poulos & Davis (1979) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

Lower San Joaquin Project: Study Area: Sta. 1330+01 River Section:

WR0017 041B Boring Number:

		Input Parameters			
Embankment Crest Elevation (ft)	25.7 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	14.2 ft	Sampler without Liner? (Y/N)	0	PGA (g's)	0.21
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia (inch)	4.5		
Groundwater Elevation during Drilling (ft)	2.7 ft	Hammer Efficiency	72	Assumed Embanko	ment UW (pcf)
Groundwater Elevation for Analysis (ft)	5.0 ft			120.0 pd	

5/6/2013

Date:

Date:

Boring	WR0017_041B
	the crest
SPT Grou	nd Elevation Used in Analysi
25.70 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ce	C _R	Cs	N _{1,68} [Liao& Whitma n]	Alpha	Beta	(N _{Lea}) _{ce} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	K,	f paramet er	К	FS against Liquefa ction
1.0	24.7	18	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment.	1.70	1	0.75	1.00	27.5	1.55	1.03	30.0	n.a.	1.00	MN/A	1.00	0.62	AVM	#N/A
6.0	19.7	10	ML	86	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	- 1	0.8	1.00	16.3	5.00	1.20	24.6	n.a.	0.99	MN/A	1.00	0.71	MN/A	MN/A
11.0	14.7	. 7	ML.	86	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	1	0.85	1.00	9.0	5.00	1.20	15.8	n.a.	0.97	#N/A	1.00	0.78	#N/A	#N/A
17.5	8.2	7	SP	2	Unsaturated	120	125	2085.4	2085.4	1365.4	2100.0	2100.0	1.01	1	0.95	1.00	8.0	0.00	1.00	8.0	n.a.	0.96	0.13	1.00	0.79	1.00	MN/A
21.0	4.7	. 5	ML.	79		120	125	2475.3	2475.3	1335.3	1141.5	1122.8	0.92	1	0.95	1.00	5.3	5.00	1.20	11.3	0.12	0.95	0.13	1.00	0.80	1.00	1.42
26.0	-0.3	17	SP-SM	8		120	125	3027.9	2840.7	1272.9	1766.5	1435.8	0.86	1	-1	1.00	17.6	0.30	1.01	18.1	0.19	0.94	0.16	1.00	0.70	1.00	1.84
31.0	-5.3	19	SP-SM	8		120	125	3580.3	3081.1	1200.3	2391.5	1748.8	0.83	1	1	1.00	18.9	0.30	1.01	19.4	0.21	0.92	0.17	1.00	0.69	1.00	1.82
36.0	-10.3	31	SP-SM	8		120	125	4130.8	3319.6	1125.8	3016.5	2061.8	0.80	18	- 31	1.00	29.7	0.30	1.01	30.4	2.00	0.88	0.18	1.00	0.60	1.00	3.00
41.0	-15.3	17	CL	94	Clay	120	125	4683.4	3560.2	1053.4	3641.5	2374.8	0.77	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.84	0.18	1.00	0.60	0.95	#N/A
46.0	-20.3	31	SC	26		120	125	5240.2	3805.0	985.2	4266.5	2687.8	0.75		- 73	1.00	27.7	4.39	1.12	35.5	2.00	0.80	0.17	1.00	0.62	0.91	3.00
52.5	-26.8	21	CL	94	Clay	120	125	5971.3	4130.5	903.8	5079.0	3094.7	0.72	1	11.5	1.00	n.a.	5.00	1.20	n.a.	2.00	0.75	0.17	1.00	0.60	0.86	MVA.
56.0	-30.3	8	CL	94	Clay	120	125	6368.7	4309.5	863.7	5516.5	3313.8	0.70	1	- 31	1.00	n.a.	5.00	1.20	n.a.	2.00	0.72	0.16	1.00	0.60	0.84	#N/A
61.0	-353	10	9.0	50	1000	120	125	E940 5	45603	810.5	6141.5	3626.8	0.68	1	1 1	1.00	15.5	5.00	1.20	73.6	0.27	0.68	0.16	1.00	0.71	0.86	2.10

[1] "e" is the distance from landside toe, positive downstream and negative going upstream. [2] Soil description may be used to estimate fine's content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1998 NCEER and 1998 NCEER and 1999 NCEERNSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embanisment to reflect free-field condition consistent with the PGA used

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

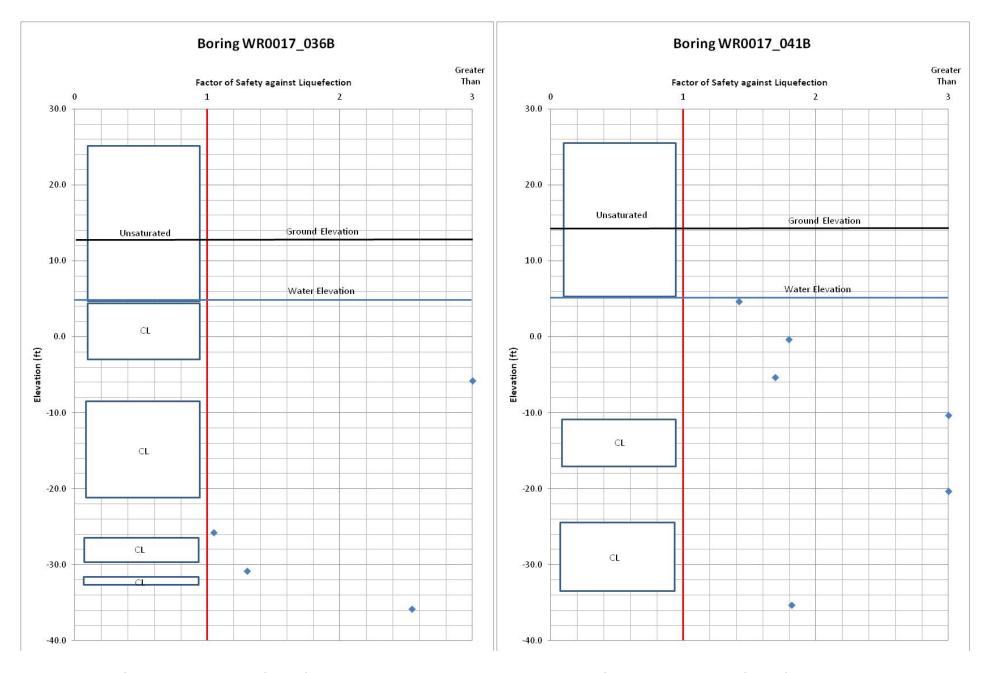
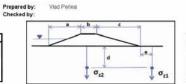



Fig. C-15. RD 17 North, Station 1292+29

Fig. C-16. RD 17 North, Station 1330+01

Lower San Joaquin RD 17 Project: Study Area: River Section: Sta. 1377+73

Boring Number: WR00	17_047B				
1		Input Parameters			-
mbankment Crest Elevation (ft) 27.2 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	14.2 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.21
Height below Crest of Embankn	nent (ft) 0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during D	criting (ft) 4.2 ft	Hammer Efficiency	72	Assumed Embanic	ment UW (pcf)
Groundwater Elevation for Analy	ysis (ft) 5.3 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	33.8 ft
Crest Width, b (ft)	19.0 ft
Landside/Downstream Slope, c (ft)	32.5 ft
Dist. of Boring from Levee Toe [1] (ft)	-42.0 ft
Embankment Height, H (ft)	13.0 ft

5/6/2013

Date:

Date:

Date:

Boring	WR0017_047B
Boring on	the crest
SPT Grou	and Elevation Used in Analysis
27.20 ft	

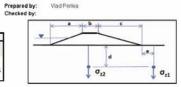
Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	CB	Cg	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,68}) _{cs} [Liao&Whit man]	CRR _{r.s}	r _d	CSR ³	K,	f paramet er	K _e	FS against Liquefa ction
1.0	26.2	15	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	23.0	1.55	1.03	25.2	n.a	1.00	#N/A	1.00	0.65	#N/A	#N/A
7.5	19.7	21	SC:	32	Unsaturated	120	125	900.0	900.0	0.0	Embankment	Embankment	1,53	1	0.85	1.00	32.8	4.83	1.17	43,3	n.a	0.98	#N/A	1.00	0.60	MN/A	MN/A
11.0	16.2	5	SP	4	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1.27	1.	0.85	1.00	6.5	0.00	1.00	6.5	n.a.	0.97	#N/A	1.00	0.80	#N/A	#N/A
16.0	11.2	6	ML	50	Unsaturated	120	125	1917.3	1917.3	1557.3	1920.0	1920.0	1.05	1	0.95	1.00	6.6	5.00	1.20	12.9	n.a	0.96	0.13	1.00	0.80	1.00	#N/A
21.0	6.2	11	SC	14	Unsaturated	120	125	2482.3	2482.3	1522.3	2520.0	2520.0	0.92	1	0.95	1.00	11.6	2.20	1.04	14.3	n.a.	0.95	0:13	1.00	0.75	0.96	#N/A
26.0	1.2	- 5	SC-SM	33		120	125	3024.4	2837.2	1449.4	1580.5	1324.7	0.86	1	1	1.00	5.2	4.88	1.18	11.0	0.12	0.94	0.15	1.00	0.80	1.00	1.20
31.0	-3.8	- 11	SM	29		120	125	3558.5	3059.3	1358.5	2205.5	1637.7	0.83	1	1	1.00	11.0	4.64	1.15	17.2	0.18	0.92	0.17	1.00	0.76	1.00	1.62
36.0	-8.8	17	SM	29		120	125	4088.6	3277.4	1263.6	2830.5	1950.7	0.80		- 1	1.00	16.4	4.64	1.15	23.4	0.26	0.88	0.17	1.00	0.71	1.00	2.27
41.0	-13.8	23	SP-SC	10	1	120	125	4621.6	3498.4	1171.6	3455.5	2263.7	0.78	1	1	1.00	21.5	0.87	1.02	22.8	0.25	0.84	0.18	1.00	0.67	0.98	2.13
47.5	-20.3	16	SP-SC	10		120	125	5324.0	3795.2	1061.5	4268.0	2670.6	0.75	1	-1	1:00	14.3	0.87	1.02	15.5	0.17	0.79	0.17	1.00	0.73	0.94	1.35
51.0	-23.8	18	SP-SC	10		120	125	5707.3	3960.1	1007.3	4705.5	2889.7	0.73	1	1	1.00	15.8	0.87	1.02	17.0	0.18	0.76	0:17	1.00	0.71	0.91	1.47
56.0	-28.8	19	ML	69		120	125	6261.4	4202.2	936.4	5330.5	3202.7	0.71	1	- 1	1.00	16.2	5.00	1.20	24.4	0.28	0.72	0.16	1.00	0.71	0.89	2.29
61.0	-33.8	7	CL	.94	Clay	120	125	6822.5	4451.3	872.5	5955.5	3515.7	0.69	1	1 1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.68	0.16	1.00	0.60	0.82	#N/A

[1] *e* is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Yould et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1998 NCEER and 1998 NCEER an

Surcharge from embankment calculation is presented in Poulos & Davis (1976) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.


[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

Lower San Joaquin RD 17 Project: Study Area: River Section: Sta. 1416+93 Boring Number WR0017_052B

(i)		Input Parameters			
Embankment Crest Elevation (ft)	27.6 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	14.1 ft	Sampler without Liner? (Y/N)	.0	PGA (g's)	0.225
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	5.1 ft	Hammer Efficiency	72	Assumed Embank	ment UW (pcf)
Commitment of Elevation for Application (8)	E F 44			120.0 + 4	

Vlad Perlea

Surcharge Information							
Waterside/Upstream Slope, a (ft)	32.4 ft						
Crest Width, b (ft)	16.0 ft						
Landside/Downstream Slope, c (ft)	29.7 ft						
Dist. of Boring from Levee Toe [1] (ft)	-37 7 ft						
Embankment Height, H (ft)	13.5 ft						

5/7/2013

Boring	WR0017_052B
Boring or	the crest
SPT Grou	and Elevation Used in Analysis
27,60 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	C _R	Cs	N _{t,se} [Liao& Whitma n]	Alpha	Beta	(N _{1,50}) _{ce} [Liao&Whit man]	CRR _{r,s}	r _d	CSR ³	K,	f paramet er	K _e	FS against Liquefa ction
1.0	26.6	18	ML	50	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	1	0.75	1.00	27.5	5.00	1.20	38.0	n.a	1.00	#N/A	1.00	0.62	#N/A	#N/A
7.5	20.1	21	SM	43	Unsaturated	120	125	900.0	900.0	0.0	Embankment	Embankment	1.53	1	0.85	1.00	32.8	5.00	1:20	44.4	n.a.	0.98	#N/A	1:00	0.60	#N/A	#N/A
11.0	16.6	3	SM	43	Unsaturated	120	125	1320.0	1320.0	0.0	Embankment	Embankment	1,27	1	0.85	1,00	3.9	5.00	1.20	9.6	n.a.	0.97	WN/A	1.00	0.80	WN/A	MN/A
16.0	11.6	. 3	SP	4	Unsaturated	120	125	1917.6	1917.6	1617.6	1920.0	1920.0	1.05	1	0.95	1.00	3.6	0.00	1.00	3.6	n.a.	0.96	0.14	1.00	0.80	1.00	#N/A
21.0	6.6	12	SC	24	Unsaturated	120	125	2473.9	2473.9	1573.9	2520.0	2520.0	0.92	1	0.95	1:00	12.7	4.18	1.11	18.2	n.a.	0.95	0.14	1.00	0.74	0.96	#IN/A
26.0	1.6	16	SC .	24		120	125	3001.6	2783.2	1484.1	1519.5	1276.1	0.87	1	1	1.00	16.7	4.18	1.11	22.7	0.25	0.94	0.16	1.00	0.70	1.00	2.32
32.5	-4.9	32	SM	14		120	125	3673.9	3049.9	1343.9	2332.0	1683.0	0.83	1	1	1.00	32.0	2.20	1.04	35.5	2.00	0.91	0.18	1.00	0.60	1.00	3.00
36.0	-8.4	38	SP	- 4	Clay	120	125	4035.8	3193.4	1268.3	2769.5	1902.1	0.81	- 1	13	1.00	n.a.	0.00	1.00	n.a	2.00	0.88	0.19	1.00	0.60	1.00	#IN/A
41.0	-13.4	8	CL	94	Clay	120	125	4558.5	3404.1	1166.0	3394.5	2215.1	0.79	1	1 1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.84	0.19	1.00	0.60	0.98	#N/A
46.0	-18.4	26	CL	94	Clay	120	125	5090.1	3623.7	1072.6	4019.5	2528.1	0.76	1		1.00	n.a.	5.00	1:20	n.a	2.00	0.80	0.19	1.00	0.60	0.93	#N/A
51.0	-23.4	19	CL	94	Clay	120	125	5631.3	3852.9	988.8	4644.5	2841.1	0.74	1	1 1	1.00	na.	5.00	1.20	n.a.	2.00	0.76	0.18	1.00	0.60	0.89	#IN/A
56.0	-28.4	20	CL	94	Clay	120	125	6181.6	4091.2	914.1	5269.5	3154.1	0.72	3.	11	1.00	n.a.	5.00	1.20	n.a	2.00	0.72	0.18	1.00	0.60	0.85	MN/A
61.0	-33.4	6	CL	94	Clay	120	125	6740.4	4338.0	847.9	5894.5	3467.1	0.70	1	1 1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.68	0.17	1.00	0.60	0.82	#N/A

NOTE
[1] "e" is the distance from landside toe, positive downistream and negative going upstream.
[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils." Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.
[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

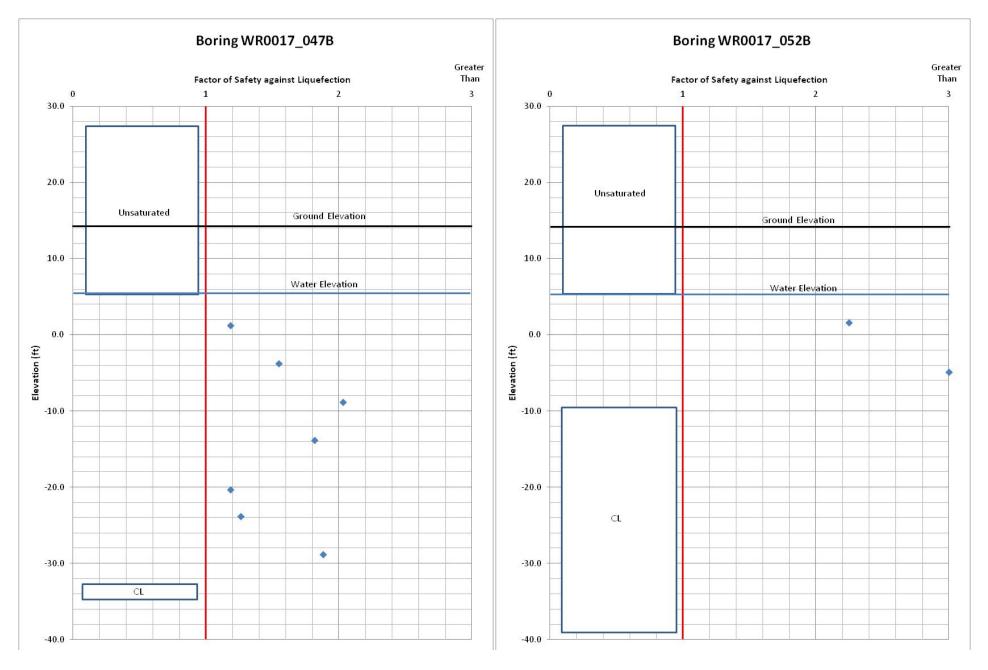


Fig. C-17. RD 17 North, Station 1377+73

Fig. C-18. RD 17 North, Station 1416+93

Project: Lower San Joaquin RD 17 Study Area:

River Section: Sta 1455+64

Boring Number: WH0017_05/B					
		Input Parameters			
Embankment Crest Elevation (ft)	27.7 ft	Rod Length Above GS (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	17.7 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.225
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia: (inch)	4.5		
Groundwater Elevation during Drilling (ft)	5.7 ft	Hammer Efficiency	72	Assumed Embank	ment LIW (pcf)
Groundwater Elevation for Analysis (ft)	7.0 ft		200	120.0 pcf	Share a transce

Prepared by: Viad Perlea Checked by: σ_{22} σ_{z1}

Surcharge Information							
Waterside/Upstream Slope, a (ft)	24.0 ft						
Crest Width, b (ft)	23.0 ft						
Landside/Downstream Slope, c (ft)	21.0 ft						
Dist of Boring from Levee Toe (1)	-32.5 ft						
Embankment Height, H (ft)	10.0 ft						

5/6/2013

Date:

Boring	WR0017_067B
	the crest
SPT Grou	und Elevation Used in Analysis
27.70 (

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descr iption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pcf)	Saturated Unit Weight (pcf)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _H [Liao&Whitman]	Ca	CR	Cs	N _{t,68} [Liao& Whitma n]	Alpha	Beta	(N _{1,60}) _{co} [Liao&Whit man]	CRR _{r.s}	r _d	CSR ³	ĸ	f paramet er	K _e	FS against Liquefa ction
1.0	26.7	16	GC	12	Unsaturated	120	125	120.0	120.0	0.0	Embankment	Embankment	1.70	- 1	0.75	1.00	24.5	1.55	1.03	26.8	n.a.	1,00	#WA	1.00	0.64	#N/A	#N/A
6.0	21.7	- 6	CL	94	Unsaturated	120	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	0.8	1.00	9.8	5.00	1.20	16.8	n.a.	0.99	#WA	1.00	0.77	#N/A	#N/A
11.0	16.7	7:	ML	50	Unsaturated	120	125	1319.9	1319.9	1199.9	1320.0	1320.0	1.27	1	0.85	1.00	9.0	5.00	1.20	15.8	n.a.	0.97	0.14	1.00	0.78	1.00	#N/A
16.0	11.7	5	SM	42	Unsaturated	120	125	1906.1	1906.1	1186.1	1920.0	1920.0	1.05	1	0.95	1.00	6.0	5.00	1.20	12.2	n.a.	0.96	0.14	1.00	0.80	1.00	#N/A
21.0	6.7	10	SP	4		120	125	2456.6	2456.6	1136.6	1321.5	1302.8	0.93	31	0.95	1.00	10.6	0.00	1.00	10.6	0.12	0.95	0.14	1.00	0.76	1.00	1.26
26.0	1.7	11	SC	28		120	125	3002.0	27524	1062.0	1946.5	1615.8	0.88	- 1	1	1.00	11.6	4.56	1.14	17.7	0.19	0.94	0.17	1.00	0.75	1.00	1.71
31.0	-3.3	15	SC	23		120	125	3543.6	2982.0	978.6	2571.5	1928.8	0.84	1	1	1.00	15.2	4.06	1.10	20.7	0.22	0.92	0.18	1.00	0.72	1.00	1.88
36.0	-8.3	15	SC	15		120	125	4086.7	3213.1	896.7	3196.5	2241.8	0.81	1	1	1.00	14.6	2.50	1.05	17.8	0.19	0.88	0.18	1.00	0.72	0.98	1.52
41.0	-13.3	40	SW-SM	10		120	125	4635.8	3450.2	820.8	3821.5	2554.8	0.78	1	1.	1.00	37.6	0.87	1.02	39.3	2.00	0.84	0.18	1.00	0.68	0.93	3.00
46.0	-18.3	- 11	CL	94	Clay	120	125	5192.6	3695.0	752.6	4446.5	2867.8	0.76	- 1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.80	0.18	1.00	0.60	0.89	#N/A
52.5	-24.8	18	CH	100	Clay	120	125	5928.0	4024.8	675.5	5259.0	3274.7	0.73	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.75	0.18	1.00	0.60	0.84	#N/A
56.0	-28.3	10	CH	100	Clay	120	125	6328.9	4207.3	638.9	5696.5	3493.8	0.71	4	1	1.00	п.а.	5.00	1.20	n.a.	2.00	0.72	0.17	1.00	0.60	0.82	#N/A
61.0	-33.3	19	CL	94	Clay	120	125	6907.0	4473.4	592.0	8321.5	3806.8	0.69	21	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.68	0.16	1.00	0.60	0.79	#N/A

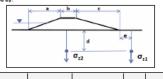
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquifaction Resistance of Soils." Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embanisment calculation is presented in Poulos & Davis (1878) which based on Boussiness formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Project: Lower San Joaquin Prepared by: Vlad Perlea Date: 6/4/2013 Study Area: RD 484 Checked by: Date: Levee Station: 1003+04 a wby c Boring Number: WR0404_0308

		Input Parameters			
Embankment Crest Elevation (ft)	23.0 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	15.0 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.2 ft	Hammer Efficiency	85	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	0.0 ft			120.0 pcf	

Suroharge Information							
Waterside/Upstream Slope, a (ft)	8.8 ft						
Crest Width, b (ft)	20.0 ft						
Landside/Downstream Slope, c (ft)	80.0 ft						
Dist. of Boring from Levee Toe ^[1] (ft)	-90.0 ft						
Embankment Height, H (ft)	8.0 ft						

Bor	ing	WR0404_030B
Bori	ng on	the crest
3P1	Groun	nd Elevation Used in Analysis
23	.00 ft	

Depth (i) Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Decori ption [2]		Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	eaturated Unit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.6}	r _d	CSR ³	Ka	f paramet er	K _e	F8 against Liquefa otion
56.0	-33.0	23	ML/SM	51		120	125	6450.1	4528.2	536.1	5925.0	3865.8	0.68	1	1	1.00	22.3	5.00	1.20	31.7	2.00	0.72	0.14	1.00	0.66	0.81	3.00
61.0	-38.0	21	CL	94	PI = 8	120	125	7045.7	4812.8	507.7	6550.0	4178.8	0.66	1	1	1.00	19.7	5.00	1.20	28.7	0.40	0.68	0.14	1.00	0.68	0.80	3.00
66.0	-43.0	34	SM	14		120	125	7646.0	5100.1	482.0	7175.0	4491.8	0.64	1	1	1.00	31.0	2.20	1.04	34.5	2.00	0.64	0.13	1.00	0.60	0.74	3.00

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Solis: Summary Report from the 1995 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Solis," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embanisment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

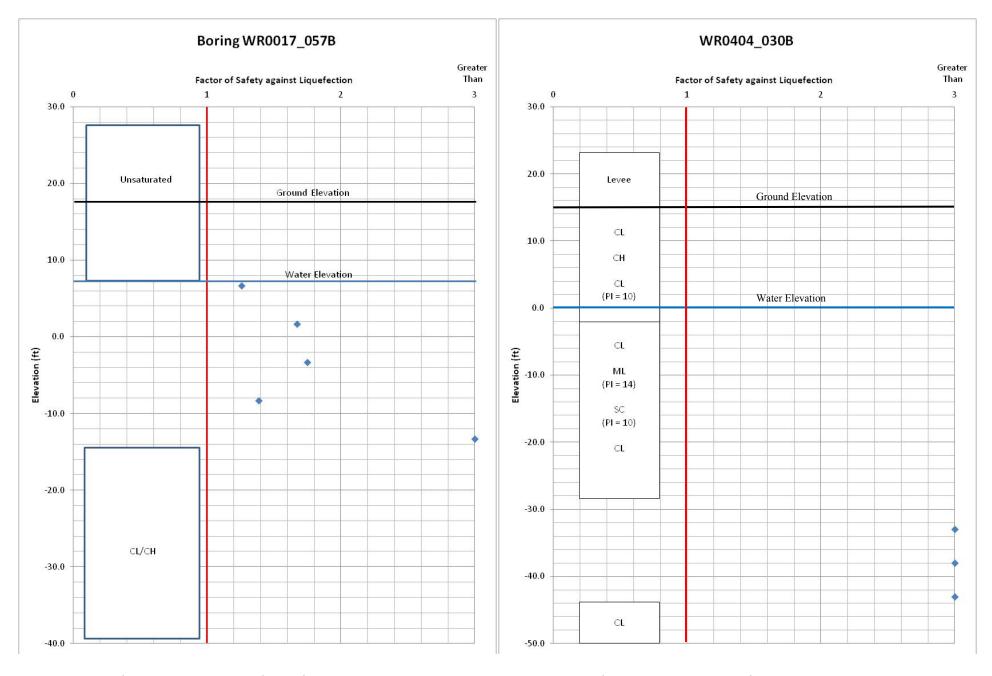


Fig. C-19. RD 17 North, Station 1455+64

Fig. C-20. RD 404, Station 1003+04

Lower San Joaquin RD 404

		Input Parameters			
Embankment Crest Elevation (ft)	22.2 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	12.7 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.3 ft	Hammer Efficiency	80	Assumed Embar	ikment UW (pcf)
Groundwater Elevation for Analysis (ft)	4.1 ft			120.0 pcf	

Prepared by: Viad Perlea Checked by: .0 σ_{z2} **∫** σ₂₁

Surcharge Information Crest Width, b (ft) 28.0 ft 50.0 ft Landside/Downstream Slope, c (ft) Dist. of Boring from Levee Toe [1] (ft) -64.0 ft Embankment Height, H (ft) 9.5 ft

5/20/2013

Boring WR0404_040B Boring on the crest SPT Ground Elevation Used in Analysis 22.20 ft

Depth (ft)	Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Cm	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,50}) _{ca} [Liao&Whit man]	CRR _{7.5}	Γd	C8R ³	Κe	f paramet er	Kσ	F8 against Liquefa otion
15.5	6.7	17	ML	88	Unsaturated	120	125	1854.0	1854.0	1134.0	1860.0	1860.0	1.07	1	0.95	1.00	23.0	5.00	1.20	32.6	n.a.	0.96	0.13	1.00	0.65	1.00	#N/A
19.5	2.7	29	ML	50		120	125	2316.5	2316.5	1116.5	1207.0	1119.6	0.96	1	0.95	1.00	35.1	5.00	1.20	47.1	2.00	0.95	0.13	1.00	0.60	1.00	3.00
42.5	-20.3	20	SP	5		120	125	4938.4	3971.2	888.4	4082.0	2559.4	0.73	1	1	1.00	19.5	0.00	1.00	19.5	0.21	0.83	0.17	1.00	0.68	0.94	1.72
47.5	-25.3	17	SP	5		120	125	5511.6	4544.4	836.6	4707.0	2872.4	0.68	1	1	1.00	15.5	0.00	1.00	15.5	0.16	0.79	0.17	1.00	0.72	0.92	1.35
52.5	-30.3	55	SM	15		120	125	6087.9	5120.7	787.9	5332.0	3185.4	0.64	1	1	1.00	47.1	2.50	1.05	51.9	2.00	0.75	0.16	1.00	0.60	0.85	3.00
57.5	-35.3	68	SW-SM	8		120	125	6667.8	5700.6	742.8	5957.0	3498.4	0.61	1	- 1	1.00	55.2	0.30	1.01	56.2	2.00	0.71	0.16	1.00	0.60	0.82	3.00
72.5	-50.3	57	CL	94	Clay	120	125	8427.7	7460.5	627.7	7832.0	4437.4	0.53	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.58	0.13	1.00	0.60	0.74	#N/A

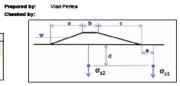
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on You'd E. A., "Usualization Resistance of Soils: Summary Report from the 1999 NCEER and 1998 NCEER and 1998 Northraps on Evaluation of Liquetaction Resistance of Soils," Journal of Gestechnical and Gest

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.


Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Lower San Joaquin Study Area: Levee Station: RD 404 1175+01

Borin	g Number:	WR0404_041B		
Emba	nkment Crest E	levation (ft)	22.4 ft	
Dans D			7.04	

		Input Parameters			
Embankment Crest Elevation (ft)	22.4 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	7.9 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dla. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.3 ft	Hammer Efficiency	80	Assumed Embar	ikment UW (pcf)
Groundwater Elevation for Analysis (ft)	4.1 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	20.3 ft
Crest Width, b (ft)	33.0 ft
Landside/Downstream Slope, c (ft)	52.2 ft
Dist. of Boring from Levee Toe ^[1] (ft)	-68.7 ft
Embankment Height, H (ft)	14.5 ft

5/20/2013

loring	WR0404_041B
loring on	the crest
PT Grou	and Elevation Used in Analysis
22.40 ft	

Depth (ft)	Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Descri ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	C8R ³	Κe	f paramet er	Κ _σ	F8 against Liquefa otion
13.5	8.9	4	ML	63	Unsaturated	120	125	1620.0	1620.0	0.0	Embankment	Embankment	1.14	1	0.95	1.00	5.8	5.00	1.20	11.9	n.a.	0.97	#N/A	1.00	0.80	#N/A	#N/A
18.5	3.9	5	ML	54		120	125	2217.6	2217.6	1737.6	481.0	468.5	0.98	1	0.95	1.00	6.2	5.00	1.20	12.4	0.14	0.96	0.13	1.00	0.80	1.00	1.59
23.5	-1.1	4	SW-SM	8		128	125	2796.4	2796.4	1716.4	1106.0	781.5	0.87	1	0.95	1.00	4.4	0.30	1.01	4.8	0.07	0.95	0.17	1.00	0.80	1.00	0.61
58.0	-35.6	27	ML	55		120	125	6598.4	5756.D	1211.9	5418.5	2941.2	0.61	1	1	1.00	21.8	5.00	1.20	31.2	2.00	0.70	0.17	1.00	0.66	0.89	3.00
63.0	-40.6	57	SM	24		128	125	7155.1	6312.7	1143.6	6043.5	3254.2	0.58	1	1	1.00	44.0	4.18	1.11	52.9	2.00	0.66	0.16	1.00	0.60	0.84	3.00
73.0	-50.6	46	CH/CL	94	Clay	120	125	8284.2	7441.8	1822.7	7293.5	3880.2	0.53	1	- 1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.58	0.14	1.00	0.60	0.78	#N/A

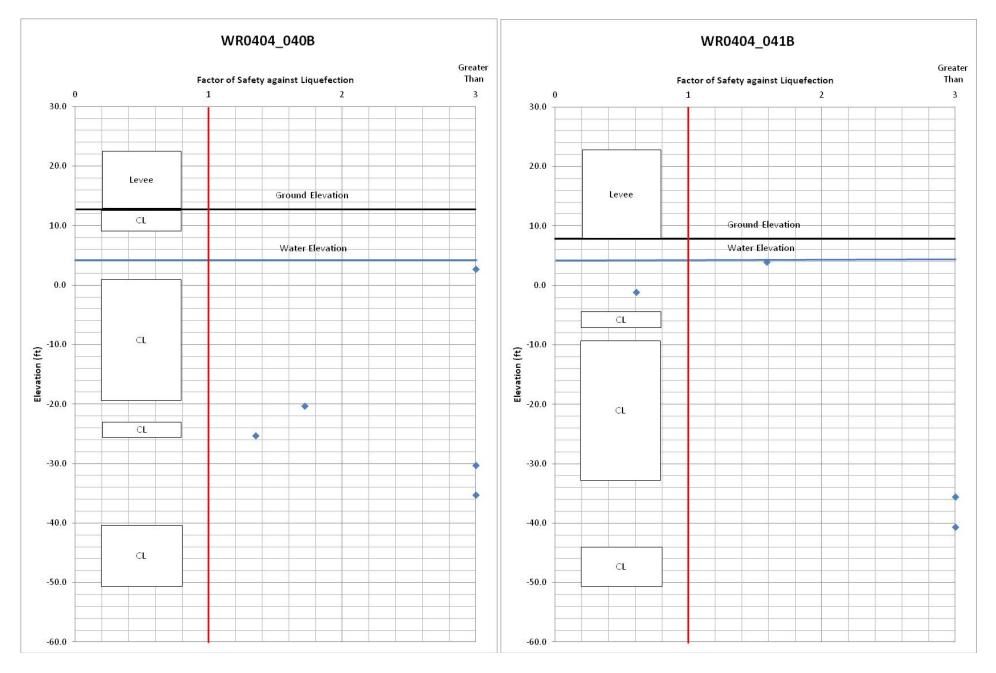


Fig. C-21. RD 404, Station 1201+00

Fig. C-22. RD 404, Station 1175+01

Project: Study Area: Lower San Joaquin RD 404 1139+55

WR0404_0448

		Input Parameters			
Embankment Crest Elevation (ft)	21.8 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	10.8 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.3 ft	Hammer Efficiency	80	Assumed Embar	nkment UW (pcf)
Groundwater Elevation for Analysis (ft)	0.0 ft			120.0 pct	

Prepared by: Viad Perlea Checked by: . σ_{z2} σ21

Suroharge Information 28.4 ft 28.0 ft Waterside/Upstream Slope, a (ft) Crest Width, b (ft) Landside/Downstream Slope, c (ft) 50.0 ft Dist. of Boring from Levee Toe [1] (ft) -64.0 ft Embankment Height, H (ft) 11.0 ft

5/20/2013

Date: Date:

Boring WR0404_044B Boring on the crest SPT Ground Elevation Used in Analysis 21.80 ft

Depth (ft	Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Decori ption [2]	Fines Content (%<\$200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,89}) _{cs} [Liao&Whit man]	CRR _{7.6}	Γd	C8R ³	Ku	f paramet er		F8 against Liquefa otion
23.5	-1.7	20	ML	95		120	125	2773.1	2773.1	1273.1	1508.5	1402.4	0.87	1	0.95	1.00	22.1	5.00	1.20	31.6	2.00	0.95	0.13	1.00	0.66	1.00	3.00
47.5	-25.7	30	SM	14		120	125	5483.3	4023.1	986.3	4508.5	2904.8	0.73	1	1	1.00	29.0	2.20	1.84	32.4	2.00	0.79	0.16	1.00	0.60	0.88	3.00
52.5	-30.7	21	SM	13		120	125	6050.8	4584.4	928.8	5133.5	3217.8	0.68	1	1	1.00	19.0	1.89	1.84	21.6	0.24	0.75	0.15	1.00	0.68	0.88	2.01
67.5	-45.7	50	SP-SM	10		120	125	7777.4	6311.D	780.4	7008.5	4156.8	0.58	1	1	1.00	38.6	0.87	1.02	40.3	2.00	0.62	0.14	1.00	0.60	0.76	3.00
72.5	-50.7	45	SP	5		120	125	8360.7	6894.3	738.7	7633.5	4469.8	0.55	1	- 1	1.00	33.2	0.00	1.00	33.2	2.00	0.58	0.13	1.00	0.60	0.74	3.00

NOTE

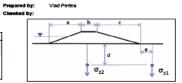
[2] Soil description may be used to estimate fines content where bib testing is not available.

Based on You'd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1996 INCEER and 1996 INCEER INST Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] it is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.


Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Lower San Joaquin Study Area: Levee Station: RD 404

1112+49 WR0404_0478 Boring Number

		input Parameters			
Embankment Crest Elevation (ft)	21.3 ft	Rod Length Above G3. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	4.8 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.3 ft	Hammer Efficiency	80	Assumed Embar	ikment UW (pcf)
Groundwater Elevation for Analysis (ft)	0.0 ft			120.0 pcf	

Surcharge Information Waterside/Upstream Slope, a (ft) 24.6 ft Crest Width, b (ft) 25.0 ft nstream Slope, c (ft) 47.6 ft Dist. of Boring from Levee Toe [1] (ft) -60.1 ft Embankment Height, H (ft) 16.5 ft

5/20/2013

Boring	WR0404_047B
Boring on	the crest nd Elevation Used in Analysis
SPT Grou	nd Elevation Used in Analysis
21.30 ft	

Depth (i) Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Decori ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Pressure during	Effective Overburden Pressure during Drilling (psf)			Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	C _R	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	C8R ³	Ka	f paramet er	Kσ	F8 against Liquefa otion
26.0	-4.7	12	ML	82		120	125	3084.6	2934.9	1932.6	1163.5	870.2	0.85	1	1	1.00	13.6	5.00	1.20	21.3	0.23	0.94	0.16	1.00	0.73	1.00	2.13
63.0	-41.7	13	ML	60		120	125	7015.2	5392.8	1238.2	5788.5	3186.4	0.63	1	1	1.00	10.9	5.00	1.20	18.0	0.19	0.66	0.16	1.00	0.76	0.91	1.68
68.0	-46.7	9	SM	15		120	125	7565.6	5943.2	1163.6	6413.5	3499.4	0.60	1	1	1.00	7.2	2.50	1.05	10.0	0.11	0.62	0.15	1.00	0.80	0.90	1.04
73.0	-51.7	24	CL	94	Clay	120	125	8122.7	6500.3	1095.7	7038.5	3812.4	0.57	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.58	0.14	1.00	0.60	0.79	#N/A

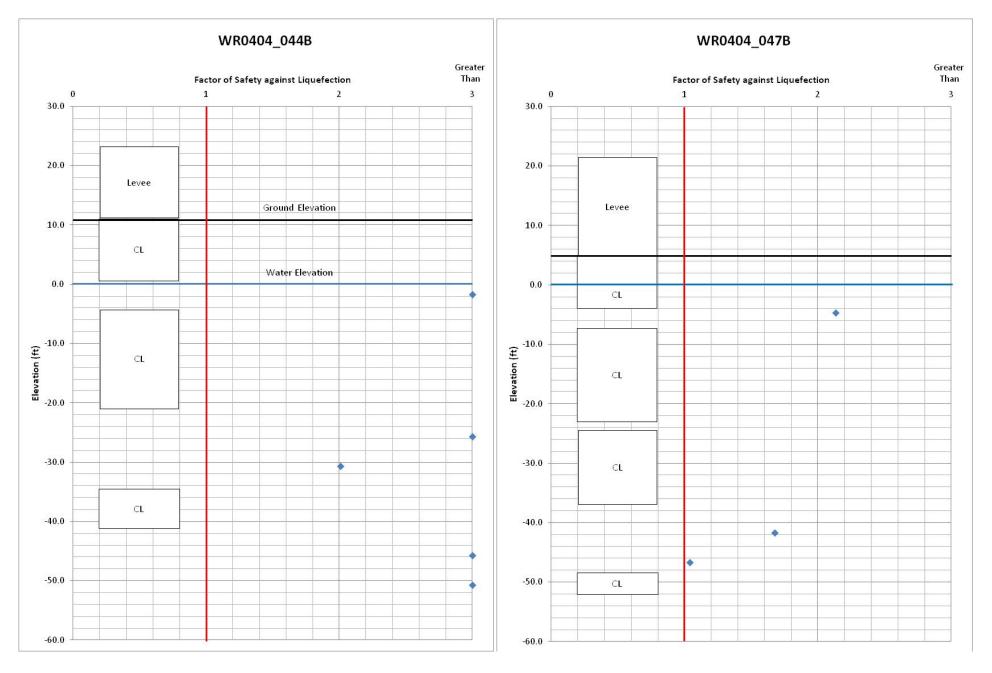
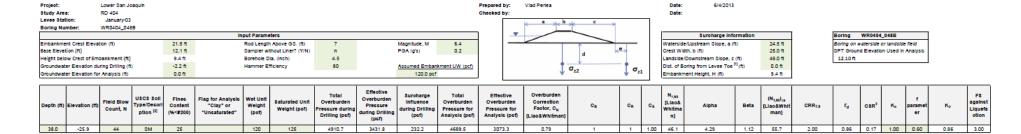



Fig. C-23. RD 404, Station 1139+55

Fig. C-24. RD 404, Station 1112+49

LIQUERFACTION TRIGGERING ANALYSIS

Project:	Lower San Joaquin						Prepared by: Viad P	erlea		Date: 5/20/2013		
Study Area:	RD 404						Checked by:			Date:		
Levee Station:	1087+77						Le .	a stability c si				
Boring Number:	WR0404_0538						<	70.00				
			Input Parameters				_ ▼			Surcharge Information		Boring WR0404_063B
Embankment Crest Ele	evation (ft)	22.4 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4			- 1	Waterside/Upstream Slope, a (ft)	56.9 ft	Boring on the crest
Base Elevation (ft)		2.2 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2		< <u>-></u>		Crest Width, b (ft)	18.0 ft	3PT Ground Elevation Used in Analysis
Height below Crest of E	Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5				a		Landside/Downstream Slope, c (ft)	36.2 ft	22.40 ft
Groundwater Elevation	during Drilling (ft)	-2.2 ft	Hammer Efficiency	80	Assumed Embank	ument UW (pcf)		† a ·	_	Dist. of Boring from Levee Toe [1] (ft)	-45.2 ft	
Groundwater Elevation	for Analysis (ft)	0.0 ft			120.0 pcf			↓ σ _{z2} ↓	O ₂₁	Embankment Height, H (ft)	20.2 ft	

Depth (t) Elevation (ft)	Field Blow Count, N	USCS Soll Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ke	f paramet er	Kσ	F8 against Liquefa otion
28.5	-6.1	10	CL/ML	34		120	125	3396.4	3143.1	2370.9	1026.5	645.9	0.82	1	1	1.00	10.9	5.00	1.20	18.1	0.19	0.93	0.19	1.00	0.76	1.00	1.50
33.0	-10.6	11	CL/ML	94		120	125	3965.5	3341.3	2287.5	1589.0	927.6	0.80	1	1	1.00	11.7	5.00	1.20	19.0	0.20	0.91	0.20	1.00	0.75	1.00	1.51
58.0	-35.6	22	SM	13		128	125	6410.6	4632.2	1707.6	4714.0	2492.6	0.68	1	1	1.00	19.8	1.89	1.84	22.4	0.25	0.70	0.17	1.00	0.68	0.95	2.05
63.0	~40.6	49	SW-SM	11		120	125	6935.2	5156.8	1607.2	5339.0	2805.6	0.64	1	1	1.00	41.9	1.21	1.03	44.2	2.00	0.66	0.16	1.00	0.60	0.89	3.00
68.0	-45.6	37	SW-SM	11		120	125	7467.6	5689.2	1514.6	5964.0	3118.6	0.61	1	1	1.00	30.1	1.21	1.03	32.1	2.00	0.62	0.15	1.00	0.60	0.86	3.00
73.0	-50.6	54	SW-SM	- 11		120	125	8007.6	6229.2	1429.6	6589.0	3431.6	0.58	1	1	1.00	42.0	1.21	1.03	44.3	2.00	0.58	0.14	1.00	0.60	0.82	3.00

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.
 [2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Yourl et. A., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEERNSF Winshaps on Evaluation of Liquefaction Resistance of Soils," Journal of Gedechnical and Geoen/Innmertal Engineering, October 2001.

based on hour d. M., Experience in resource or ones. Source years from an experience and 1990 industrial programmer and programmer accusation is presented in Protect Source (1978), which based on Bossiniera (hours of services generated by infinite length trapezoidal loading on etails half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

If it is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside dameter) but the liner is not inserted.

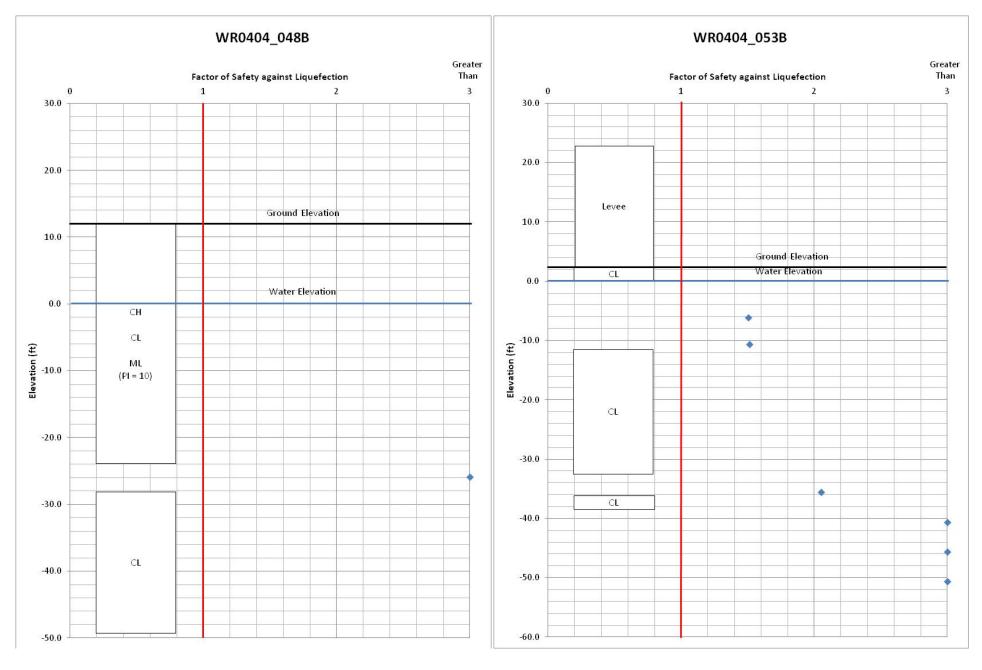


Fig. C-25. RD 404, Station 1108+07

Fig. C-26. RD 404, Station 1087+77

Lower San Joaquin Study Area: Levee Station: RD 404

Boring Number: WR0404_056B					
		Input Parameters			
Embankment Crest Elevation (ft)	18.9 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	3.4 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.2 ft	Hammer Efficiency	80	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	0.0 ft			120.0 pcf	

Prepared by: Viad Perlea σ_{z2}

Suroharge Information	
Waterside/Upstream Slope, a (ft)	17.5 ft
Crest Width, b (ft)	21.0 ft
Landside/Downstream Slope, c (ft)	166.3 ft
Dist. of Boring from Levee Toe ^[1] (ft)	-176.8 ft
Embankment Height, H (ft)	15.5 ft

5/20/2013

Boring	WR0404_068B										
Boring on the crest											
SPT Ground Elevation Used in Analysis											
18.90 ft											

Depth	(ft) Elevation (Field Blow Count,	USCS Soli Type/Decor N ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	C _R		N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{1.5}	r _d	CSR ³	Ke	f paramet er		F8 against Liquefa otion
21.0	-2.1	4	SM/ML	49		120	125	2506.1	2506.1	1845.1	670.5	539.5	0.92	1	0.95	1.00	4.7	5.00	1.20	10.6	0.12	0.95	0.15	1.00	0.80	1.00	1.16
63.0	-44.1	21	SM	32		120	125	7152.1	5841.7	1242.6	5920.5	3168.7	0.60	1	1	1.00	16.9	4.83	1.17	24.6	0.28	0.66	0.16	1.00	0.70	0.89	2.35
68.0	~49.1	23	SP-SM	10		120	125	7728.1	6417.7	1193.6	6545.5	3481.7	0.57	1	1	1.00	17.6	0.87	1.02	18.9	0.20	0.62	0.15	1.00	0.70	0.86	1.71
75.0	-56.1	49	SP-SM	10		120	125	8541.9	7231.5	1132.4	7420.5	3919.9	0.54	1	1	1.00	35.3	0.87	1.02	37.0	2.00	0.56	0.14	1.00	0.60	0.78	3.00

 $\underline{\text{NOTE}} \\ [1] \text{ "e" is the distance from landside toe, positive downstream and negative going upstream.}$

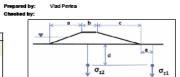
[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Yould et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1996 NCEERINSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoen/fronmental Engineering, October 2001.

Surcharge from embanisment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] it is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside dameter) but the liner is not inserted.


Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Lower San Joaquin RD 404 1042+70

WR0404_0598

		Input Parameters			
Embankment Crest Elevation (ft)	19.7 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	3.5 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.2 ft	Hammer Efficiency	80	Assumed Embar	nkment UW (pcf)
Groundwater Elevation for Analysis (9)	0.04			120.0 pcf	

5/20/2013

Date:

Boring	WR0404_069B									
Boring on	the crest									
SPT Ground Elevation Used in Analysis										
19.70 ft										

Depth (f) Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Decori ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Precsure during Drilling (pcf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	Γd	C8R ³	Ke	f paramet er	Kσ	F8 against Liquefa otion
27.5	-7.8	17	ML	88		120	125	3270.6	2921.2	1886.6	1395.0	908.3	0.85	1	1	1.00	19.3	5.00	1.20	28.1	0.37	0.94	0.19	1.00	0.68	1.00	3.00
47.5	-27.8	62	SM	15		128	125	5364.6	3767.1	1480.6	3895.0	2160.3	0.75	1	1	1.00	62.0	2.50	1.05	67.4	2.00	0.79	0.18	1.00	0.60	0.99	3.00
52.0	-32.3	26	ML/CL	80		120	125	5831.9	4115.9	1385.4	4457.5	2442.0	0.72	1	1	1.00	24.9	5.00	1.20	34.8	2.00	0.75	0.18	1.00	0.64	0.95	3.00
57.5	-37.8	17	ML/CL	95		120	125	6411.8	4695.8	1277.8	5145.0	2786.3	0.67	1	1	1.00	15.2	5.00	1.20	23.3	0.26	0.71	0.17	1.00	0.72	0.93	2.14
67.5	-47.8	14	CL/ML	95		120	125	7493.6	5777.6	1109.6	6395.0	3412.3	0.61	1	- 1	1.00	11.3	5.00	1.20	18.6	0.20	0.62	0.15	1.00	0.76	0.89	1.74
71.0	-51.3	29	CL/ML	85		120	125	7880.1	6164.1	1058.6	6832.5	3631.4	0.59	1	- 1	1.00	22.7	5.00	1.20	32.2	2.00	0.60	0.15	1.00	0.66	0.83	3.00

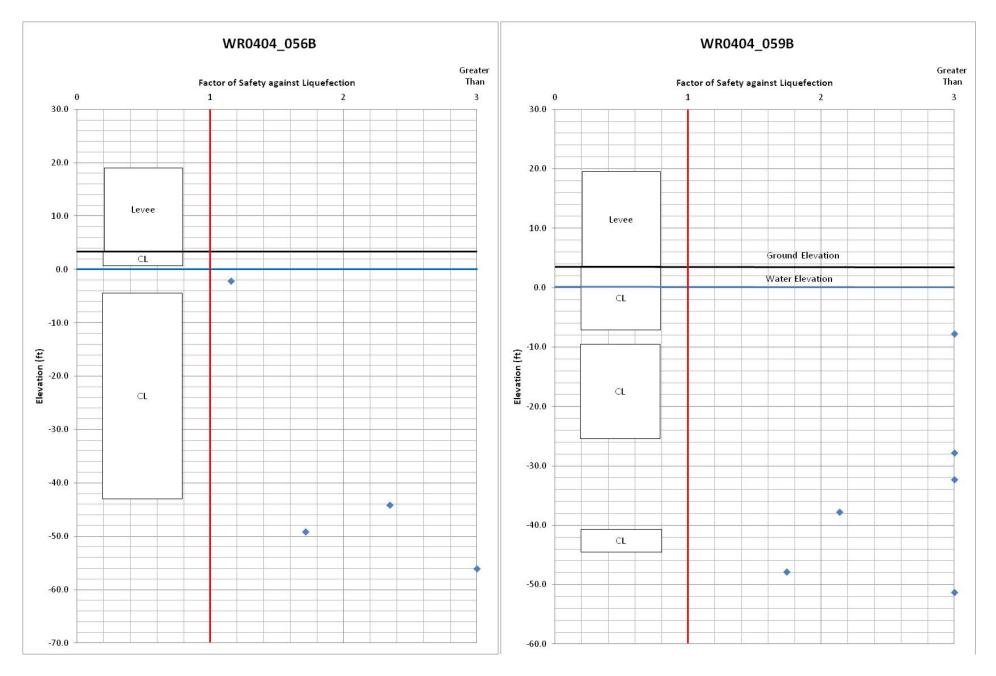


Fig. C-27. RD 404, Station 1070+28

Fig. C-28. RD 404, Station 1042+70

Project: Study Area: Levee Station: Lower San Joaquin RD 404

Boring Number: WR0404_0608					
		Input Parameters			
Embankment Crest Elevation (ft)	21.9 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	10.9 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.2 ft	Hammer Efficiency	80	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	0.0 ft			120.0 pcf	

Prepared by: Viad Perlea Checked by: .0 σ_{z2} σ_{z1}

Suroharge Information 12.1 ft Waterside/Upstream Slope, a (ft) Crest Width, b (ft) 29.0 ft 132.0 ft Landside/Downstream Slope, c (ft) Dist. of Boring from Levee Toe [1] (ft) 11.0 ft

5/20/2013

Date:

Date:

Boring WR0404_080B Boring on the crest SPT Ground Elevation Used in Analysis 21.90 ft

Deptr	(ft) Ele	evation (ft)	Fleid Blow Count, N	USCS Soli Type/Descri ption [2]		Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pot)	Saturated Offic	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	C8R ³	Ke	f paramet er	Kσ	F8 against Liquefa otion
53.	0	-31.1	25	SM	21		120	125	6125.6	4322.2	941.1	5195.5	3254.9	0.70	1	- 1	1.00	23.3	3.78	1.09	29.1	0.42	0.74	0.15	1.00	0.65	0.86	3.00
58.	0	-36.1	32	SM	21		120	125	6708.5	4593.1	899.0	5820.5	3567.9	0.68	1	- 1	1.00	29.0	3.78	1.09	35.2	2.00	0.70	0.15	1.00	0.60	0.81	3.00
63.	0	-41.1	50	SM	21		120	125	7295.2	4967.9	860.7	6445.5	3880.9	0.66	1	- 1	1.00	44.0	3.78	1.09	51.5	2.00	0.66	0.14	1.00	0.60	0.78	3.00
68.	0	-45.1	46	SM	21		120	125	7885.3	5146.0	825.8	7070.5	4193.9	0.64	1	1	1.00	39.3	3.78	1.09	46.5	2.00	0.62	0.14	1.00	0.60	0.76	3.00
73.	0	-51.1	18	CL/CH	94	Clay	120	125	8478.4	5427.0	793.9	7695.5	4506.9	0.62	1	- 1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.58	0.13	1.00	0.60	0.74	#N/A

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream

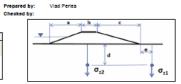
[2] Soil description may be used to estimate fines content where lab testing is not available. Based on Youd et. A., "Departudion Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEERNSF Worshops on Evaluation of Liquefaction Resistance of Soils; "Journal of Gedechrical and Geoen/Inomental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] it is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside dameter) but the liner is not inserted.

Updated April 2013


LIQUERFACTION TRIGGERING ANALYSIS

Project: Lower San Joaquin

Study Area: Calaveras River and Stockton Diverting Canal Levee Station: 6505+30

Boring Number: WR1614_017B

		Input Parameters							
Embankment Crest Elevation (ft)	16.0 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4				
Base Elevation (ft)	3.4 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2				
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5						
Groundwater Elevation during Drilling (ft)	1.0 ft	Hammer Efficiency	85	Assumed Emban	Assumed Embankment UW (pcf)				
Groundwater Elevation for Analysis (ft)	3.4 ft			120.0 pcf					

Surcharge Information Waterside/Upstream Slope, a (ft) 92.0 ft Crest Width, b (ft) 208.0 ft Landside/Downstream Slope, c (ft) 56.7 ft Dist. of Boring from Levee Toe [1] (ft) -158.6 ft Embankment Height, H (ft) 12.6 ft

5/21/2013

Boring	WR1614_017B									
Boring on the crest										
SPT Ground Elevation Used in Analysis										
16.00 ft										

Depth (ft	Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Decori ption [2]		Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)		Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.8}	r _d	CSR ³	Ka	f paramet er	Ke	F8 against Liquefa otion
50.5	-34.5	0	SM, MH	90		120	125	6224.2	4009.0	1498.7	4737.5	2372.5	0.73	1	1	1.00	0.0	5.00	1.20	5.0	0.07	0.76	0.20	1.00	0.80	0.98	0.53
58.0	-42.0	21	SM	15		120	125	7153.1	4459.9	1490.1	5675.0	2842.0	0.69	1	1	1.00	20.5	2.50	1.05	24.0	0.27	0.70	0.18	1.00	0.67	0.91	2.04
60.5	-44.5	27	SM	16		120	125	7462.2	4623.0	1485.7	5987.5	2998.5	0.68	1	1	1.00	25.9	2.77	1.05	30.0	2.00	0.68	0.18	1.00	0.63	0.88	3.00

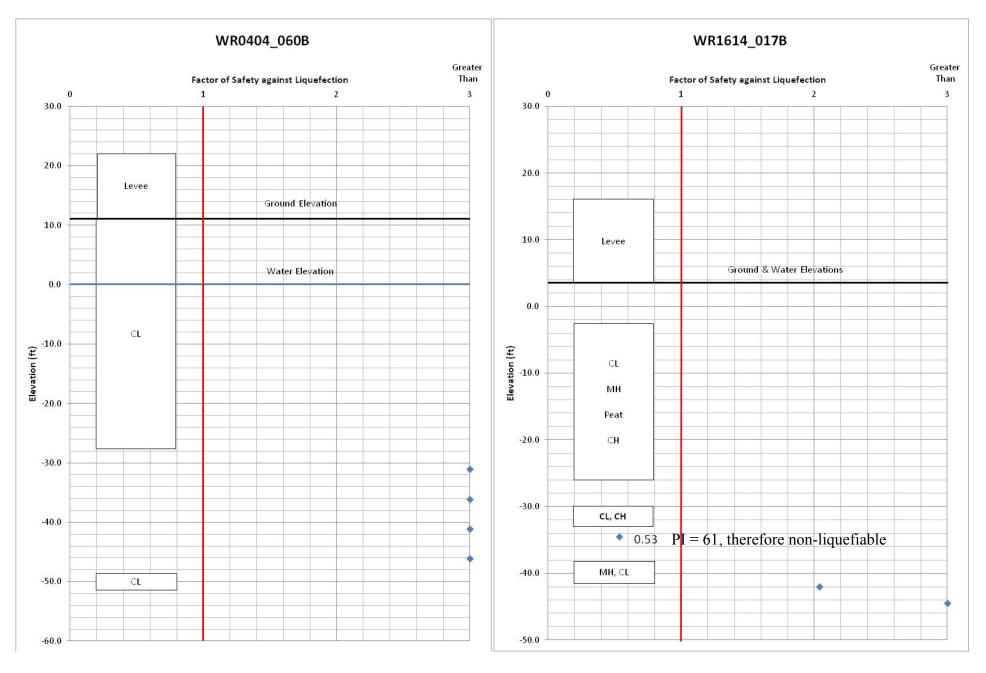
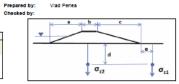


Fig. C-29. RD 404, Station 1028+00

Fig. C-30. Calaveras River, Station 6505+30

Project: Lower San Joaquin


Study Area: Calaveras River and Stockton Diverting Canal Levee Station: 3072+94

Levee Station: 3072+94

Boring Number: WR2074_0168

Groundwater Elevation for Analysis (ft)

Input Parameters Embankment Crest Elevation (ft) 16.4 ft Rod Length Above GS. (ft) Magnitude, M Base Elevation (ft) 3.0 ft Sampler without Liner? (Y/N) PGA (g's) 0.2 Height below Crest of Embankment (ft) 13.4 ft Borehole Dia. (Inch) 4.5 Groundwater Elevation during Drilling (ft) -1.0 ft Hammer Efficiency Assumed Embankment UW (pcf)

5/21/2013

Date:

Date:

Boring on waterside or landside field SPT Ground Elevation Used in Analysis 3.00 ft	Boring	WR2074_016B
3.00 ft	SPT Grou	nd Elevation Used in Analysis
	3.00 ft	

Depti	ı (ft) E	levation (ft)	Fleid Blow Count, N	USCS Soll Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)		Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	C8R ³	Ka	f paramet er		F8 against Liquefa otion
14	5	-11.5	7	ML	58		128	125	1814.9	1159.7	22.4	1792.5	1137.3	1.35	1	0.95	1.00	11.5	5.00	1.20	18.8	0.20	0.97	0.20	1.00	0.75	1.00	1.53
34	.0	-31.0	21	SM	15		120	125	4365.0	3460.2	135.0	4230.0	2358.0	0.78	1	1	1.00	21.1	2.50	1.05	24.6	0.28	0.90	0.21	1.00	0.67	0.96	1.96
39	.0	-36.0	27	SM	16		120	125	5021.7	4116.9	166.7	4855.0	2671.0	0.72	1	1	1.00	24.8	2.77	1.05	28.9	0.41	0.86	0.20	1.00	0.64	0.92	2.78
50	.0	-47.0	21	CL	94	Clay	120	125	6459.3	5554.5	229.3	6230.0	3359.6	0.62	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.77	0.18	1.00	0.60	0.83	#N/A

120.0 pcf

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where (ab testing is not available.

-1.0 ft

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1995 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Prepared by: 5/21/2013 Calaveras River and Stockton Diverting Canal 3087+75 Date: Levee Station WCNBCR_010B Boring Num Boring WCNBCR_010B Input Parameters Suroharge Information Rod Length Above GS. (ft) Boring on waterside or landside field 14.7 ft 19.7 ft Embankment Crest Elevation (ft) 6.4 Waterside/Upstream Slope, a (ft) .0 Base Elevation (ft) 1.6 ft Sampler without Liner? (Y/N) 0.2 Crest Width, b (ft) 27.0 ft SPT Ground Elevation Used in Analysis Height below Crest of Embankment (ft) 13.1 ft Borehole Dia. (Inch) 4.5 tream Slope, c (ft) 53.2 ft 1.60 ft roundwater Elevation during Drilling (ft) -1.0 ft Hammer Efficiency 77 Assumed Embankment UW (pcf) Dist. of Boring from Levee Toe [1] (ft) 198.7 ft σ_{z2} σ_{z1} undwater Elevation for Analysis (ft) Embankment Height, H (ft) -1.0 ft 13.1 ft 128.8 pcf

De	pth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soli Type/Decori ption [2]	Fines Content (%<\$200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	saturated Unit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)		Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.6}	r _d	C8R ³	Ke	f paramet er		F8 against Liquefa otion
	19.5	-17.9	13	SM	25		120	125	2424.6	1370.1	0.1	2424.5	1369.9	1.24	1	0.95	1.00	19.7	4.29	1.12	26.3	0.32	0.95	0.22	1.00	0.68	1.00	2.18
	24.5	-22.9	19	SP-SM	8		120	125	3849.7	1832.9	0.2	3049.5	1682.9	1.07	1	0.95	1.00	24.9	0.30	1.01	25.5	0.30	0.94	0.22	1.00	0.64	1.00	2.04

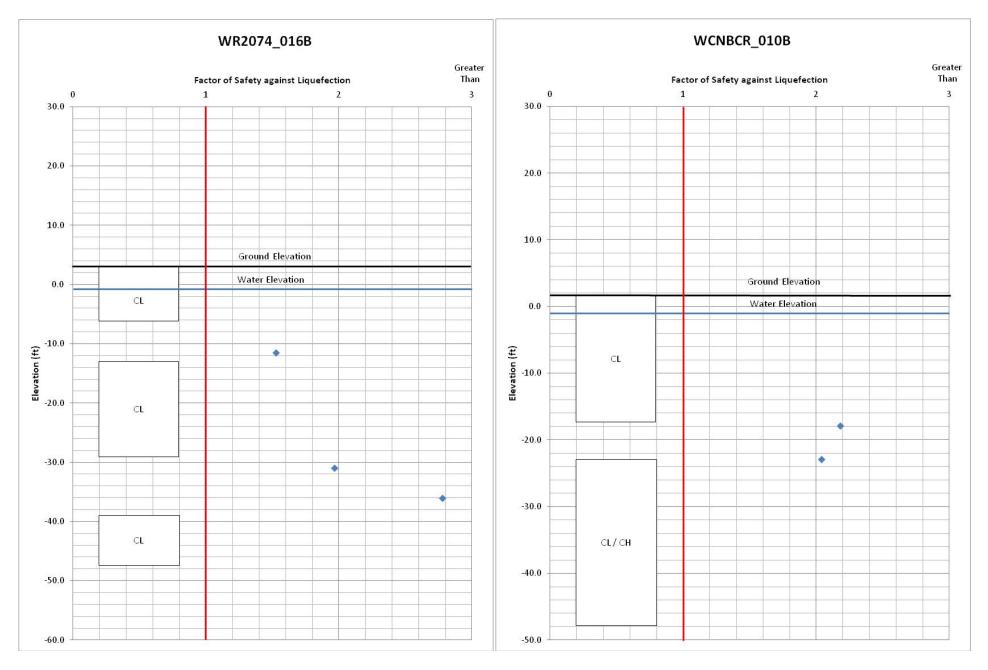
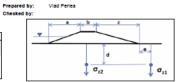


Fig. C-31. Calaveras River, Station 3072+94


Fig. C-32. Calaveras River, Station 3087+75

Project: Lower San Joaquin

Study Area: Calaveras River and Stockton Diverting Canal

Levee Station:

Boring Number: WR1614_U188					
		Input Parameters			
Embankment Crest Elevation (ft)	19.5 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	1.4 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	1.0 ft	Hammer Efficiency	85	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	1.4 ft			120.0 pcf	

5/21/2013

Date:

Boring	WR1614_018B
Boring on	the crest
SPT Grou	and Elevation Used in Analysis
19.50 ft	

Depth (ft)			USCS Soil Type/Decori ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	saturated Onit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	C ₅	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Κα	f paramet er	Κ _σ	F8 against Liquefa otion
41.5	-22.0	2	SP-SM	10		120	125	4975.0	3539.8	2052.0	2925.0	1464.8	0.77	1	1	1.00	2.2	0.87	1.02	3.1	0.06	0.84	0.22	1.00	0.80	1.00	0.41

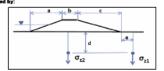
NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Solis: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Solis," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] it is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Prepared by: Viad Perlea 5/21/2013 Calaveras River and Stockton Diverting Canal 3130+53

Boring Number: WCNBCR_011B					
		Input Parameters			
Embankment Crest Elevation (ft)	19.0 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	7.3 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.2
Height below Crest of Embankment (ft)	11.7 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-1.5 ft	Hammer Efficiency	77	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	-1.0 ft			120.0 pcf	

Suroharge Information	
Waterside/Upstream Slope, a (ft)	32.8 ft
Crest Width, b (ft)	18.0 ft
Landside/Downstream Slope, c (ft)	19.7 ft
Dist. of Boring from Levee Toe ^[1] (ft)	193.3 ft
Embankment Height, H (ft)	11.7 ft

Boring on waterside or landside field SPT Ground Elevation Used in Analysis	Boring	WCNBCR_011B
SPT Ground Elevation Used in Analysis	Boring on	waterside or landside field
	SPT Grou	nd Elevation Used in Analysis
7.30 ft	7.30 ft	

Depth (t) Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Descri ption [2]	Fines Content (%<\$200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	CR		N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,60}) _{cs} [Liao&Whit man]	CRR _{7.6}	Γd	CSR ³	Κε	f paramet er	Κ _σ	F8 against Liquefa otion
6.0	1.3	12	ML	90	Unsaturated	120	125	720.0	720.0	0.0	720.0	720.0	1.70	1	0.8	1.00	20.9	5.00	1.20	30.1	n.a.	0.99	0.13	1.00	0.67	1.00	#N/A
10.0	-2.7	28	ML	90		120	125	1206.0	1131.1	0.0	1208.5	1102.4	1.37	1	0.85	1.00	41.8	5.00	1.20	55.1	2.00	0.98	0.14	1.00	0.60	1.00	3.00
15.0	-7.7	34	SM	45		120	125	1831.1	1456.7	0.1	1833.5	1415.4	1.21	1	0.95	1.00	50.0	5.00	1.20	65.0	2.00	0.97	0.16	1.00	0.60	1.00	3.00
20.0	-12.7	16	SM	20		120	125	2456.1	2081.7	0.1	2458.5	1728.4	1.01	1	0.95	1.00	19.7	3.61	1.08	24.8	0.29	0.95	0.18	1.00	0.68	1.00	2.46
25.0	-17.7	17	SM	20		120	125	3081.3	2706.9	0.3	3083.5	2041.4	0.88	1	0.95	1.00	18.3	3.61	1.08	23.4	0.26	0.94	0.18	1.00	0.69	1.00	2.14
30.0	-22.7	21	SM	20		120	125	3706.4	3332.0	0.4	3708.5	2354.4	0.90	1	1	1.00	21.5	3.61	1.08	26.8	0.33	0.93	0.19	1.00	0.67	0.96	2.53
45.0	-37.7	17	CL	94	Clay	120	125	5582.4	5208.0	1.4	5583.5	3293.4	0.64	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.81	0.18	1.00	0.60	0.84	#N/A

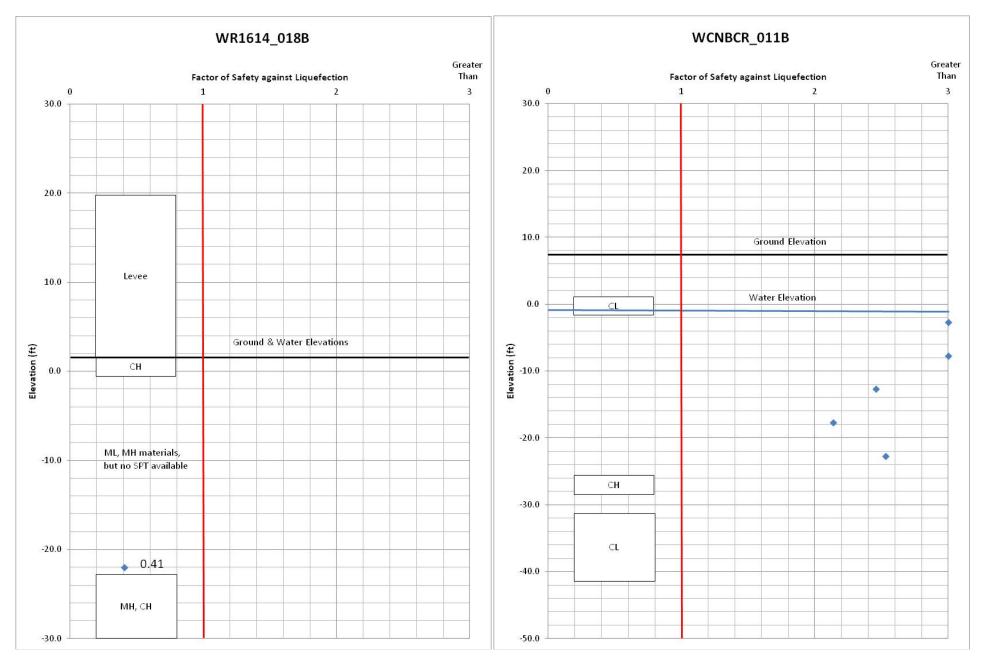
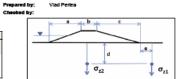


Fig. C-33. Calaveras River, Station 6565+02


Fig. C-34. Calaveras River, Station 3130+53

Lower San Joaquin

Study Area: Calaveras River and Stockton Diverting Canal

3156+02

WCNBCR_012B Input Parameters Rod Length Above GS. (ft) Base Elevation (ft) Sampler without Liner? (Y/N) PGA (g's) 13.6 ft 0.2 Height below Crest of Embankment (ft)
Groundwater Elevation during Prilling (ft) 4.5 0.0 ft Borehole Dia. (Inch) undwater Elevation during Drilling (ft) -1.5 ft 85 Hammer Efficiency Assumed Embankment UW (pcf) undwater Elevation for Analysis (ft) -1.0 ft 120.0 pcf

-20.9 ft

9.5 ft

Dist. of Boring from Levee Toe [1] (ft)

Embankment Height, H (ft)

5/21/2013

Boring	WCNBCR_012B
Boring on	the crest
SPT Grou	nd Elevation Used in Analysis
23.10 ft	

Depth (f) Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Decorl ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Weight	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.6}	r _d	CSR ³	Ke	f paramet er		F8 against Liquefa otion
37.0	-13.9	5	SM	20		120	125	3970.0	3196.3	608.0	3364.5	2559.5	0.81	1	1	1.00	5.8	3.61	1.08	9.8	0.11	0.87	0.15	1.00	0.80	0.96	1.08
44.0	-20.9	10	SM	40		120	125	4758.1	3547.5	521.1	4239.5	2997.7	0.77	1	- 1	1.00	10.9	5.00	1.20	18.1	0.19	0.82	0.15	1.00	0.76	0.92	1.78

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

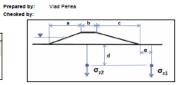
Based on Youd et. A., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEERNSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoen/wommental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect thee-field condition consistent with the PGA used.

[4] it is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for inter (1.5-inch inside dameter) but the liner is not inserted.

Updated April 2013


LIQUERFACTION TRIGGERING ANALYSIS

Project: Lower San Joaquin

Study Area: Calaveras River and Stockton Diverting Canal Levee Station: 6669+40

WR1614_0198 Boring Number:

		Input Parameters			
Embankment Crest Elevation (ft)	25.4 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	15.4 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	10.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	1.0 ft	Hammer Efficiency	77	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	4.0 ft			120.0 pcf	

5/21/2013

Date:

Boring	WR1614_019B
Boring on	waterside or landside field
SPT Grou	ind Elevation Used in Analysis
15.40 ft	

Depth (ft)	Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Decorl ption [2]		Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)		Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,50} [Llao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	C8R ³	Ka	f paramet er	Κ _σ	F8 against Liquefa otion
6.0	9.4	43	SM	40	Unsaturated	120	125	721.4	721.4	1.4	720.0	720.0	1.70	1	8.0	1.00	75.0	5.00	1.20	95.1	n.a.	0.99	0.13	1.00	0.60	1.00	#N/A
12.0	3.4	8	ML	81		120	125	1449.5	1449.5	9.5	1443.0	1405.6	1.21	1	0.85	1.00	10.5	5.00	1.20	17.7	0.19	0.97	0.13	1.00	0.76	1.00	2.17
17.0	-1.6	8	MH	100		120	125	2075.7	1913.5	22.7	2068.0	1718.6	1.05	1	0.95	1.00	10.3	5.00	1.20	17.3	0.18	0.96	0.15	1.00	0.77	1.00	1.84
22.0	-6.6	14	ML	60		120	125	2718.2	2343.8	40.2	2693.0	2031.6	0.95	1	0.95	1.00	16.2	5.00	1.20	24.5	0.28	0.95	0.16	1.00	0.71	1.00	2.58
27.0	-11.6	0	ML	53		120	125	3362.9	2988.5	59.9	3318.0	2344.6	0.84	1	1	1.00	0.0	5.00	1.20	5.0	0.07	0.94	0.17	1.00	0.80	0.98	0.61

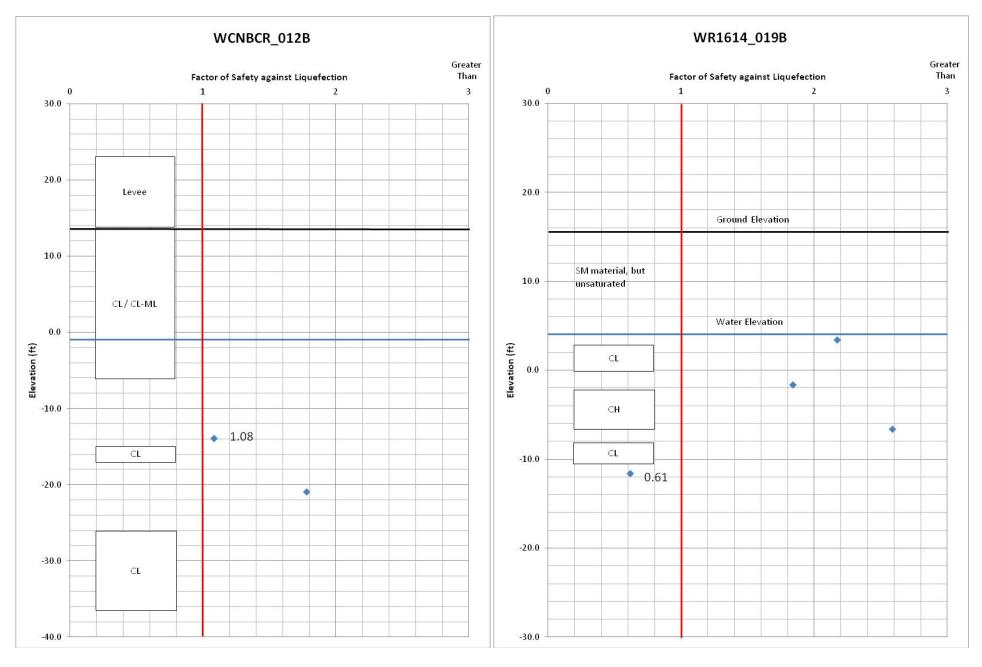


Fig. C-35. Calaveras River, Station 3156+02

Fig. C-36. Calaveras River, Station 6669+40

Project: Lower San Joaquin

Study Area: Calaveras River and Stockton Diverting Canal

Levee Station: 3238+00

Boring Number: WCNBCR_013B					
		Input Parameters			
Embankment Crest Elevation (ft)	25.5 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	14.4 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-1.5 ft	Hammer Efficiency	85	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	-1.0 ft			120.0 pcf	

Prepared by: Vlad Perica Checked by:

 σ_{z2}

5/21/2013

Date:

Date:

Boring WCNBCR_013B

Boring on the crest

SPT Ground Elevation Used in Analysis
25.50 ft

Depth (ft)	Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Descri ption ^{[편}	Fines Content (%<\$200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Preccure during Drilling (pcf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Precsure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	CR		N _{1,60} [Llao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ke	f paramet er	Κ _σ	F8 against Liquefa otion
24.0	1.5	15	SM	45	unsaturated	120	125	2803.4	2803.4	1255.4	2880.0	2880.0	0.87	1	0.95	1.00	17.5	5.00	1.20	26.0	n.a.	0.94	0.12	1.00	0.70	0.91	#N/A

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

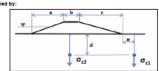
Based on Youd et. Al., "Uguefaction Resistance of Soils: Summary Report from the 1995 NCEER and 1998 NCEER/NSF Wiorshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013


LIQUERFACTION TRIGGERING ANALYSIS

 Project:
 Lower Gan Joaquin
 Prepared by:
 Viad Perica

 8 tudy Area:
 8 tockton Diverting Canal
 Checked by:

 Leves Station:
 5752-79
 Checked by:

Boring Number Input Parameters Embankment Crest Elevation (ft) 32.8 ft Rod Length Above GS. (ft) Magnitude, M 6.4 Base Elevation (ft) 20.8 ft Sampler without Liner? (Y/N) PGA (g's) 0.18 Height below Crest of Embankment (ft) Borehole Dia. (Inch) Groundwater Elevation during Drilling (ft) ~4.0 ft Hammer Efficiency 77 Assumed Embankment UW (pcf) Groundwater Elevation for Analysis (ft) 3.0 ft

Suroharge Information

Date:

7/22/2013

Boring	WC8BCR_004B
Boring on	the crest
SPT Grou	ind Elevation Used in Analysis
32.80 ft	

Depth (f) Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Descri ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	saturated Unit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	C8R ³	Ka	f paramet er	Κ _σ	F8 against Liquefa otion
6.0	26.8	10	ML	60		128	125	720.0	720.0	0.0	Embankment	Embankment	1.70	1	8.0	1.00	17.5	5.00	1.20	25.9	0.31	0.99	#N/A	1.00	0.70	#N/A	#N/A
13.0	19.8	7	ML	70		120	125	1559.9	1559.9	1439.9	1560.0	1560.0	1.16	1	0.95	1.00	9.9	5.00	1.20	16.9	0.18	0.97	0.11	1.00	0.77	1.00	2.38
16.0	16.8	6	ML	62		120	125	1916.6	1916.6	1436.6	1920.0	1920.0	1.05	1	0.95	1.00	7.7	5.00	1.20	14.2	0.15	0.96	0.11	1.00	0.79	1.00	2.03
46.0	-13.2	27	ML	62		120	125	5168.7	4794.3	1042.7	4161.0	3150.1	0.66	1	1	1.00	23.0	5.00	1.20	32.6	2.00	0.80	0.12	1.00	0.65	0.87	3.00

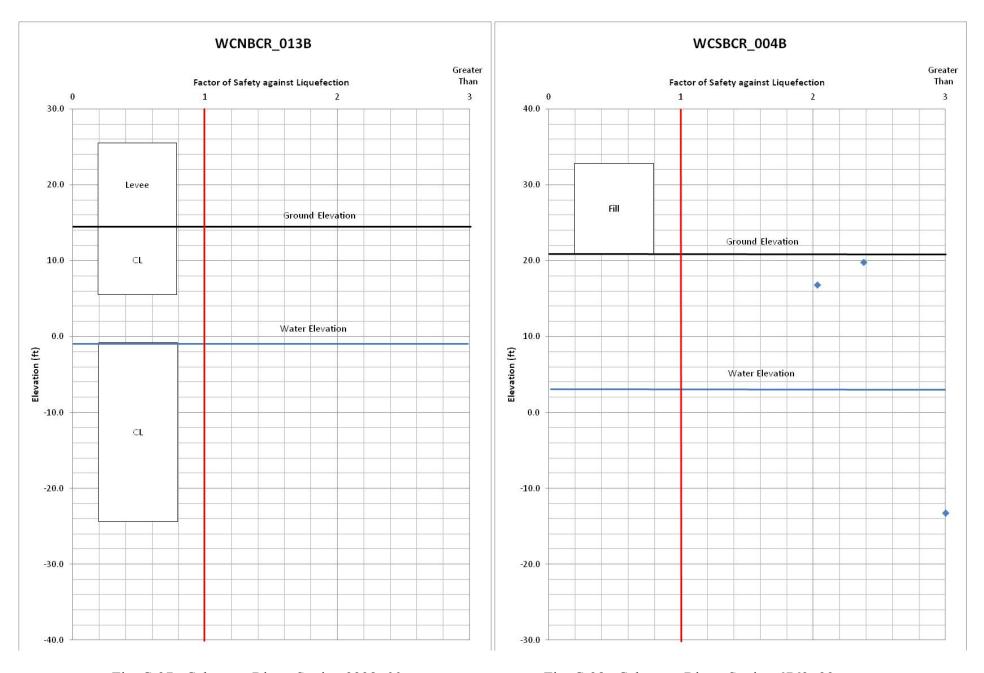
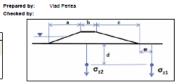



Fig. C-37. Calaveras River, Station 3238+00

Fig. C-38. Calaveras River, Station 6762+29

Project: Lower San Joaquin Study Area: Stockton Diverting Canal Levee Station: 811+98

Boring Number: WC3BDC_001B					
		Input Parameters			
Embankment Crest Elevation (ft)	42.8 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	24.8 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.18
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4		
Groundwater Elevation during Drilling (ft)	-5.2 ft	Hammer Efficiency	84.5	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ff)	24 8 ft			120 0 pcf	

7/22/2013

Date:

Boring	WC8BDC_001B
Boring on	the crest
SPT Grou	and Elevation Used in Analysis
42.80 ft	

Depth	(ft) Elevation	(tt) Fleid Blow Count, N	USCS Soil Type/Decori ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR7.5	r _d	C8R ³	K _a	f paramet er	Kø	F8 against Liquefa otion
26.0	16.8	20	ML	77		120	125	3101.3	3101.3	2141.3	1000.0	500.8	0.83	1	- 1	1.00	23.3	5.00	1.20	32.9	2.00	0.94	0.22	1.00	0.65	1.00	3.00
31.0	11.8	29	SM	15		120	125	3654.8	3654.8	2094.8	1625.0	813.8	0.76	1	1	1.00	31.1	2.50	1.05	35.1	2.00	0.92	0.22	1.00	0.60	1.00	3.00
36.0	6.8	31	ML	80		120	125	4183.7	4183.7	2023.7	2250.0	1126.8	0.71	1	1	1.00	31.0	5.00	1.20	42.3	2.00	0.88	0.21	1.00	0.60	1.00	3.00
41.0	1.8	42	ML	80		120	125	4697.4	4697.4	1937.4	2875.0	1439.8	0.67	1	1	1.00	39.7	5.00	1.20	52.6	2.00	0.84	0.20	1.00	0.60	1.00	3.00
46.0	-3.2	46	ML	80		120	125	5204.1	5204.1	1844.1	3500.0	1752.8	0.64	1	1	1.00	41.3	5.00	1.20	54.6	2.00	0.80	0.19	1.00	0.60	1.00	3.00

NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

(1) Exist instructions may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion regularized may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion regularized may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion regularized may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion regularized may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion regularized may be used to estimate fines content where iso besting is not available.

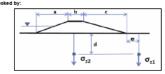
Based on Your E. H. Displacetion regularized may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion regularized may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion regularized may be used to estimate fines content where iso besting is not available.

Based on Your E. H. Displacetion regularized may be used to estimate the properties of t

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

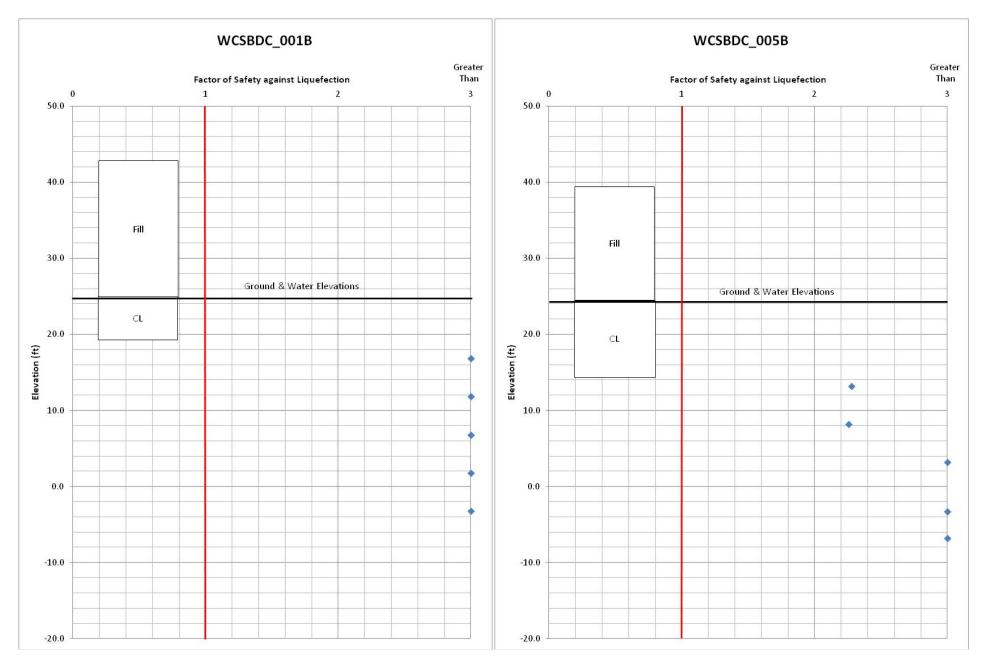
Project: Lower San Joaquin Prepared by: Vlad Perlea Date: 7/22/2013 Study Area: Levee Station: Checked by: Stockton Diverting Canal WCSBDC 005B

		Input Parameters			
Embankment Crest Elevation (ft)	39.2 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	24.2 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.18
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	6		
Groundwater Elevation during Drilling (ft)	-5.8 ft	Hammer Efficiency	83.5	Assumed Embank	ment UW (pcf)
Groundwater Elevation for Analysis (ft)	24.2 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	34.5 ft
Crest Width, b (ft)	31.0 ft
Landside/Downstream Slope, c (ft)	34.5 ft
Dist. of Boring from Levee Toe [1] (ft)	-50.0 ft
Embankment Height, H (ft)	15.0 ft

Boring	WC8BDC_006B
Boring on	the crest
SPT Gro	and Elevation Used in Analysis
39.20 ft	

Depth (ft	Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	saturated Offic	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	CR		N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,86}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Κø	F8 against Liquefa otion
26.0	13.2	15	ML	87		120	125	3078.1	3078.1	1758.1	1375.0	688.6	0.83	1.05	1	1.00	18.2	5.00	1.20	26.8	0.33	0.94	0.22	1.00	0.69	1.00	2.28
31.0	8.2	16	ML	86		120	125	3618.2	3618.2	1698.2	2000.0	1001.6	0.76	1.05	- 1	1.00	17.9	5.00	1.20	26.5	0.32	0.92	0.22	1.00	0.69	1.00	2.26
36.0	3.2	34	ML	60		120	125	4141.0	4141.0	1621.0	2625.0	1314.6	0.71	1.05	- 1	1.00	35.5	5.00	1.20	47.6	2.00	0.88	0.21	1.00	0.60	1.00	3.00
42.5	-3.3	33	ML	73		120	125	4809.4	4809.4	1509.4	3437.5	1721.5	0.66	1.05	1	1.00	32.0	5.00	1.20	43.4	2.00	0.83	0.19	1.00	0.60	1.00	3.00
46.0	-6.8	54	ML	60	, and the second	120	125	5173.3	5110.9	1448.3	3875.0	1940.6	0.64	1.05	- 1	1.00	50.8	5.00	1.20	65.9	2.00	0.80	0.19	1.00	0.60	1.00	3.00



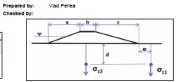

Fig. C-39. Stockton Diverting Canal, Station 811+98

Fig. C-40. Stockton Diverting Canal, Station 883+93

Project: Lower San Joaquin Study Area: Stockton Diverting Canal Levee Station: 940+82

WCSBDC_008B Boring Number:

Input Parameters Embankment Crest Elevation (ft) 42.4 ft Rod Length Above GS. (ft) Magnitude, M Base Elevation (ft) 27.4 ft Sampler without Liner? (Y/N) 0.18 Height below Crest of Embankment (ft) 0.0 ft Borehole Dia. (Inch) 5 -2.6 ft 27.4 ft Groundwater Elevation during Drilling (ft) Hammer Efficiency Assumed Embankment UW (pcf) Groundwater Elevation for Analysis (ft) 120.0 pcf

7/23/2013

Boring WC8BDC_008B Boring on the crest SPT Ground Elevation Used in Analysis 42.40 ft

Depth (ft	Elevation (ft)		USCS Soli Type/Decori ption [2]	Fines Content (%<\$200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.8}	r _d	CSR ³	Ka	f paramet er	Ke	F8 against Liquefa otion
27.0	15.4	12	SM/ML	82		120	125	3188.0	3188.0	1748.0	1500.0	751.2	0.81	1	1	1.00	12.5	5.00	1.20	20.1	0.22	0.94	0.22	1.00	0.74	1.00	1.48
32.0	10.4	13	SM	30		120	125	3723.8	3723.8	1683.8	2125.0	1064.2	0.75	1	1	1.00	12.6	4.71	1.15	19.2	0.21	0.91	0.21	1.00	0.74	1.00	1.45
37.0	5.4	21	ML	77		120	125	4244.3	4244.3	1604.3	2750.0	1377.2	0.71	1	- 1	1.00	19.0	5.00	1.20	27.8	0.36	0.87	0.20	1.00	0.68	1.00	2.68
42.0	0.4	45	ML	77		120	125	4758.1	4758.1	1518.1	3375.0	1690.2	0.67	1	1	1.00	38.5	5.00	1.20	51.2	2.00	0.83	0.19	1.00	0.60	1.00	3.00
47.0	-4.6	17	ML	66		120	125	5281.0	5156.2	1431.0	4000.0	2003.2	0.64	1	- 1	1.00	14.0	5.00	1.20	21.8	0.24	0.79	0.18	1.00	0.73	1.00	1.94
52.0	-9.6	16	SM	34		120	125	5821.4	5384.6	1346.4	4625.0	2316.2	0.63	1	1	1.00	12.9	4.93	1.19	20.2	0.22	0.75	0.18	1.00	0.74	0.98	1.82

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

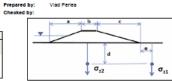
Based on Youd et. A., "Liquefaction Resistance of Solis: Summary Report from the 1995 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Solis," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013


LIQUERFACTION TRIGGERING ANALYSIS

Project: Lower San Joaquin

Study Area: Calaveras River and Stockton Diverting Canal Levee Station: 978+49

Boring Number

		Input Parameters			
Embankment Crest Elevation (ft)	45.3 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	33.9 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.18
Height below Crest of Embankment (ft)	11.4 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	30.0 ft	Hammer Efficiency	77	Assumed Embar	ikment UW (pcf)
Groundwater Elevation for Analysis (ft)	33.0 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	25.3 ft
Crest Width, b (ft)	31.0 ft
Landside/Downstream Slope, c (ft)	25.3 ft
Dist. of Boring from Levee Toe [1] (ft)	9.5 ft
Embankment Height, H (ft)	11.4 ft

5/21/2013

Date:

Boring	WC8BDC_013B
Boring on	waterside or landside field
SPT Grou	and Elevation Used in Analysis
33.90 ft	

Depth (Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	saturated Unit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	C _R	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,60}) _{cs} [Liao&Whit man]	CRR _{7.5}	Ľ	CSR ³	Ka	f paramet er	Κ _σ	F8 against Liquefa otion
6.0	27.9	37	SM	45		120	125	740.9	609.9	10.4	745.5	427.3	1.70	1	0.8	1.00	64.6	5.00	1.20	82.5	2.00	0.99	0.20	1.00	0.60	1.00	3.00
13.0	20.9	26	ML	100		120	125	1667.1	1292.7	61.6	1620.5	865.5	1.28	1	0.95	1.00	40.6	5.00	1.20	53.7	2.00	0.97	0.21	1.00	0.60	1.00	3.00
18.0	15.9	29	ML	88		120	125	2339.9	1965.5	109.4	2245.5	1178.5	1.04	1	0.95	1.00	36.7	5.00	1.20	49.0	2.00	0.96	0.21	1.00	0.60	1.00	3.00
23.0	10.9	24	ML	90		120	125	3011.8	2637.4	156.3	2870.5	1491.5	0.90	1	0.95	1.00	26.2	5.00	1.20	36.5	2.00	0.95	0.21	1.00	0.63	1.00	3.00
33.0	0.9	27	CL	94	Clay	120	125	4339.9	3965.5	234.4	4120.5	2117.5	0.73	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.91	0.21	1.00	0.60	1.00	#N/A

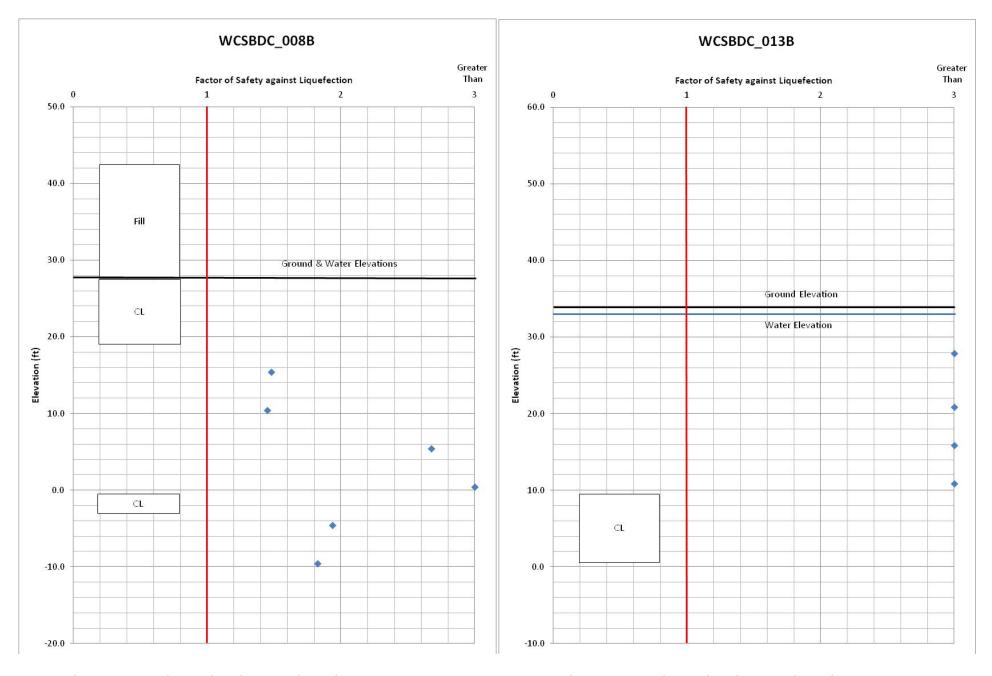
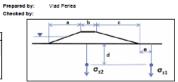


Fig. C-41. Stockton Diverting Canal, Station 940+82

Fig. C-42. Stockton Diverting Canal, Station 978+49


Lower San Joaquin Project:

Study Area: Calaveras River and Stockton Diverting Canal

1029+16

Levee Station:

Boring Number: WCSBDC_014B					
		Input Parameters			
Embankment Crest Elevation (ft)	51.3 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	35.7 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.18
Height below Crest of Embankment (ft)	15.6 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	30.0 ft	Hammer Efficiency	77	Assumed Embank	ment UW (pcf)
Groundwater Elevation for Analysis (ft)	35.0 ft			120.0 pcf	

Date: 5/21/2013

Suroharge Information	
Waterside/Upstream Slope, a (ft)	26.6 ft
Crest Width, b (ft)	8.0 ft
Landside/Downstream Slope, c (ft)	28.2 ft
Dist. of Boring from Levee Toe [1] (ft)	63.6 ft
Embankment Height, H (ft)	15.6 ft

Boring WCSBDC_014B Boring on waterside or landside field SPT Ground Elevation Used in Analysis 35.70 ft

Depth (fi	Elevation (ft)		USCS Soil Type/Descri ption [2]	Fines Content (%<\$200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Κσ	F8 against Liquefa otion
6.0	29.7	21	ML	74		120	125	721.6	702.9	0.1	746.5	415.8	1.70	1	8.0	1.00	36.7	5.00	1.20	49.0	2.00	0.99	0.21	1.00	0.60	1.00	3.00
12.0	23.7	20	SM / ML	68		120	125	1472.6	1098.2	1.1	1496.5	791.4	1.39	1	0.85	1.00	30.3	5.00	1.20	41.3	2.00	0.97	0.22	1.00	0.60	1.00	3.00
17.0	18.7	22	SM	13		120	125	2099.5	1725.1	3.0	2121.5	1104.4	1.11	1	0.95	1.00	29.7	1.89	1.04	32.7	2.00	0.96	0.22	1.00	0.60	1.00	3.00
32.0	3.7	91	GW-GM	10		120	125	3987.9	3613.5	16.4	3996.5	2043.4	0.77	1	1	1.00	89.4	0.87	1.02	92.2	2.00	0.91	0.21	1.00	0.60	1.00	3.00

NOTE

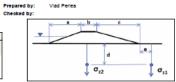
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1995 NCEER and 1998 NCEERINSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1976) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Project: Lower San Joaquin Study Area: Mormon Slough South 2527+95 Levee Station: WCSBMS_003B Boring Number:

		Input Parameters			
Embankment Crest Elevation (ft)	50.4 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	44.6 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.165
Height below Crest of Embankment (ft)	5.8 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	40.0 ft	Hammer Efficiency	77	Assumed Embar	ikment UW (pcf)
Groundwater Elevation for Analysis (ft)	44.0 ft			120.0 pcf	

5/21/2013

Boring	WC8BM8_003B
Boring on	waterside or landside field
SPT Grou	nd Elevation Used in Analysis
44.60 ft	

Depth (ft)	Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Desori ption [의	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	saturated Onit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.8}	r _d	CSR ³	Ka	f paramet er	Κσ	F8 against Liquefa otion
13.0	31.6	20	SM/ML	70		120	125	1617.8	1093.6	15.8	1622.0	848.2	1.39	1	0.95	1.00	33.9	5.00	1.20	45.7	2.00	0.97	0.20	1.00	0.60	1.00	3.00

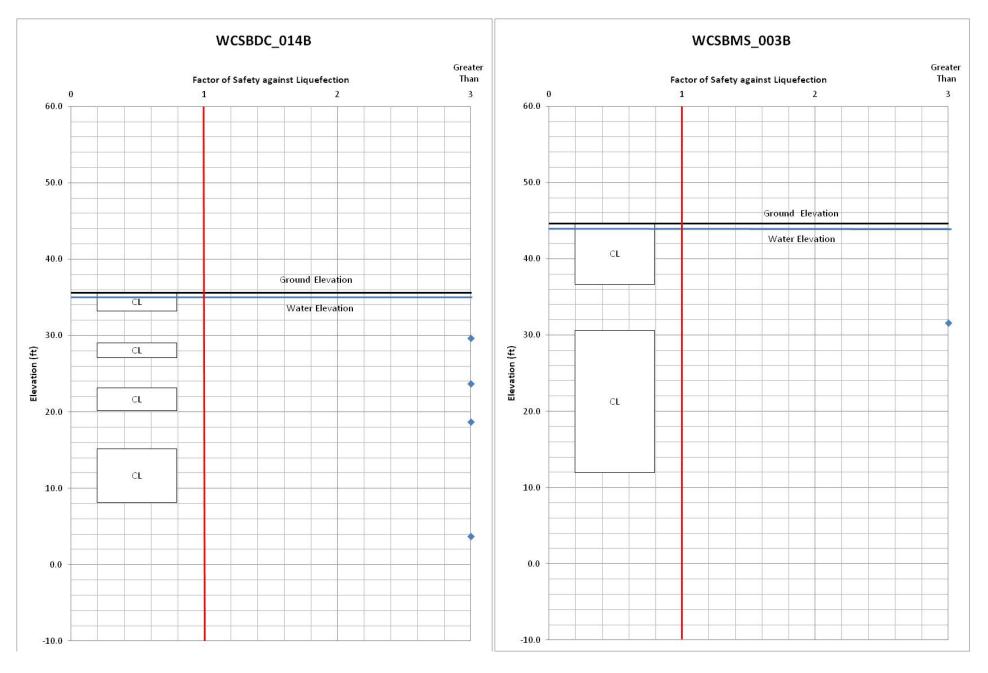


Fig. C-43. Stockton Diverting Canal, Station 1029+16

Fig. C-44. Mormon Slough, Station 2527+95

Project: Lower San Joaquin Study Area: Levee Station: Stockton Diverting Canal

Boring Number: WCSBMS_002B					
		Input Parameters			
Embankment Crest Elevation (ft)	56.4 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	51.4 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.165
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	5.75		
Groundwater Elevation during Drilling (ft)	-2.6 ft	Hammer Efficiency	84.5	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	51.4 ft			120.0 pcf	

Prepared by: Vlad Perlea Checked by: σ_{z2} σ_{z1}

Surcharge Information	
Waterside/Upstream Slope, a (ft)	16.0 ft
Crest Width, b (ft)	21.0 ft
Landside/Downstream Slope, c (ft)	9.0 ft
Dist. of Boring from Levee Toe [1] (ft)	-19.5 ft
Embankment Height, H (ft)	5.0 ft

7/23/2013

Date:

Date:

Date:

Boring	WCSBMS_002B
Boring or	the crest
SPT Gro	und Elevation Used in Analysis
56.35 ft	

Depth (ft	Elevation (ft)	Field Blow Count, N	USCS Soli Type/Decori ption [2]		Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	C8R ³	Ka	f paramet er	Κø	F8 against Liquefa otion
13.0	43.4	29	ML	77		120	125	1532.7	1532.7	566.7	1006.3	503.9	1.17	1.05	0.95	1.00	47.9	5.00	1.20	62.4	2.00	0.97	0.21	1.00	0.60	1.00	3.00
16.0	40.4	40	ML	77		120	125	1864.6	1864.6	538.6	1381.3	691.7	1.07	1.05	0.95	1.00	59.9	5.00	1.20	76.8	2.00	0.96	0.21	1.00	0.60	1.00	3.00
33.0	23.4	46	ML	64		120	125	3728.5	3728.5	362.5	3506.3	1755.9	0.75	1.05	- 1	1.00	51.2	5.00	1.20	66.5	2.00	0.91	0.19	1.00	0.60	1.00	3.00
38.0	18.4	40	ML	65		120	125	4290.0	4290.0	324.0	4131.3	2068.9	0.70	1.05	- 1	1.00	41.5	5.00	1.20	54.9	2.00	0.86	0.19	1.00	0.60	1.00	3.00
48.0	8.4	52	SM	49		120	125	5430.6	5430.6	264.6	5381.3	2694.9	0.62	1.05	- 1	1.00	48.0	5.00	1.20	62.6	2.00	0.78	0.17	1.00	0.60	0.91	3.00

LIQUERFACTION TRIGGERING ANALYSIS

Lower San Joaquin Prepared by: Vlad Perlea Study Area: Levee Station: Brookside 117+51 Boring Number WR2074_003M

		Input Parameters			
Embankment Crest Elevation (ft)	14.0 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	4.5 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	79	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	3.2 ft			120.0 pcf	

by:	<u>,</u>	***	<u> </u>
		d σ _{z2}	σ ₂₁

Surcharge Information	
Waterside/Upstream Slope, a (ft)	23.8 ft
Crest Width, b (ft)	18.2 ft
Landside/Downstream Slope, c (ft)	20.0 ft
Dist. of Boring from Levee Toe ^[1] (ft)	-29.1 ft
Embankment Height, H (ft)	9.5 ft

7/23/2013

Boring	WR2074_003M
Boring on	the crest
SPT Grou	and Elevation Used in Analysis
14.00 ft	

Depth (1	t) Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Desori ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	CR		N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR7.5	r _d	CSR ³	Ка	f paramet er		F8 against Liquefa otion
31.5	-17.5	6	SM	25		120	125	3577.8	2610.6	860.3	2743.5	1451.8	0.90	1	- 1	1.00	7.1	4.29	1.12	12.2	0.13	0.92	0.23	1.00	0.80	1.00	0.89
36.0	-22.0	8	SP-SM	10		120	125	4066.2	2818.2	786.2	3306.0	1733.5	0.87	1	- 1	1.00	9.1	0.87	1.02	10.2	0.11	0.88	0.22	1.00	0.78	1.00	0.79

NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.
[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Yould et, Al., "Liquetaction Resistance of Soils: Summary Report from the 1995 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquetaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001. Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

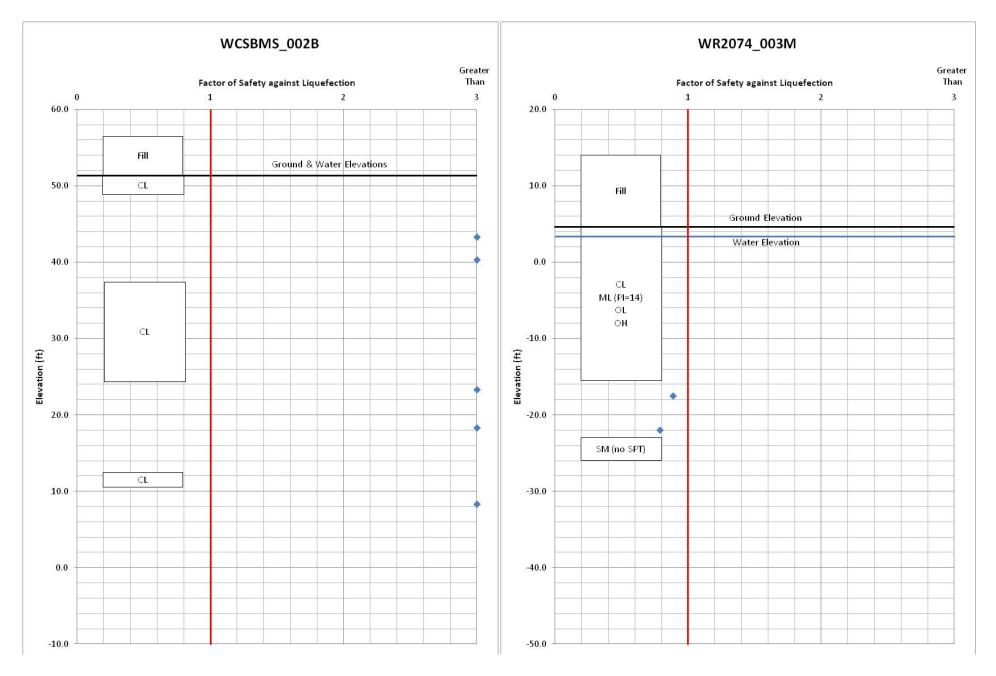


Fig. C-45. Mormon Slough, Station 2583+28

Fig. C-46. Brookside, Station 117+51

Lower San Joaquin Project: Study Area: Brookside

Boring Number: WR2074_0098					
		Input Parameters			
Embankment Crest Elevation (ft)	14.5 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	7.1 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	0.0 ft	Hammer Efficiency	79	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (6)	4.40			130.0 pcf	

Prepared by: Viad Perlea Checked by: σ,2

Suroharge Information 70.1 ft 15.8 ft Crest Width, b (ft) Landside/Downstream Slope, c (ft) 48.9 ft Dist. of Boring from Levee Toe [1] (ft) -56.8 ft Embankment Height, H (ft)

5/31/2013

Date:

Date:

Boring WR2074_009B Boring on the crest SPT Ground Elevation Used in Analysis 14.60 ft

Depth (I) Elevation (ft)	Field Blow Count, N	USCS Soil Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"		Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (pcf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Ke	F8 against Liquefa otion
36.0	-21.4	10	SM	19		120	125	4262.7	2927.4	735.7	3532.5	2128.5	0.85	1	1	1.00	11.2	3.43	1.07	15.4	0.16	0.88	0.19	1.00	0.76	1.00	1.30
41.0	-26.4	11	SP	4		120	125	4850.6	3203.2	698.6	4157.5	2441.5	0.81	1	1	1.00	11.8	0.00	1.00	11.8	0.13	0.84	0.19	1.00	0.75	0.97	1.00
46.0	-31.4	6	SP-SM	10		128	125	5440.1	3480.8	663.1	4782.5	2754.5	0.78	1	- 1	1.00	6.2	0.87	1.02	7.2	0.09	0.80	0.18	1.00	0.80	0.95	0.70

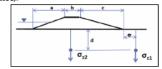
NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. AL, "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

7/23/2013 Project: Lower San Joaquin Prepared by: Vlad Perlea Date: Study Area: Levee Station: Date: Brookside Checked by: 133+44

Borning Hambert. HTT2570105					
		Input Parameters			
Embankment Crest Elevation (ft)	15.2 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	-0.6 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-0.8 ft	Hammer Efficiency	77	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	-0.6 ft			120.0 pcf	

Suroharge Information	
Waterside/Upstream Slope, a (ft)	67.9 ft
Crest Width, b (ft)	15.2 ft
Landside/Downstream Slope, c (ft)	41.1 ft
Dist. of Boring from Levee Toe [1] (ft)	-48.7 ft
Embankment Height, H (ft)	15.8 ft

Boring	WR2074_010B
Boring on	the crest
SPT Grou	and Elevation Used in Analysis
15.20 ft	

Depth (ft			USCS Soll Type/Descri ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Preccure during Drilling (pcf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,90} [Liao& Whitma n]	Alpha	Beta	(N _{1,86}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er		F8 against Liquefa otion
41.0	-25.8	24	SM	34		120	125	4716.4	3156.4	1561.4	3156.0	1583.5	0.82	1	1	1.00	25.2	4.93	1.19	34.9	2.00	0.84	0.22	1.00	0.64	1.00	3.00
48.5	-33.3	16	SM	19		120	125	5526.5	3498.5	1434.0	4093.5	2053.0	0.78	1	1	1.00	16.0	3.43	1.07	20.6	0.22	0.78	0.20	1.00	0.71	1.00	1.65
56.0	-40.8	21	SM	21		120	125	6347.2	3851.2	1317.2	5031.0	2522.5	0.74	1	1	1.00	20.0	3.78	1.09	25.5	0.30	0.72	0.19	1.00	0.68	0.94	2.30
61.0	-45.8	22	ML	65		120	125	6900.9	4342.5	1245.9	5656.D	2835.5	0.70	1	1	1.00	19.7	5.00	1.20	28.6	0.39	0.68	0.18	1.00	0.68	0.91	3.00

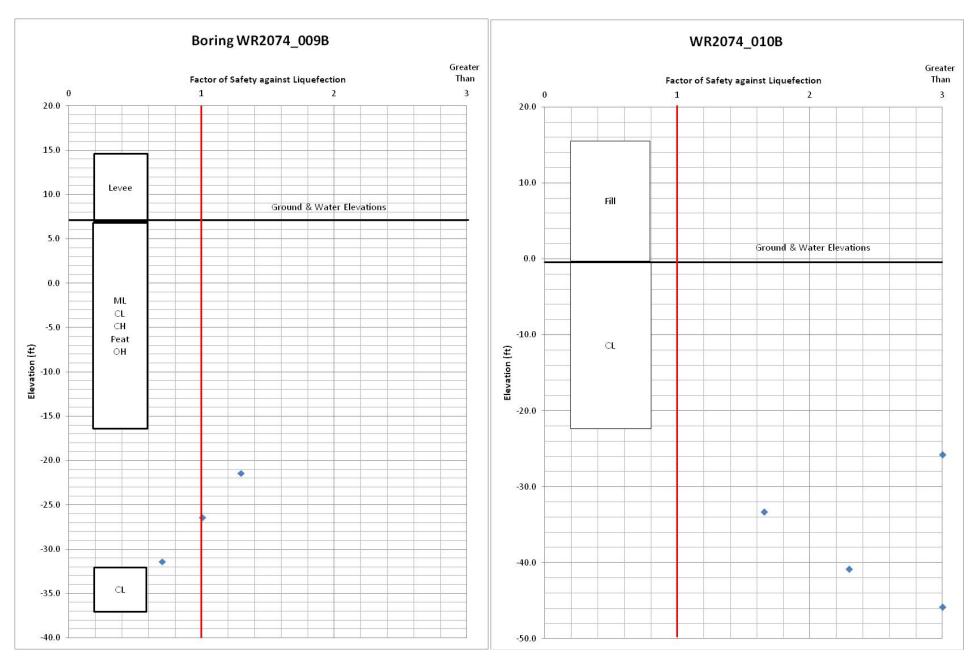
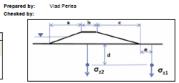


Fig. C-47. Brookside, Station 118+02

Fig. C-48. Brookside, Station 133+44


Project: Lower San Joaquin Study Area: Brookside Bluer Sention: 133-82

 Study Area:
 Brookside

 River Section:
 133+82

 Boring Number:
 WR2074_007B

		Input Parameters			
Embankment Crest Elevation (ft)	15.2 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	5.5 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	5.2 ft	Hammer Efficiency	79	Assumed Embar	nkment UW (pcf)
Groundwater Elevation for Analysis (ft)	5.5 ft			120.0 pcf	

-32.8 ft

9.7 ft

Dist. of Boring from Levee Toe [1] (ft)

Embankment Height, H (ft)

5/31/2013

Date:

Date:

Boring	WR2074_007B
	the crest
SPT Grou	and Elevation Used in Analysis
15.20 ft	

Depth (i) Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Descri ption [기		Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	saturated Unit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)			Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er		F8 against Liquefa otion
26.5	-11.3	8	SC.	20		120	125	3095.9	2066.3	997.4	2100.0	1051.7	1.01	1	1	1.00	10.7	3.61	1.08	15.1	0.16	0.94	0.24	1.00	0.76	1.00	0.99
31.5	-16.3	23	SM	49		120	125	3643.8	2302.2	920.3	2725.0	1364.7	0.96	1	1	1.00	29.0	5.00	1.20	39.8	2.00	0.92	0.24	1.00	0.60	1.00	3.00
36.5	-21.3	8	SC	20		120	125	4195.2	2542.6	847.7	3350.0	1677.7	0.91	1	1	1.00	9.6	3.61	1.08	14.0	0.15	0.88	0.23	1.00	0.77	1.00	0.99

NOT

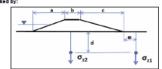
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Solis: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Solis," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Project: Lower San Joaquin Prepared by: Viad Peries
Study Area: Brookside Checked by:
Leves Station: 160-48

Boring Number. WR2074_0116					
		Input Parameters			
Embankment Crest Elevation (ft)	17.6 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	0.6 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-0.8 ft	Hammer Efficiency	77	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	0.6 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	61.2 ft
Crest Width, b (ft)	20.5 ft
Landside/Downstream Slope, c (ft)	35.7 ft
Dist. of Boring from Levee Toe [1] (ft)	-46.0 ft
Embankment Height, H (ft)	17.0 ft

7/23/2013

Boring	WR2074_011B
Boring on	the crest
SPT Grou	ind Elevation Used in Analysis
17.60 ft	

Depth (ft	Elevation (ft)	Field Blow Count, N	USCS Soll Type/Descri ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	eaturateu onit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (pcf)		Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _a	CSR ³	Ka	f paramet er		F8 against Liquefa otion
44.5	-26.9	13	SM	47		120	125	5099.6	3471.0	1669.1	3437.5	1721.5	0.78	1	- 1	1.00	13.0	5.00	1.20	20.6	0.22	0.81	0.21	1.00	0.74	1.00	1.59
47.0	-29.4	42	SW-SW	12		120	125	5364.7	3580.1	1621.7	3750.0	1878.0	0.77	1	- 1	1.00	41.4	1.55	1.03	44.3	2.00	0.79	0.21	1.00	0.60	1.00	3.00
49.5	-31.9	33	SW-SM	12		120	125	5630.9	3690.2	1575.4	4062.5	2034.5	0.76	1	- 1	1.00	32.1	1.55	1.03	34.6	2.00	0.77	0.20	1.00	0.60	1.00	3.00
52.0	-34.4	25	SW-SM	12		120	125	5898.2	3801.6	1530.2	4375.0	2191.0	0.75	1	- 1	1.00	23.9	1.55	1.03	26.2	0.32	0.75	0.19	1.00	0.65	0.99	2.43
54.5	-36.9	20	SM-SW	12		120	125	6166.9	3914.3	1486.4	4687.5	2347.5	0.74	1	- 1	1.00	18.9	1.55	1.03	21.0	0.23	0.73	0.19	1.00	0.69	0.97	1.75

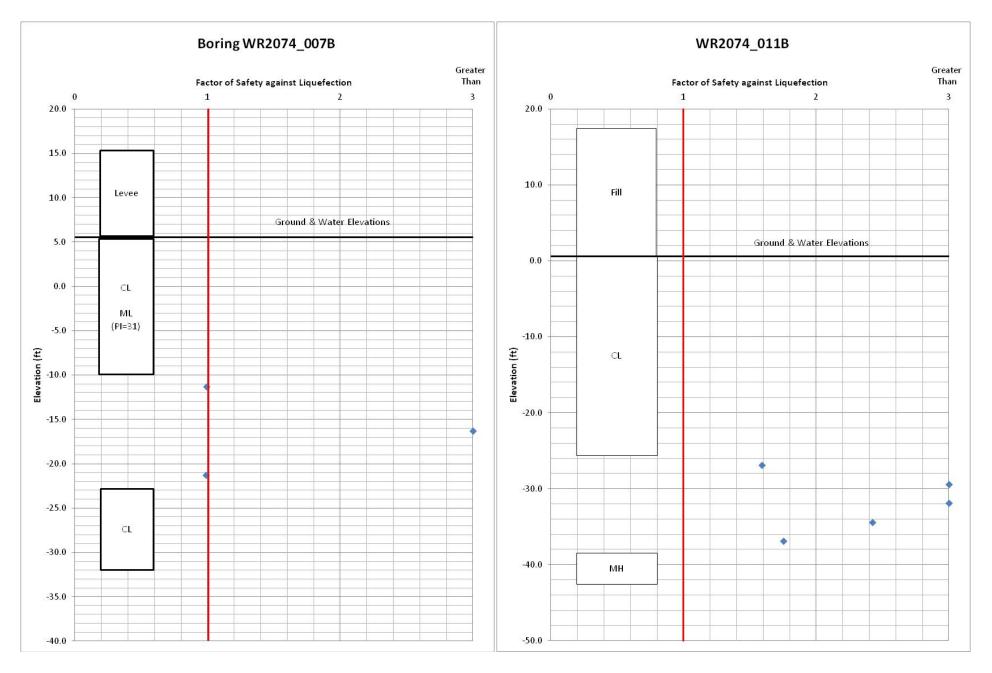


Fig. C-49. Brookside, Station 133+82

Fig. C-50. Brookside, Station 160+48

Project: Lower San Joaquin Study Area: Brookside River Section:

Boring Number: WR2074_0088					
		Input Parameters			
Embankment Crest Elevation (ft)	17.6 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	0.8 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	0.0 ft	Hammer Efficiency	79	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	0.8 ft			120.0 pcf	

Prepared by: Viad Perlea Checked by: σ_{z2} σ_{z1}

Suroharge Information	
Vaterside/Upstream Slope, a (ft)	55.4 ft
crest Width, b (ft)	15.8 ft
andside/Downstream Slope, c (ft)	38.6 ft
Nst. of Boring from Levee Toe [1] (ft)	-46.5 ft
Embankment Height, H (ft)	16.8 ft

5/31/2013

Date:

Date:

Boring	WR2074_008B
Boring on	
SPT Grou	and Elevation Used in Analysis
17.60 ft	

Depth (ft	Elevation (ft)	Fleid Blow Count, N	USCS Soli Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.6}	r _d	CSR ³	Ka	f paramet er	Κ _σ	F8 against Liquefa otion
26.0	-8.4	9	CL.	56	Clay	120	125	3097.1	2572.9	1951.1	1150.0	575.9	0.91	1	1	1.00	n.a.	5.00	1.20	n.a.	2.00	0.94	0.24	1.00	0.60	1.00	#N/A
41.0	-23.4	13	SM	41		120	125	4678.0	3217.9	1657.0	3025.0	1514.9	0.81	1	1	1.00	13.9	5.00	1.20	21.7	0.24	0.84	0.22	1.00	0.73	1.00	1.63
46.0	-28.4	15	SP-SM	9		120	125	5202.8	3580.4	1556.8	3650.0	1827.9	0.77	1	1	1.00	15.2	0.56	1.02	16.0	0.17	0.80	0.21	1.00	0.72	1.00	1.23
51.0	-33.4	14	ML	80		120	125	5733.0	4110.6	1462.0	4275.0	2140.9	0.72	1	1	1.00	13.2	5.00	1.20	20.9	0.23	0.76	0.20	1.00	0.74	1.00	1.72
61.0	-43.4	24	SM	45		120	125	6813.1	5190.7	1292.1	5525.0	2766.9	0.64	1	1	1.00	20.2	5.00	1.20	29.2	0.42	0.68	0.18	1.00	0.68	0.92	3.00
66.0	-48.4	26	SP-SM	8		120	125	7363.2	5740.8	1217.2	6150.0	3079.9	0.61	1	1	1.00	20.8	0.30	1.01	21.3	0.23	0.64	0.17	1.00	0.67	0.88	1.87

NOTE

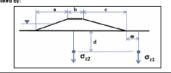
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. AL, "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1999 NCEER.NSF Wiorshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Lower San Joaquin Prepared by: Vlad Perlea Date: 7/23/2013 Project: Study Area: Levee Station: Brookside Checked by: 217+77 Boring Number: WR2074_0128

		Input Parameters			
Embankment Crest Elevation (ft)	13.4 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	0.9 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.6 ft	Hammer Efficiency	77	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	0.9 ft			120.0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	50.0 ft
Crest Width, b (ft)	33.0 ft
Landside/Downstream Slope, c (ft)	41.3 ft
Dist. of Boring from Levee Toe [1] (ft)	-57.8 ft
Embankment Height, H (ft)	12.5 ft

Boring	WR2074_012B
Boring on	
SPT Grou	nd Elevation Used in Analysis
13.40 ft	

Dept	h (ft) E	Elevation (ft)	Field Blow Count, N	USCS Soli Type/Descri ption [2]	Fines Content (%≪200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	saturated Unit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er		F8 against Liquefa otion
38	.5	-25.1	15	SM	39		120	125	4563.4	3159.4	1330.9	3250.0	1627.6	0.82	1	- 1	1.00	15.8	5.00	1.20	23.9	0.27	0.86	0.22	1.00	0.71	1.00	1.83
4	.0	-27.6	23	SP-SM	7		120	125	4846.0	3286.0	1301.0	3562.5	1784.1	0.80	1	- 1	1.00	23.7	0.12	1.01	24.0	0.27	0.84	0.22	1.00	0.65	1.00	1.88

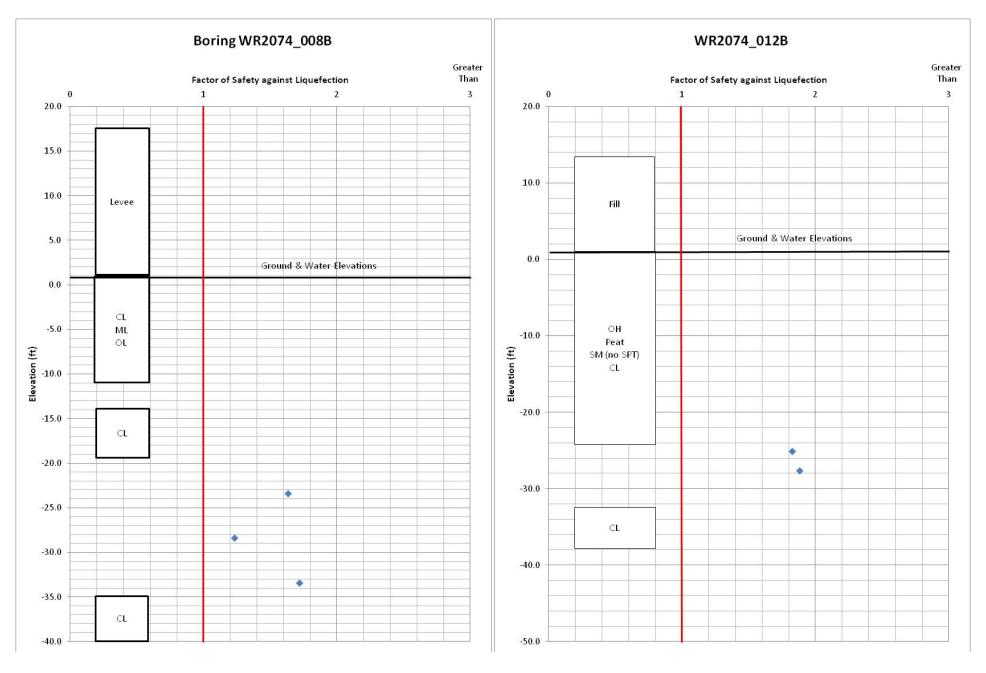


Fig. C-51. Brookside, Station 185+70

Fig. C-52. Brookside, Station 217+77

Project: Lower San Joaquin Study Area:

Brookside 247+31

Boring Number: WR2074_0138					
		Input Parameters			
Embankment Crest Elevation (ft)	13.9 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	-1.1 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-1.1 ft	Hammer Efficiency	77	Assumed Embani	kment UW (pcf)
Convenientes Claustine for Applicate (6)				420.0	

Prepared by: Vlad Perlea Checked by: σ_{z2}

7/23/2013

Date:

Boring WR2074_013B

Boring on the crest

SPT Ground Elevation Used in Analysis 13.90 ft

Depth (ft) Elevation (ft)	Field Blow Count, N	USCS Soli Type/Decori ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	eaturated Unit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR7.5	r _d	CSR ³	K _a	f paramet er	Κσ	F8 against Liquefa otion
31.0	-17.1	25	SM	14		120	125	3631.1	2632.7	1631.1	2000.0	1001.6	0.90	1	1	1.00	28.8	2.20	1.04	32.2	2.00	0.92	0.24	1.00	0.60	1.00	3.00

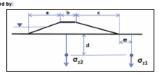
NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Project: Study Area: 7/23/2013 Lower San Joaquin Prepared by: Vlad Perlea Date: Brookside Checked by: Date: Boring Number WR2074_005M

		Input Parameters			
Embankment Crest Elevation (ft)	13.9 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	2.4 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.1 ft	Hammer Efficiency	79	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	2.4 ft			120.0 pcf	

Surcharge Information						
Waterside/Upstream Slope, a (ft)	48.3 ft					
Crest Width, b (ft)	20.0 ft					
Landside/Downstream Slope, c (ft)	23.0 ft					
Dist. of Boring from Levee Toe [1] (ft)	-33.0 ft					
Embankment Height, H (ft)	11.5 ft					

Boring	WR2074_006M
Boring on	the crest
SPT Grou	ind Elevation Used in Analysis
13.90 ft	

Depth (USCS Soli Type/Descri ption [2]		Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha		(N _{1,60}) _{ca} [Liao&Whit man]	CRR _{7.8}	r _d	C8R ³	Ka	f paramet er	Ke	F8 against Liquefa otion
21.0	-7.1	16	SP-SM	11		120	125	2496.9	2184.9	1331.9	1187.5	594.7	0.98	1	0.95	1.00	19.7	1.21	1.03	21.4	0.23	0.95	0.25	1.00	0.68	1.00	1.42
26.0	-12.1	27	SM	27		120	125	3052.5	2428.5	1262.5	1812.5	907.7	0.93	1	- 1	1.00	33.2	4.48	1.13	42.0	2.00	0.94	0.24	1.00	0.60	1.00	3.00
31.5	-17.6	16	SP-SM	6		120	125	3651.0	2683.8	1173.5	2500.0	1252.0	0.89	1	- 1	1.00	18.7	0.03	1.00	18.8	0.20	0.92	0.24	1.00	0.69	1.00	1.27
41.5	-27.6	17	SM	46		120	125	4742.7	3432.3	1015.2	3750.0	1878.0	0.79	1	- 1	1.00	17.6	5.00	1.20	26.1	0.32	0.84	0.22	1.00	0.70	1.00	2.18
46.0	-32.1	21	SM	13		120	125	5241.0	3930.6	951.0	4312.5	2159.7	0.73	1	- 1	1.00	20.3	1.89	1.04	22.9	0.26	0.80	0.21	1.00	0.67	0.99	1.84

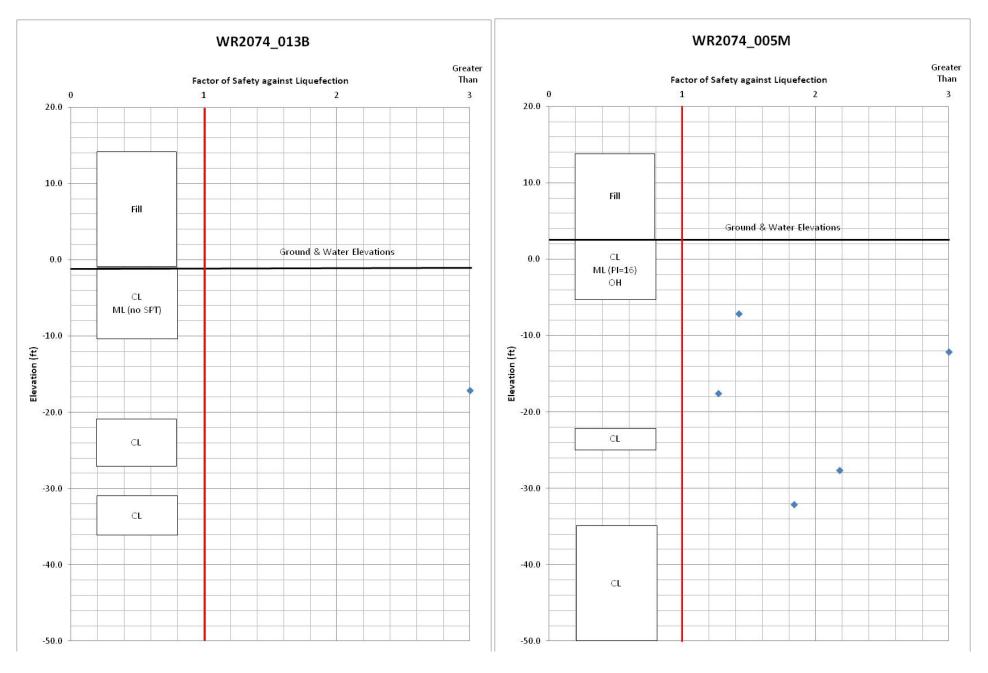
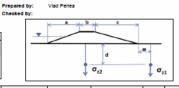



Fig. C-53. Brookside, Station 247+31

Fig. C-54. Brookside, Station 248+41

Project: Lower San Joaquin Lincoln Village Study Area: Levee Station: 5+23 Boring Number: WR1608_0028 Input Parameters Embankment Crest Elevation (ft) Base Elevation (ft) 13.4 ft Rod Length Above GS. (ft) Magnitude, M 6.4 5.4 ft Sampler without Liner? (Y/N) PGA (g's) Height below Crest of Embankment (ft) 0.0 ft Borehole Dia. (Inch) 4.5 Groundwater Elevation during Drilling (ft) -2.0 ft Hammer Efficiency Assumed Embankment UW (pcf) Groundwater Elevation for Analysis (ft) 5.4 ft 120.0 pcf

Suroharge Information	
Waterside/Upstream Slope, a (ft)	26.4 ft
Crest Width, b (ft)	9.0 ft
Landside/Downstream Slope, c (ft)	23.2 ft
Dist. of Boring from Levee Toe [1] (ft)	-27.7 ft
Embankment Height, H (ft)	8.0 ft

7/23/2013

Date:

Boring	WR1608_002B
Boring on	the crest
SPT Grou	and Elevation Used in Analysis
13.40 ft	

Depth (t) Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Desori ption [7]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	C _R	Cs	N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Kσ	F8 against Liquefa otion
36.5	-23.1	46	SW-SM	5		120	125	4084.8	2768.1	559.3	3562.5	1784.1	0.87	1	1	1.00	51.6	0.00	1.00	51.6	2.00	0.88	0.23	1.00	0.60	1.00	3.00

LIQUERFACTION TRIGGERING ANALYSIS

7/23/2013 Prolect: Lower San Joaquin Prepared by: Vlad Perlea Date: Study Area: Checked by: Lincoln Village Levee Station: 43+57 Boring Number: WR1608_002M Boring WR1808_002M

Boring on waterside or landside field

SPT Ground Elevation Used in Analysis Input Parameters Surcharge Information Embankment Crest Elevation (ft) 13.4 ft Rod Length Above GS. (ft) 31.7 ft Magnitude, M 6.4 Waterside/Upstream Slope, a (ft) Base Elevation (ft) 3.3 ft Sampler without Liner? (Y/N) PGA (g's) Crest Width, b (ft) 16.0 ft Height below Crest of Embankment (ft) Borehole Dia. (Inch) 4.5 38.4 ft 3.30 ft Groundwater Elevation during Drilling (ft) -2.0 ft Hammer Efficiency 84 Assumed Embankment UW (pcf) Dist. of Boring from Levee Toe [1] (ft) 5.0 ft σ_{z2} Groundwater Elevation for Analysis (ft) 3.3 ft 120.0 pcf Embankment Height, H (ft) 10.1 ft

_																												
Dep	th (ft) E	Elevation (ft)		USCS Soll Type/Descri ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	CB	CR	Cs	N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR7.5	r _d	CSR ³	Ka	f paramet er		F8 against Liquefa otion
- 1	6.5	-13.2	18	SM	16		120	125	2131.3	1432.4	95.3	2062.5	1032.9	1.22	1	0.95	1.00	29.1	2.77	1.05	33.4	2.00	0.96	0.25	1.00	0.60	1.00	3.00
- 2	1.0	-17.7	7	SP-SM	27		120	125	2727.5	1747.8	129.0	2625.0	1314.6	1.10	1	0.95	1.00	10.2	4.48	1.13	15.1	0.17	0.95	0.25	1.00	0.77	1.00	1.84
- 2	6.5	-23.2	8	SP-SM	8		120	125	3451.6	2422.0	165.6	3312.5	1658.9	0.93	1	- 1	1.00	10.5	0.30	1.01	10.9	0.12	0.94	0.24	1.00	0.77	1.00	0.75

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

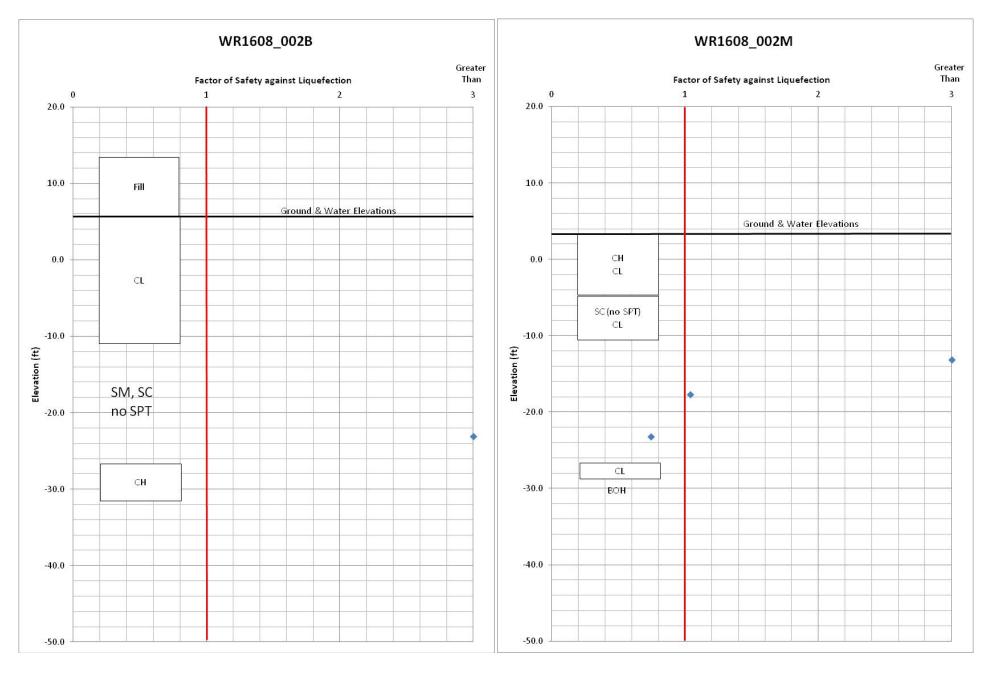
Based on Youd et. A., "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geolectrical and Geoenvironmental Engineering, October 2001.

Surcharge from embanisment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013



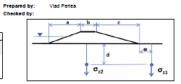

Fig. C-55. Lincoln Village, Station 5+23

Fig. C-56. Lincoln Village, Station 43+00

Lower San Joaquin Project: Study Area: Lincoln Village Levee Station: 43+58

Groundwater Elevation for Analysis (ft)

Boring Number: WR1608_001M Input Parameters Embankment Crest Elevation (ft) 13.3 ft Rod Length Above GS. (ft) Magnitude, M Base Elevation (ft) 3.3 ft Sampler without Liner? (Y/N) PGA (g/s) 0.2 Height below Crest of Embankment (ft) 0.0 ft Borehole Dia. (inch) 4.5 Groundwater Elevation during Drilling (ft) -2.0 ft Hammer Efficiency 84 Assumed Embankment UW (pcf)

Surcharge Information Waterside/Upstream Slope, a (ft) 33.0 ft Crest Width, b (ft) 16.0 ft Landside/Downstream Slope, c (ft) 40.0 ft Dist. of Boring from Levee Toe [1] (ft) -48.0 ft Embankment Height, H (ft) 10.0 ft

> 26.4 ft 9.0 ft

20.0 ft

-24.5 ft

7/23/2013

Date:

Date:

Boring WR1808_001M Boring on the crest SPT Ground Elevation Used in Analysis 13.30 ft

Depth	(ft) Elev	vation (ft)	Field Blow Count, N	USCS Soil Type/Desori ption ^[2]		Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)		Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	CB	CR	Cs	N _{1,60} [Llao& Whitma n]	Alpha	Beta	(N _{1,60}) _{cs} [Llao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er		F8 against Liquefa otion
31.0		-17.7	7	SW-SW	31		120	125	3588.8	2609.1	990.3	2625.0	1314.6	0.90	1	- 1	1.00	8.8	4.77	1.16	15.0	0.16	0.92	0.24	1.00	0.78	1.00	1.01
36.9	5	-23.2	13	SW-SM	7		120	125	4198.4	2875.5	912.4	3312.5	1658.9	0.86	1	- 1	1.00	15.6	0.12	1.01	15.9	0.17	0.88	0.23	1.00	0.71	1.00	1.11

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

3.3 ft

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Soils: Summary Reportfrom the 1995 NCEER and 1998 NCEER.NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Project: Study Area: Lower San Joaquin Prepared by: Vlad Perlea Date: 7/23/2013 Lincoln Village Checked by: Levee Station: Boring Number: WR1608_0048 harge information

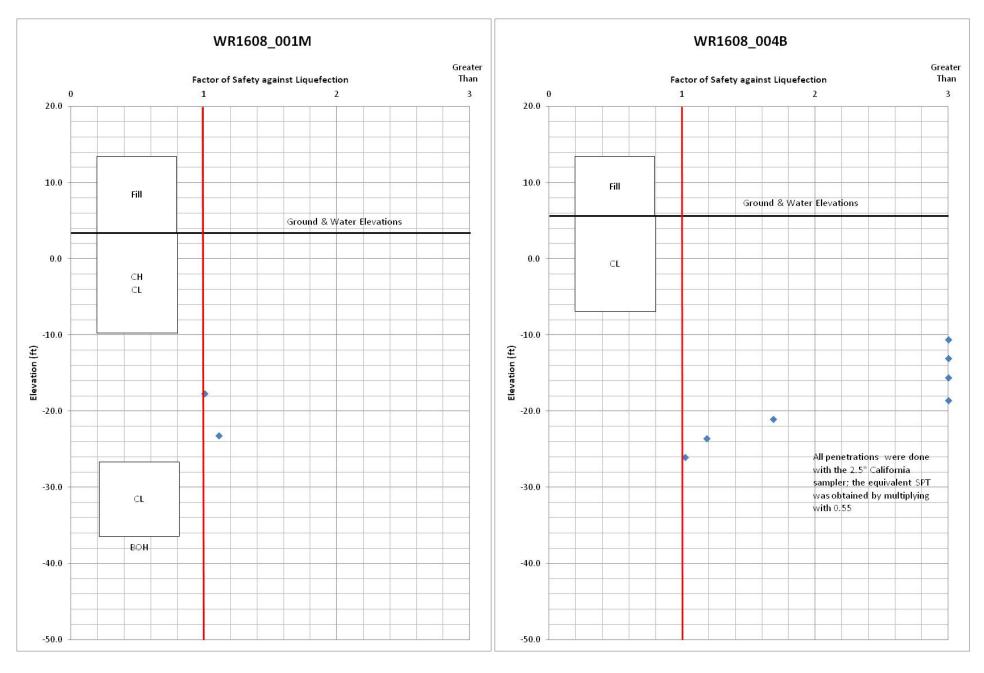
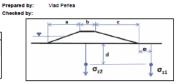
120.0 pcf

	, and the second	Input Parameters			
Embankment Crest Elevation (ft)	13.4 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	5.4 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	77	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	5.4 ft			120.0 pcf	

* * * * * * * * * * * * * * * * * * *	Surcharge Informatio
σ ₁₂ σ ₁₁	Waterside/Upstream Slope, a (ft) Grest Wildth, b (ft) Landside/Downstream Slope, c (ft) Dist. of Boring from Levee Toe ¹¹ (ft) Embankment Height, H (ft)

Boring	WR1608_004B	
Boring on	the crest	
SPT Grou	ind Elevation Used in Analysis	
13.40 ft		

Depth	ft) Elevation (ft	Field Blow Count, N	USCS Soll Type/Descri ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	CR	Cs	N _{1,90} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	C8R ³	K _s	f paramet er	Kσ	F8 against Liquefa otion
24.0	-10.6	30	30	4		120	125	2692.2	2155.6	729.2	2000.0	1001.6	0.99	1	0.95	1.00	36.5	0.00	1.00	36.5	2.00	0.94	0.25	1.00	0.60	1.00	3.00
26.5	-13.1	28	SP	4		120	125	2961.4	2268.8	685.9	2312.5	1158.1	0.97	1	1	1.00	34.7	0.00	1.00	34.7	2.00	0.94	0.24	1.00	0.60	1.00	3.00
29.0	-15.6	26	3P	4		120	125	3233.6	2384.9	645.6	2625.0	1314.6	0.94	1	- 1	1.00	31.2	0.00	1.00	31.2	2.00	0.93	0.24	1.00	0.60	1.00	3.00
32.0	-18.6	19	SM	28		120	125	3564.1	2528.2	601.1	3000.0	1502.4	0.91	1	1	1.00	22.5	4.56	1.14	30.2	2.00	0.91	0.24	1.00	0.66	1.00	3.00
34.5	-21.1	14	SM	28		120	125	3842.8	2650.9	567.3	3312.5	1658.9	0.89	1	- 1	1.00	16.4	4.56	1.14	23.2	0.26	0.89	0.23	1.00	0.71	1.00	1.69
37.0	-23.6	15	SP-SM	7		120	125	4124.2	2776.4	536.2	3625.0	1815.4	0.87	1	- 1	1.00	16.6	0.12	1.01	16.8	0.18	0.87	0.23	1.00	0.70	1.00	1.19
39.5	-26.1	13	SP-SM	7		120	125	4408.3	2910.7	507.8	3937.5	1971.9	0.85	1	- 1	1.00	13.8	0.12	1.01	14.0	0.15	0.85	0.22	1.00	0.73	1.00	1.02

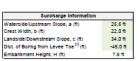

Fig. C-57. Lincoln Village, Station 43+58

Fig. C-58. Lincoln Village, Station 50+79

Project: Lower San Joaquin Study Area: Lincoln Village 89+65 Levee Station:

		Input Parameters			
Embankment Crest Elevation (ft)	13.5 ft	Rod Length Above G3. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	5.7 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	84	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	5.7 ft			120.0 pcf	

7/23/2013

Date:

Date:

Boring	WR1808_004M
Boring on	
SPT Grou	nd Elevation Used in Analysis
13.50 ft	

Depth (ft)	Elevation (ft)	Field Blow Count, N	USCS Soli Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	CB	CR	Cs	N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,60}) _{ca} [Llao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Ke	F8 against Liquefa otion
26.0	-12.5	15	80	17		120	125	3054.7	2399.5	818.2	2275.0	1139.3	0.94	1	1	1.00	19.7	3.01	1.06	23.9	0.27	0.94	0.24	1.00	0.68	1.00	1.67

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab festing is not available.

Based on Youd et. Al., "Quefaction Resistance of Soils," Journal of Geolectrical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Lower San Joaquin Prepared by: Vlad Perlea 7/23/2013 Project: Date: Study Area: Lincoln Village Checked by: Levee Station: 89+67 Boring Number: WR1608_003M Boring WR1808_003M

Boring on the crest

SPT Ground Elevation Used in Analysis Input Parameters Surcharge Information Embankment Crest Elevation (ft) 13.3 ft Rod Length Above GS. (ft) 25.5 ft Magnitude, M Waterside/Upstream Slope, a (ft) Base Elevation (ft) 4.8 ft Sampler without Liner? (Y/N) PGA (g's) 22.0 ft rest Width, b (ft) Height below Crest of Embankment (ft) 0.0 ft Borehole Dia. (Inch) 4.5 34.0 ft Groundwater Elevation during Drilling (ft) -2.0 ft Hammer Efficiency 84 Assumed Embankment UW (pcf) Dist. of Boring from Levee Toe [1] (ft) -45.0 ft σ_{z2} Groundwater Elevation for Analysis (ft) 4.8 ft 120.0 pcf Embankment Height, H (ft) 8.5 ft

Depth (ft) Elevation (ft)	Field Blow Count, N	USCS Soli Type/Desori ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)		Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,60}) _{ca} [Llao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Ke	F8 against Liquefa otion
26.0	-12.7	19	SC	42		120	125	3053.8	2386.1	900.3	2187.5	1095.5	0.94	1	1	1.00	25.0	5.00	1.20	35.1	2.00	0.94	0.24	1.00	0.64	1.00	3.00

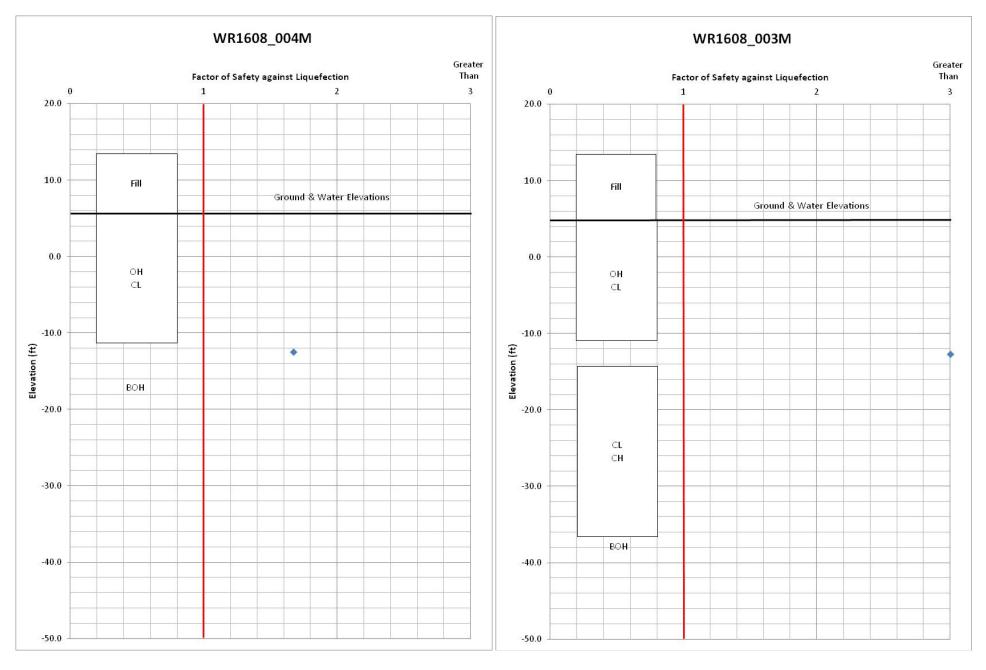
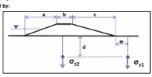


Fig. C-59. Lincoln Village, Station 89+65


Fig. C-60. Lincoln Village, Station 89+67

Lower San Joaquin Study Area: Lincoln Village

Levee Station: 109+90

Boring Number: WR160	8_0088				
		Input Parameters			
Embankment Crest Elevation (ft)	13.0 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	1.0 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankme	nt (ft) 0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Dril	Ing (ft) -2.0 ft	Hammer Efficiency	77	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysi	s (ft) 1.0 ft			120.0 pcf	•

Prepared by: Vlad Perlea Checked by:

Date: 7/23/2013 Date:

Suroharge Information	
Waterside/Upstream Slope, a (ft)	39.6 ft
Crest Width, b (ft)	60.0 ft
Landside/Downstream Slope, c (ft)	30.0 ft
Dist. of Boring from Levee Toe [1] (ft)	-60.0 ft
Embankment Height, H (ft)	12.0 ft

Boring WR1808_008B Boring on the crest SPT Ground Elevation Used in Analysis 13.00 ft

Depth (f	Elevation (ft)		USCS Soll Type/Decorl ption ^[2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liac&Whitman]	C _B	CR	Cs	N _{1,80} [Llao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Llao&Whit man]	CRR7.5	r _d	CSR ³	Ka	f paramet er		F8 against Liquefa otion
27.0	-14.0	10	SP-SM	10		120	125	3277.9	2529.1	1417.9	1875.0	939.0	0.91	1	- 1	1.00	12.3	0.87	1.02	13.4	0.14	0.94	0.24	1.00	0.75	1.00	0.89
29.5	-16.5	25	ML	60		120	125	3579.3	2674.5	1406.8	2187.5	1095.5	0.89	1	1	1.00	28.5	5.00	1.20	39.2	2.00	0.93	0.24	1.00	0.60	1.00	3.00
33.5	-20.5	20	SM	33		120	125	4856.7	2902.3	1384.2	2687.5	1345.9	0.85	1	- 1	1.00	21.9	4.88	1.18	30.7	2.00	0.90	0.23	1.00	0.66	1.00	3.00
37.5	-24.5	45	SP-SM	11		120	125	4528.7	3124.7	1356.2	3187.5	1596.3	0.82	1	1	1.00	47.5	1.21	1.03	50.0	2.00	0.87	0.23	1.00	0.60	1.00	3.00

NOTE
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Uquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER and 1998 NCEER and Engineering, October 2001.
Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Vlad Perlea

Project: Lower San Joaquin Study Area: Lincoln Village Levee Station:

Boring Number WR1608_0138

		Input Parameters			
Embankment Crest Elevation (ft)	12.7 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	3.2 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	77	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	3.2 ft			120.0 pcf	

Checked by: σ_{z2} σ_{z1}

Surcharge Information Waterside/Upstream Slope, a (ft) 31.4 ft Crest Width, b (ft) 8.0 ft Landside/Downstream Slope, c (ft) 23.8 ft Dist. of Boring from Levee Toe [1] (ft) -27.8 ft

7/23/2013

Date:

Date:

Embankment Height, H (ft)

Boring WR1808_013B

Boring on the crest

SPT Ground Elevation Used in Analysis 12.70 ft

Depth (f	Elevation (ft)	Field Blow Count, N	USCS Soll Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	saturated Unit	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,90} [Liao& Whitma n]	Alpha	Beta	(N _{1,60}) _{cs} [Llao&Whit man]	CRR7.5	r _d	C8R ³	Ka	f paramet er	Kσ	F8 against Liquefa otion
23.0	-10.3	16	SP-SM	16		120	125	2598.0	2080.1	936.5	1687.5	845.1	1.01	1	0.95	1.00	19.6	2.77	1.05	23.4	0.26	0.95	0.25	1.00	0.68	1.00	1.61
28.5	-15.8	20	SP-SM	7		120	125	3179.1	2318.0	830.1	2375.0	1189.4	0.96	1	1	1.00	25.0	0.12	1.01	25.3	0.30	0.93	0.24	1.00	0.64	1.00	1.84
31.0	-18.3	15	SP-SM	7		120	125	3447.4	2430.3	785.9	2687.5	1345.9	0.93	1	1	1.00	18.4	0.12	1.01	18.7	0.20	0.92	0.24	1.00	0.69	1.00	1.25
33.5	-20.8	18	SP-SM	4		120	125	3718.6	2545.5	744.6	3000.0	1502.4	0.91	1	1	1.00	20.6	0.00	1.00	20.6	0.22	0.90	0.23	1.00	0.67	1.00	1.43

Prepared by:

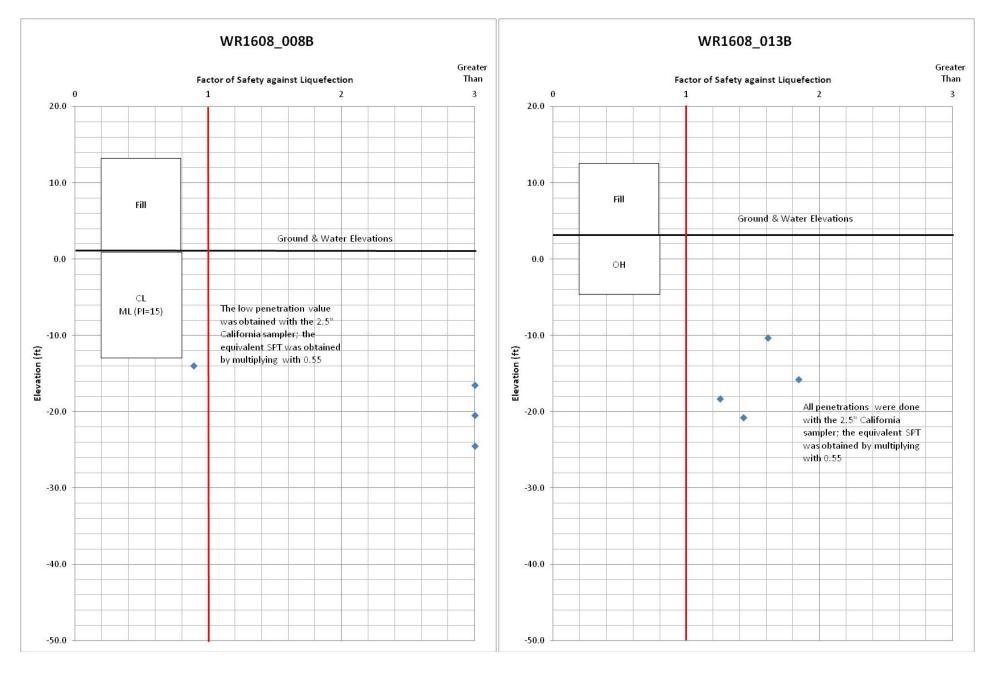


Fig. C-61. Lincoln Village, Station 109+90

Fig. C-62. Lincoln Village, Station 150+00

Lower San Joaquin Project: Lincoln Village Study Area:

Levee Station: 159+20

Borning Municer. WK 1909_0018					
		Input Parameters			
Embankment Crest Elevation (ft)	13.1 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	3.1 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	84	Assumed Emban	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	3.1 ft			120.0 pcf	

Prepared by: Vlad Perlea Checked by: σ,2

7/23/2013

Date:

Boring	WR1608_001B
Boring on	
SPT Grou	nd Elevation Used in Analysis
13.05 ft	

				USCS Soll	Fines	Flag for Analysis	Weitlet		Total	Effective Overburden	Suroharge	Total	Effective	Overburden				N _{1,80}			(N _{1,80}) _{ca}					.		F8
Dep	oth (ft) I	Elevation (ft)	Field Blow Count, N	Type/Desori ption ^[2]	Content (%<#200)	"Clay" or "Uncaturated"	Weight (pof)	Saturated Unit Weight (pof)	Overburden Pressure during Drilling (psf)		Influence during Drilling (pcf)	Overburden Pressure for Analysis (psf)	Overburden Pressure for Analysis (psf)	Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	[Liao& Whitma n]	Alpha	Beta	[Liao&Whit man]	CRR _{7.6}	r _d	C8R ³	Ka	paramet er	Κσ	against Liquefa otion
	31.0	-18.0	17	SM	15		120	125	3510.4	2515.1	910.6	2628.4	1314.9	0.92	1	1	1.00	21.8	2.50	1.05	25.4	0.30	0.92	0.24	1.00	0.66	1.00	1.88
	16.5	-23.5	14	SM	39		120	125	4115.7	2777.3	828.5	3315.9	1659.2	0.87	1	1	1.00	17.1	5.00	1.20	25.5	0.30	0.88	0.23	1.00	0.70	1.00	1.99
	11.5	-28.5	13	SP-SM	12		120	125	4674.6	3024.1	762.4	3940.9	1972.2	0.84	1	- 1	1.00	15.2	1.55	1.03	17.3	0.18	0.84	0.22	1.00	0.72	1.00	1.27

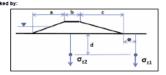
NOTE.
[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. AL, "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Prepared by: Project: Lower San Joaquin Vlad Perlea Study Area: Lincoln Village Levee Station: 159+41 Boring Number: WR1608_0098

		Input Parameters			
Embankment Crest Elevation (ft)	13.4 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	4.1 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	77	Assumed Embani	tment UW (pcf)
Groundwater Elevation for Analysis (ff)	417			120 0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	28.1 ft
Crest Width, b (ft)	14.0 ft
Landside/Downstream Slope, c (ft)	37.4 ft
Dist. of Boring from Levee Toe [1] (ft)	-44.4 ft
Embankment Height, H (ft)	9.4 ft

7/23/2013

Date:

Boring	WR1608_009B
Boring on	the crest
SPT Grou	ind Elevation Used in Analysis
13.40 ft	

Depth (ft	Elevation (ft)		USCS Soll Type/Desori ption ^[2]	Fines Content (%<\$200)	Flag for Analysis "Clay" or "Uncaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)		Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{cs} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Kø	F8 against Liquefa otion
33.5	-20.1	12	ML	63		120	125	3833.4	2703.9	844.9	3022.1	1512.0	0.88	1	1	1.00	13.1	5.00	1.20	20.7	0.22	0.90	0.23	1.00	0.74	1.00	1.43
36.0	-22.6	13	ML	63		120	125	4110.9	2825.4	809.9	3334.6	1668.5	0.87	1	1	1.00	14.7	5.00	1.20	22.6	0.25	0.88	0.23	1.00	0.72	1.00	1.64
38.5	-25.1	12	ML	63		120	125	4390.0	2948.5	776.5	3647.1	1825.0	0.85	1	- 1	1.00	12.5	5.00	1.20	20.0	0.22	0.86	0.22	1.00	0.74	1.00	1.45
41.0	-27.6	15	SM	11		120	125	4670.8	3073.3	744.8	3959.6	1981.5	0.83	1	1	1.00	15.8	1.21	1.03	17.4	0.19	0.84	0.22	1.00	0.71	1.00	1.27
43.5	-30.1	17	SM	13		120	125	4953.3	3199.8	714.8	4272.1	2138.0	0.81	1	1	1.00	17.2	1.89	1.04	19.7	0.21	0.82	0.21	1.00	0.70	1.00	1.49

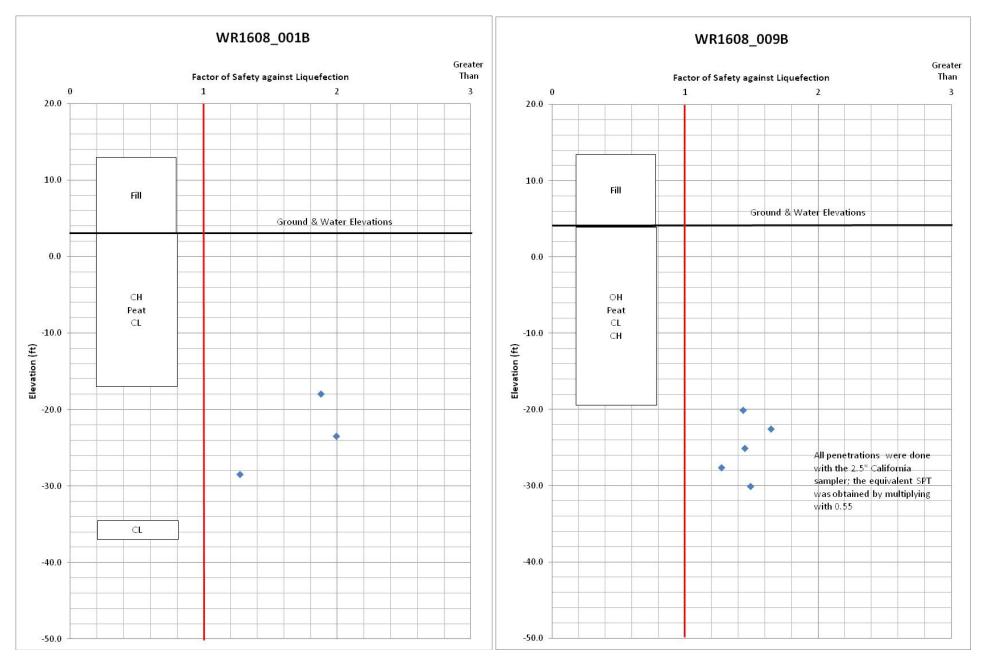


Fig. C-63. Lincoln Village, Station 159+20

Fig. C-64. Lincoln Village, Station 159+41

Project: Lower San Joaquin Study Area: Lincoln Village

Levee Station: 159+48 Boring Number: WR1608_010B

		Input Parameters			
Embankment Crest Elevation (ft)	13.4 ft	Rod Length Above G3. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	3.7 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	9.7 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	77	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	3.7 ft			120.0 pcf	1

Prepared by: Vlad Perlea Checked by: σ_{z2}

7/23/2013

Date:

Date:

Boring WR1808_010B

Boring on waterside or landside field

SPT Ground Elevation Used in Analysis

Depth (f) Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Descri ption [편	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (psf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Св	CR		N _{1,90} [Liao& Whitma n]	Alpha	Beta	(N _{1,86}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Κσ	F8 against Liquefa otion
21.0	-17.3	8	SP-SM	10		120	125	2717.2	1762.5	120.7	2625.0	1314.6	1.10	1	0.95	1.00	10.7	0.87	1.02	11.8	0.13	0.95	0.25	1.00	0.76	1.00	0.79
24.0	-20.3	11	SM	23		120	125	3111.1	1969.2	139.6	3000.0	1502.4	1.04	1	0.95	1.00	13.9	4.06	1.10	19.4	0.21	0.94	0.25	1.00	0.73	1.00	1.27
30.0	-26.3	34	SM	12		120	125	3893.7	2583.3	172.2	3750.0	1878.0	0.91	1	1	1.00	39.5	1.55	1.03	42.3	2.00	0.93	0.24	1.00	0.60	1.00	3.00
33.0	-29.3	31	SM	8		120	125	4282.3	2971.9	185.8	4125.0	2065.8	0.84	1	1	1.00	33.6	0.30	1.01	34.3	2.00	0.91	0.23	1.00	0.60	1.00	3.00
36.0	-32.3	26	SM	8		120	125	4669.2	3358.8	197.7	4500.0	2253.6	0.79	1	1	1.00	26.5	0.30	1.01	27.1	0.34	0.88	0.23	1.00	0.63	0.98	2.19

NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. Al., "Liquefaction Resistance of Solis: Summary Report from the 1995 NCEER and 1998 NCEER/NSF Worshops on Evaluation of Liquefaction Resistance of Solis," Journal of Geotechnical and Geoenvironmental Engineering, October 2001.

Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussinesq formulas for stresses generated by infinite length trapezoidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.

[4] It is conservative to answer "No" if unsure about sampling method; answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Lower San Joaquin Project: Study Area: Lincoln Village Levee Station: 164+99

Boring Number: WR1608_011B

		Input Parameters			
Embankment Crest Elevation (ft)	13.6 ft	Rod Length Above G3. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	3.6 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	77	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	3.6 ft			120.0 pcf	

Prepared by: Vlad Perlea Checked by: e , σ_{z2}

Surcharge Information Waterside/Upstream Slope, a (ft) 33.0 ft Crest Width, b (ft) 14.0 ft landside/Downstream Slope, c (ft) 29.0 ft Dist. of Boring from Levee Toe ^[1] (ft) -36.0 ft Embankment Height, H (ft) 10.0 ft

7/23/2013

Boring WR1808_011B Boring on the crest SPT Ground Elevation Used in Analysis

Depth (ft)			USCS Soil Type/Desori ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR	Cs	N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,86}) _{ca} [Liao&Whit man]	CRR7.5	r _d	C8R ³	Ka	f paramet er	Κ _σ	F8 against Liquefa etion
24.5	-10.9	18	ML	38		120	125	2836.1	2280.8	1051.6	1812.5	907.7	0.96	1	0.95	1.00	21.3	5.00	1.20	30.6	2.00	0.94	0.24	1.00	0.67	1.00	3.00
27.0	-13.4	8	ML	38		120	125	3106.2	2394.8	1009.2	2125.0	1064.2	0.94	1	1	1.00	10.0	5.00	1.20	16.9	0.18	0.94	0.24	1.00	0.77	1.00	1.11
29.5	-15.9	- 11	ML	70		120	125	3376.5	2509.1	967.0	2437.5	1220.7	0.92	1	1	1.00	13.0	5.00	1.20	20.6	0.22	0.93	0.24	1.00	0.74	1.00	1.38
32.0	-18.4	13	ML	35		120	125	3647.8	2624.5	925.8	2750.0	1377.2	0.90	1	1	1.00	15.2	5.00	1.20	23.3	0.26	0.91	0.24	1.00	0.72	1.00	1.65
34.5	-20.9	23	ML	35		120	125	3920.6	2741.2	886.1	3062.5	1533.7	0.88	1	1	1.00	26.0	5.00	1.20	36.3	2.00	0.89	0.23	1.00	0.63	1.00	3.00
37.0	-23.4	20	SP-SM	10		120	125	4195.1	2859.8	848.1	3375.0	1690.2	0.86	1	1	1.00	21.9	0.87	1.02	23.2	0.26	0.87	0.23	1.00	0.66	1.00	1.72
40.0	-26.4	20	SP-SM	8		120	125	4527.0	3004.5	805.0	3750.0	1878.0	0.84	1	1	1.00	21.9	0.30	1.01	22.5	0.25	0.85	0.22	1.00	0.66	1.00	1.70
42.0	-28.4	4	ML	90		120	125	4749.8	3221.0	777.8	4000.0	2003.2	0.81	1	1	1.00	4.0	5.00	1.20	9.8	0.11	0.83	0.22	1.00	0.80	1.00	0.77
44.5	-30.9	19	8P	6		120	125	5030.1	3501.3	745.6	4312.5	2159.7	0.78	1	1	1.00	19.2	0.03	1.00	19.3	0.21	0.81	0.21	1.00	0.68	0.99	1.47
47.0	-33.4	15	SP	6		120	125	5312.2	3783.4	715.2	4625.0	2316.2	0.75	1	- 1	1.00	14.8	0.03	1.00	14.9	0.16	0.79	0.21	1.00	0.72	0.98	1.13
50.0	-36.4	21	SP	6		120	125	5653.1	4124.3	681.1	5000.0	2504.0	0.72	1	1	1.00	19.7	0.03	1.00	19.8	0.21	0.77	0.20	1.00	0.68	0.95	1.52

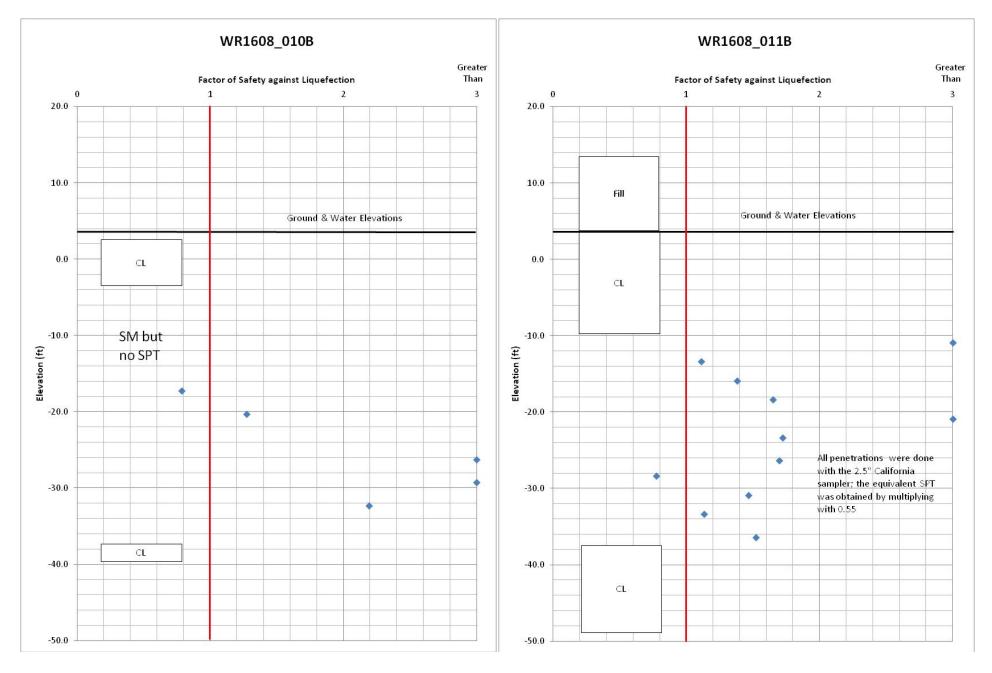


Fig. C-65. Lincoln Village, Station 159+48

Fig. C-66. Lincoln Village, Station 164+99

LIQUERFACTION TRIGGERING ANALYSIS

Lower San Joaquin Study Area: Lincoln Village 142+28

Levee Station:

Boring Number: WR1608_005M					
		Input Parameters			
Embankment Crest Elevation (ft)	12.7 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	4.9 ft	Sampler without Liner? (Y/N)	n	PGA (g's)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (Inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	84	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (ft)	4.9 ft			120.0 pcf	

Prepared by: Vlad Perlea Checked by: σ,2 σ,1

Suroharge Information	
Waterside/Upstream Slope, a (ft)	25.7 ft
Crest Width, b (ft)	12.0 ft
Landside/Downstream Slope, c (ft)	25.7 ft
Dist. of Boring from Levee Toe [1] (ft)	-31.7 ft
Embankment Height, H (ft)	7.8 ft

7/23/2013

Date:

Boring WR1808_006M Boring on the crest SPT Ground Elevation Used in Analysis 12.70 ft

Deptr	(ft) El	levation (ft)		USCS Soli Type/Desori ption ^[2]	Fines Content (%<\$200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Surcharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,80} [Liao& Whitma n]	Alpha	Beta	(N _{1,86}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Κσ	F8 against Liquefa otion
26.	0	-13.3	11	30	21		120	125	2967.9	2262.8	727.4	2275.0	1139.3	0.97	1	1	1.00	14.9	3.78	1.09	20.0	0.21	0.94	0.24	1.00	0.72	1.00	1.32
31.	0	-18.3	8	ML	92		120	125	3520.7	2503.6	655.2	2900.0	1452.3	0.92	1	1	1.00	10.3	5.00	1.20	17.4	0.18	0.92	0.24	1.00	0.77	1.00	1.16
41.	0	-28.3	11	SM	14		120	125	4651.2	3028.8	535.7	4150.0	2078.3	0.84	1	1	1.00	12.9	2.20	1.04	15.6	0.17	0.84	0.22	1.00	0.74	1.00	1.14
46.	0	-33.3	49	GP	5		120	125	5228.3	3605.9	487.8	4775.0	2391.3	0.77	1	1	1.00	52.6	0.00	1.00	52.6	2.00	0.80	0.21	1.00	0.60	0.95	3.00

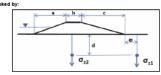
NOTE

[1] "e" is the distance from landside toe, positive downstream and negative going upstream.

[2] Soil description may be used to estimate fines content where lab testing is not available.

Based on Youd et. A., "Uquefaction Resistance of Soils: Summary Report from the 1995 NCEER and 1998 NCEER and 1998 Nceer and Industrial Engineering (Actober 2001).
Surcharge from embankment calculation is presented in Poulos & Davis (1978) which based on Boussiness from Joseph Complete for stresses generated by Infinite length trapeccidal loading on elastic half-space.

[3] CSR is calculated without consideration of the influence of embankment to reflect free-field condition consistent with the PGA used.


[4] It is conservative to answer "No" if unsure about sampling method, answering "Yes" implies that sampler has room for linter (1.5-inch inside diameter) but the liner is not inserted.

Updated April 2013

LIQUERFACTION TRIGGERING ANALYSIS

Project: Lower San Joaquin Prepared by: Vlad Perlea Study Area: Lincoln Village Checked by: Levee Station: 201+51

Boring Number: WCNBFM_DUTB					
		Input Parameters			
Embankment Crest Elevation (ft)	13.0 ft	Rod Length Above GS. (ft)	7	Magnitude, M	6.4
Base Elevation (ft)	6.6 ft	Sampler without Liner? (Y/N)	n	PGA (g/s)	0.2
Height below Crest of Embankment (ft)	0.0 ft	Borehole Dia. (inch)	4.5		
Groundwater Elevation during Drilling (ft)	-2.0 ft	Hammer Efficiency	84	Assumed Embar	kment UW (pcf)
Groundwater Elevation for Analysis (ff)	6.6.0			120 0 pcf	

Surcharge Information	
Waterside/Upstream Slope, a (ft)	12.9 ft
Crest Width, b (ft)	8.0 ft
Landside/Downstream Slope, c (ft)	14.2 ft
Dist. of Boring from Levee Toe [1] (ft)	-18.2 ft
Embankment Height, H (ft)	6.5 ft

7/23/2013

Date:

Date:

Boring	WCNBFM_001B
Boring on	the crest
SPT Grou	nd Elevation Used in Analysis
13.00 ft	

Depth (ft)	Elevation (ft)	Fleid Blow Count, N	USCS Soll Type/Descri ption [2]	Fines Content (%<#200)	Flag for Analysis "Clay" or "Unsaturated"	Wet Unit Weight (pof)	Saturated Unit Weight (pof)	Total Overburden Pressure during Drilling (psf)	Effective Overburden Pressure during Drilling (psf)	Suroharge Influence during Drilling (pcf)	Total Overburden Pressure for Analysis (psf)	Effective Overburden Pressure for Analysis (psf)	Overburden Correction Factor, C _N [Liao&Whitman]	Ca	CR		N _{1,60} [Liao& Whitma n]	Alpha	Beta	(N _{1,80}) _{ca} [Liao&Whit man]	CRR _{7.5}	r _d	CSR ³	Ka	f paramet er	Κσ	F8 against Liquefa otion
16.0	-3.0	9	SP-SM	34		120	125	1780.1	1717.7	629.1	1197.1	598.1	1.11	1	0.95	1.00	13.3	4.93	1.19	20.7	0.22	0.96	0.25	1.00	0.74	1.00	1.34
21.0	-8.0	14	SP-SM	17		120	125	2299.6	1925.2	523.6	1822.1	911.1	1.05	1	0.95	1.00	19.5	3.01	1.06	23.7	0.27	0.95	0.25	1.00	0.68	1.00	1.63
26.0	-13.0	13	SP-SM	17		120	125	2840.1	2153.7	439.1	2447.1	1224.1	0.99	1	1	1.00	18.0	3.01	1.06	22.1	0.24	0.94	0.24	1.00	0.69	1.00	1.50
31.0	-18.0	7	SP-SM	18		120	125	3399.9	2401.5	373.9	3072.1	1537.1	0.94	1	1	1.00	9.2	3.23	1.07	13.0	0.14	0.92	0.24	1.00	0.78	1.00	0.88
36.0	-23.0	8	SP-SM	10		120	125	3974.6	2976.2	323.6	3697.1	1850.1	0.84	1	- 1	1.00	9.4	0.87	1.02	10.5	0.12	0.88	0.23	1.00	0.78	1.00	0.77
41.0	-28.0	31	SW-SW	7		120	125	4560.2	3561.8	284.2	4322.1	2163.1	0.77	1	- 1	1.00	33.5	0.12	1.01	33.9	2.00	0.84	0.22	1.00	0.60	0.99	3.00

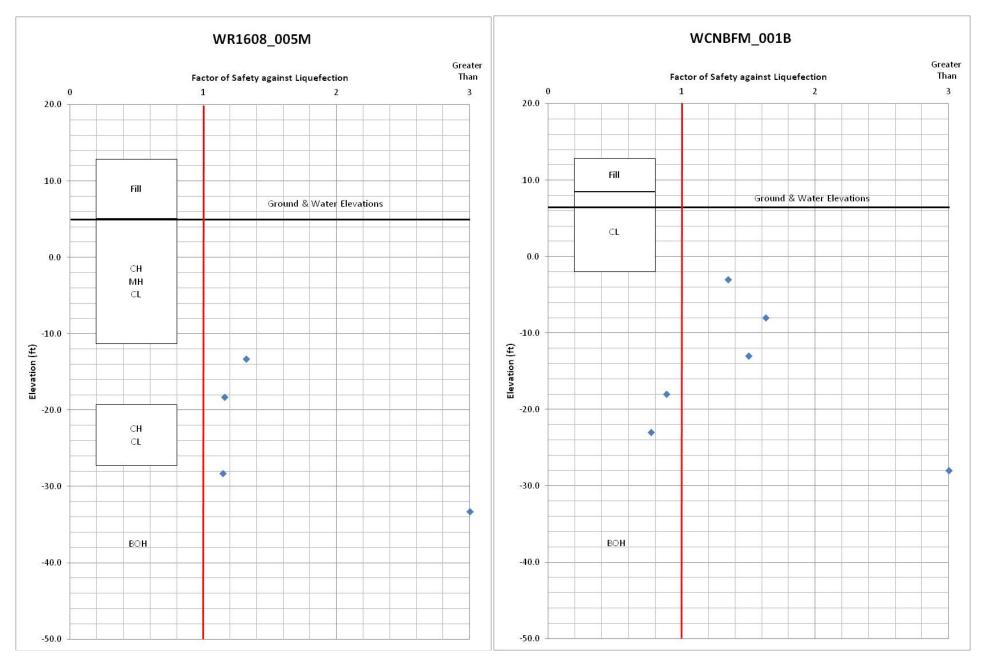


Fig. C-67. Lincoln Village, Station 142+28

Fig. C-68. Lincoln Village, Station 201+51

Appendix D

Selected Boring Logs

DATE ST 2/6/07	ARTED		DATE COMPLETED 2/8/07	GROUND ELEV	ATIC	ON			TON B						L DE	PTH OF BORING
DRILLING	G CONTR	ACTO	IR .	DRILLER'S NAM Chris Minor	E		Н	ELPER	R'S NA Dorts	ME				TOT/		PTH OF FILL
DRILLING	3 METHO			DRILL RIG MAK	E Al	ND MC		Joyu	DOILS	CII				CON	SULT	ANT COMPANY
			01.5' Rotary PE (HOLE DIAMETER)	CME 550 DRILLING ROD	TYF	E AND	DIAN	/ETER	٦					_		est, Inc.
4 3/8 in				HQ core 94m CASING TYPE.	m, I	NWJ (7mm	ı		DEDT				Spy	rridor	Giannakos REVIEWER
X VER			CLINED	10" HSA, 26.5	5'						_			Dus	ton l	Marlow
	R TYPE(9 375"), M	7	Punch Core(2.25"), Shelby Tube(3")	140 lb CME A							op			HAM 72%		EFFICIENCY
BOREHO	LE BACK	FILL (OR COMPLETION	GROUNDWATE				URIN					AF			ING (DATE-TIME)
cemen	t grout to	gro	und surface		_	-						IARC	ORAT			easureu
<u>\$</u>	te et	<u>s</u> s			Location	Number	%	.ii	Foot	ŝ	ts	۰				
jou,		Materia Graphic	FIELD CLASSIFICATION OF MA	TERIALS	Š	₹	very	ĕ	per	N _{eo} (ASTM)	Ž		D.±	bicity ex	Fines, 5 < #200	REMARKS
Elevation,	Depth,	B _E S	(Description)		Sample	Sample	Recovery,	Blows	Blows per)8 ()	PP or	Water Content,	Liquid	Plast	Fin %	
					Sa	Sa	<u> </u>	B	窗		4	O			9,	
-		î	CLAYEY GRAVEL (GC); dense; brown (10 medium to coarse sand; fine to coarse gra	OYR 5/3); dry; vel; (FILL).	M	1	83	12 14	31	37						S01C_000_000S, S01B_000_001S,
	1 -		SANDY SILT (ML); dense; brown (10YR 5) plasticity, low dry strength, slow dilatancy,	/3); dry; low low toughness	Λ		~	17	0.	0,						S01A_001_001S
	2 -		fines; (FILL). SILTY SAND (SM); dense; dark yellowish		П											
l	-	Ш	4/4); dry; fine to medium sand; (FILL).	biomi (ioiit												
▎ ↓	3 -	Ш														
	4		SANDV SILT (ML): heroup (10VP 4/2): do.	low placticity												
25—	_ =		SANDY SILT (ML); brown (10YR 4/3); dry low dry strength, slow dilatancy, low tough clay mottling (FILL).	ness fines; with												
	- 5-	Ш	, ,		V			5 8				12			45	S02B_006_006M, S02A_006_007M
	6 -	M	CLAYEY SAND (SC); brown (7.5YR 5/4); medium sand; 45% fines; trace organics (I	dry; 55% fine to FILL).	М	2	83	10	18							0021_000_007111
1	, -	W.			H			4				2			5	S03B_007_007S,
	7 -		Poorly Graded SAND with Sitt (SP-SM); m	edium dense;	X	3	83	6 7	13	16		2			9	S03A_007_008S
	8		pale yellow (2.5Y 8/2); dry; 95% medium t .5% fines; (FILL). SANDY SILT (ML): brown (10YR 4/3); mo		<i>/</i> \			,								
╽	9 -		plasticity, low dry strength, slow dilatancy, fines; (FILL).	low toughness												
20-	٠,															
	- 10-		D. I.O. I. IOANID (00) I	400	7			WOH				3			2	S04B_010_010S,
	11 -		Poorly Graded SAND (SP); loose; very pai 8/2); 98% fine to medium sand; 2% fines;	(FILL).	Х	4	78	2	5	6						S04A_010_011S
	-				<i>/</i> \			-								
l ↓	12 -		L													
	13 -		LEAN CLAY (CL); very dark grayish brown dry; low to medium dry strength, no to slow	n (10YR 3/2); v dilatancy, low	Ш											S05A_013_015T 3" Shelby
l ∃	Ť	111	toughness fines; (FILL). SILT (ML); brown (10YR 4/3); moist; 88%		Ш	5	90					30	44	22	88	0 psi
15-	14 -		strength, slow dilatancy, low toughness fin oxidized	es; 12% sand;	Ш											
	- 15-	0000	(FILL). SANDY SILT (ML); loose; dark yellowish b	rown (10VP				_								S06A 015 016S
	16 -		4/4); dry; 50% fine sand; 50% fines; trace (FILL).	mica	X	6	61	3	7	8		13			50	
-	10 7		v		Μ			4								
	17 -															
	18		(BASE OF FILL).													
	-		SILTY SAND (SM); medium dense; brown moist, 83% fine to medium sand; 17% fine													
10-	19 –	Ш	mottling (NATIVE).													
"]	_ ₂₀ _]															
			Final	Report Ve	rs	ion	9/3	0/2	008							
100	WATER	Br	orehole Location: Crest of Levee							T			LOG	i OF	BO	RING
AMERIT OF	- PRES	C	oordinates: North_2,122,291,98	East 6			46			-						69B
EPAN I	mb-red i	41	evee Station or Milepost_STA: 1553+82.				22000			-						Sheet 1 of 5
a land		/	PS: Latitude <u> 37.82064</u> hannel / River Name / Feature: <u>San Joac</u>	Longitu uin River	me_	-141.	2000	,		:	_					ort Services
AVE OF	CALFORN		ounty: San Joaquin	-						-	Urb	an Le	evee		echni gram	ical Evaluations
															-	

FIELD CLASSIFICATION OF MATERIALS 39	- L		Τ		c	-e			į,		_	LABO	ORATO	ORY D	ATA	
21	Elevation, fee	_	Material Graphics			Sample Numb	Recovery, %	90	Blows per Fox	N _{ex} (ASTM)	PP or TV, ts/	Water Content, %	Liquid Limit	Plasticity Index	Fines, % < #200	REMARKS
2 24 Poorly Graded SAND with Sit (SP-SM); medium dense; pay (57 4/2); page of the state of the			-		X	7	100		12			9			17	S07B 021 021M, S07A_021_022M
24 - 25 - 26 - 26 - 26 - 27 - 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29	-		- -		X	8	83	5	12	14		11			19	S08A_022_023S
26 Clive (5Y 5/3) from 28.0' to 30.5'. 9 67 8 8 16 19 25 6 6 S10A_027_028P 28	- V 5-		- -	Poorly Graded SAND with Silt (SP-SM); medium dense; light yellowish brown (10YR 6/4); wet, 94% medium sand; 6% fines.												
27 - 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29	-		- - -	Olive (5Y 5/3) from 26.0' to 30.5'.	X	9	67	8	16	19		25			6	S09A_025_026S
Dark greenish gray (10G 4/1) below 30.5: 11	-	28 -	- - - -			10	67									
33 - 34 - 35 - 34 - 35 - 35 - 36 - 36 - 36 - 36 - 36 - 36	0-	30-		Dark greenish gray (10G 4/1) below 30.5'.	X	11	44	6	13	16						S11B 030 030S, S11A_030_031S
35 SILT with Sand (ML); medium dense; olive gray (5Y 4/2); moist, low plasticity, low to medium dry strength, slow dilatancy, low toughness fines. 12 83 4 9 11 1.0P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.	-	33 -	- - - - -				12									No Sample Taken
37 moist; medium dry strenigth, slow dilatancy, fow toughness fines; trace sand, oxidized, trace organics, white mottling. 38 SANDY SILT (ML); medium dense; gray (5Y 5/1); moist; low plasticity, low dry strength, slow dilatancy, low toughness fines; oxidized, trace organics. 13 67 2.5P 29 45 28 S13A_037_038P 10 10 10 10 10 10 10	-	SILT with Sand (ML); medium dense; olive gray (5Y 4/2); moist; low plasticity, low to medium dry strength, slow (12 83 4 9 11 1.0P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8P 1.8														
-10 — 40 — Dark grayish brown (2.5Y 4/2) mottled with red, medium plasticity below 40.0°. 141 — 42 — 43 — 43 — 44 — 44 — 44 — 45 — 44 — 45 — 44 — 45 — 45 — 45 — 46 — 46	-	38 -	-111	moist; medium dry strength, slow dilatancy, low toughness fines; trace sand, oxidized, trace organics, white mottling. SANDY SILT (ML); medium dense; gray (5Y 5/1); moist; low plasticity, low dry strength, slow dilatancy, low		13	67				2.5P	29	45	28		S13A_037_038P
42 — 43 — 43 — 44 — 44 — 44 — 45 — 44 — 45 — 45	-10-	- 4 0-	-			14	80					20	24			S14A_040_042T 3" Shelby 100 psi
-15 44 - 15	-		-		V			7			2.0P	28	29	1		S15A_043_044S
Final Report Version 9/30/2008	-15-			SILT (ML); medium dense; brown (10YR 4/3); moist; low	Å				14	17	4.5P					S16A_045_045P
		- 45-		Final Report Ve	rsi	ion	9/3	0/2	008							

LOG OF BORING WR0017_069B

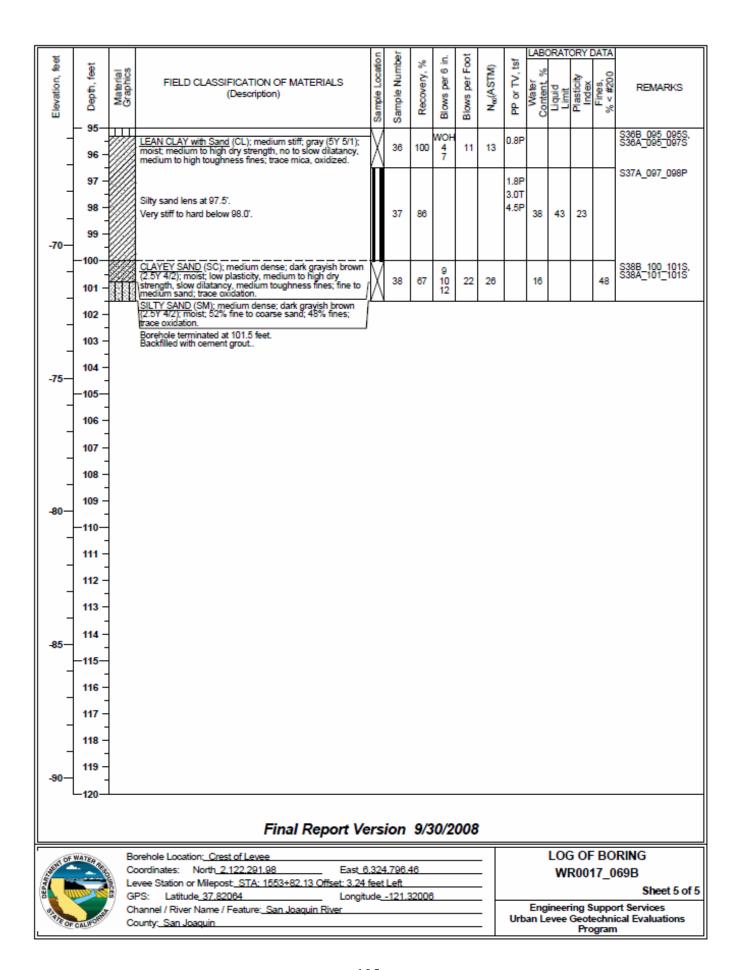
Sheet 2 of 5

				_											
feet	¥	= 93		Location	mber	% :	6 in.	per Foot	S	tst			ORYE		
Elevation,	Depth, feet	Material Graphics	FIELD CLASSIFICATION OF MATERIALS (Description)	e Loc	N e	Recovery,	ows per	ber s	N _{ec} (ASTM)	PP or TV, tsf		nid	Plasticity Index	#200	REMARKS
Elevá	Deg	≊ნ	(Sample	Sample Number	Rec	Blow	Blows	Z	F.	Water Content	Liq	Pla	E ×	
_	- 4 5-	Ш	plasticity, low to medium dry strength, slow dilatancy, low toughness fines; trace mica, trace organics, oxidized.	1/	0)		2								S17B 045 046S, S17A_046_047S
_	46	-	SILTY SAND (SM); medium dense; olive brown (2.5Y 4/3); moist; fine to medium sand; trace mica.	ľÅ	17	89	6 11	17	20						3117_040_0413
	47	-111		П											S18A_048_048P
	48	- 777	CLAYEY SAND (SC); gray (5Y 5/1); 75% fine to medium sand; 25% fines; trace mica.	11	18	57					20			25	
-	49														
-20-	– 5 0-			Ц											0400 050 0540
-	51	∭	SILTY SAND (SM); dense; olive brown (2.5Y 4/4); moist; 74% fine sand; 26% fines; trace mica.	Ŋ	19	61	12 15	30	36						S19B_050_051S, S19A_051_051S
-		-111	74 /s line Sand, 20 /s lines, dade mida.	$\langle \cdot \rangle$			15				21			26	S20A_052_053P
-	52	7	Oxidized from 52.5' to 53.0'.								21			20	
-	53	7			20	81									
-25-	54	711													
_	— 55-	- SE ISI	Poorly Graded SAND (SP); very dense; olive (5Y 4/3); moist; fine to medium sand; trace mica.	V		_	17	-							S21B_055_055S, S21A_055_056S
_	56	- 35355		V	21	56	25 33	58	70						
_	57	-	Well-Graded SAND (SW); olive gray (5Y 4/2); moist; fine to coarse sand; trace mica.												S22A_059_060P
	58	-111	SILTY SAND (SM); very dense; olive gray (5Y 4/2); moist; 73% fine sand; 27% fines; trace mica, gray mottling.	11	22	60									
	59	-111									21			27	
-30-	- 60-	111		Ц											S23A_060_061S
-	61	1111		X	23	61	19 25 33	58	70						323A_000_0013
-	62		Poorly Graded SAND with Silt (SP-SM); olive gray (5Y 4/2); 89% fine to coarse sand; 11% fines; trace mica.	П			30								S24A_062_063P
-	63		4/2), 68 % line to coarse sariu, 11 % lines, trace mica.												
-	65	-			24	100					25			11	
-35-	64	7													
-	— 65-	-11/1	LEAN CLAY with Sand (CL); stiff, greenish gray (10G 5/1); moist; high dry strength, no to slow dilatancy.	ľ											No Recovery
-	66		medium toughness fines; oxidized.		NR	0									
_	67														
_	68			V	25	100	6	16	19	2.0P	31	40	24		S25A_068_069S
40	69			Λ			9								S26A_069_070P
-40-	_ 7 0-				26	67									
							0 /2								
			Final Report Ve	ers	ion	9/3	0/2	008							
AMERIT OF	Borehole Location: Crest of Levee LOG OF BORING Coordinates: North 2.122.291.98 East 6.324.796.46 WR0017_069B														

 Levee Station or Milepost_STA: 1553+82.13 Offset: 3.24 feet Left

 GPS:
 Latitude_37.82064
 Longitude_-121.32006
 Channel / River Name / Feature: San Joaquin River County: San Joaquin

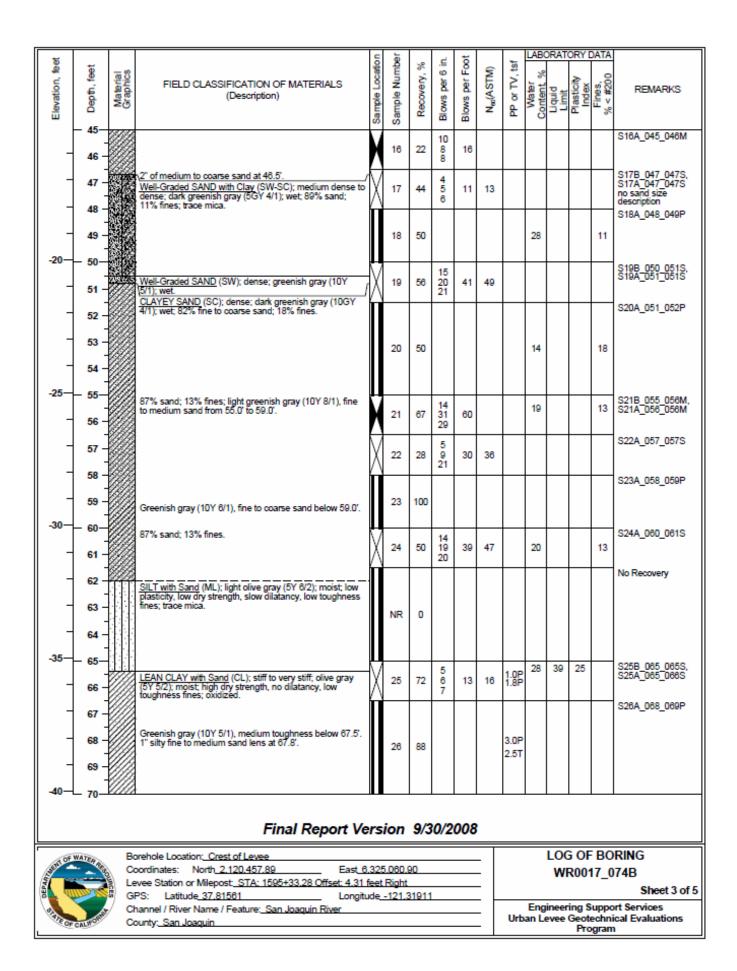
WR0017_069B


Sheet 3 of 5

				-	_					Ι	LARC	DRAT	ORY D	ΔΤΔ	
Elevation, feet	Depth, feet	Material Graphics	FIELD CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blows per 6 in.	Blows per Foot	N ₆₀ (ASTM)	PP or TV, tsf	. 0		Plasticity		REMARKS
_	- 70- 71 -		<u>LEAN CLAY</u> (CL); very stiff; greenish gray (10G 5/1); dry; medium plasticity, high dry strength, no to slow dilatancy, medium toughness fines; oxidized.	X	27	100	6 8 8	16	19	3.8P					S27A_070_072S
-	72 - 73 -		n3' layer of silty sand (SM). SILTY SAND (SM); olive gray (5Y 4/2); moist; 87% fine to coarse sand; 13% fines; polygenic coarse sand.		28	100								42	S28A_074_075P
- 4 5—	74 - - - 75-		Poorly Graded SAND with Silt (SP-SM); dense; light yellowish brown (2.5Y 6/3); moist; fine to medium sand.	V			23		40		17			13	S29B 075 076S, S29A_076_076S
_	76 - 77 -		LEAN CLAY (CL); olive (5Y 4/3); moist, medium plasticity, medium to high dry strength, no to slow dilatancy, medium toughness fines; oxidized, trace organics.	Á	29	61	23 18	41	49						S30A_077_078P
_	78 - 79 -		SANDY SILT (ML); olive brown (2.5Y 4/3); moist; low plasticity, medium to high dry strength, no to slow dilatancy, medium toughness fines; trace organics, trace		30	100									
-50-	- 80-		(mica. <u>CLAYEY SAND</u> (SC); olive brown (2.5Y 4/3); moist; fine sand; trace mica.												\$31A_080_083\$ 3" Shelby 0 psi
_ _	81 - 82 -		LEAN CLAY with Sand (CL); light olive brown (2.5Y 5/3); moist, medium to high dry strength, slow dilatancy, low toughness fines; trace mica, trace organics.		31	90					26	42	28		
_	83 - 84 -			X	NR	0	7 8 11	19	23						No Recovery
-55—	- 85-		SILTY CLAYEY SAND (SC-SM); dense; light olive brown (2.5Y 5/3); moist; 62% sand; 38% low to medium dry strength, slow dilatancy, low toughness fines; trace mica, oxidized.	\ \/	32	100	8			1.0P					S32A_084_085P S33A_085_086S
_	86 - 87 -			Å	33	61	11 15	26	31		26	29	7	38	
-60-	88 - 89 -		SILTY SAND (SM); medium dense; olive gray (5Y 4/2); moist; 53% fine sand; 47% fines; trace mica, oxidized.		34	57									
_	- 90- 91 -		Trace organics below 90.5'.	X	35	61	9 10 14	24	29		22			47	\$35B_090_091S, \$35A_091_091S
-65-	92 - 93 - 94 -		SILT (ML); olive brown (2.5Y 4/3); moist; medium plasticity, medium to high dry strength, slow dilatancy, low toughness fines; trace mica, oxidized.		NR	0									No Recovery
	- 95−		Final Report Ve	rs	ion	9/3	0/2	008	}						
			vahole Location: Creet of Levee						$\overline{}$						RING

LOG OF BORING WR0017_069B

Sheet 4 of 5

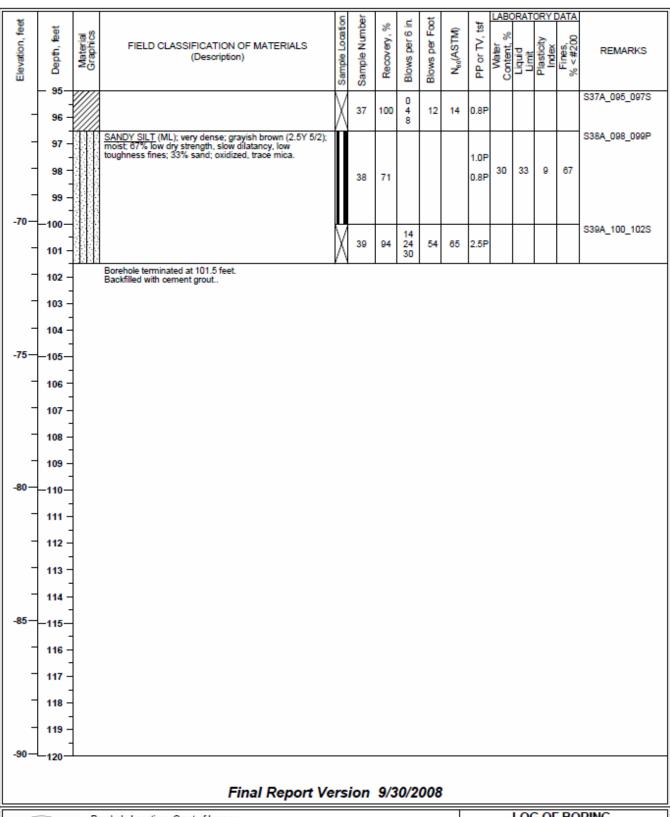


DATE STARTED DATE COMPLETED 2/9/07 2/12/07	GROUND ELE 29.9 ft	/ATI	ON			TION E	BASIS urvey					AL DE .5 ft	PTH OF BORING
DRILLING CONTRACTOR Westex	DRILLER'S NAI Chris Minor					R'S NA Dorts					TOT/ 20 1		PTH OF FILL
DRILLING METHOD	DRILL RIG MA		ND MC		Joyu	DOILS	, cii				CON	SULT	ANT COMPANY
0'-26.5' HSA, 26.5'-101.5' Rotary DRILL BIT SIZE AND TYPE (HOLE DIAMETER)	CME 555 DRILLING ROD	TYI	PE ANI	DIAM	METE	R					_	Jro W	est, Inc. GGER
4 3/8 inches	HQ core 94n CASING TYPE					ATION	DEDT	u					son/S. Giannakos REVIEWER
☑ VERTICAL ☐ INCLINED	10" HSA, 26	5'						_			Dus	ston I	Marlow
SAMPLER TYPE(S) SPT(1.375"), MC(2"), Punch Core(2.25"), Shelby Tube(3	HAMMER TYPE 3") 140 lb CME							ор			729		EFFICIENCY
BOREHOLE BACKFILL OR COMPLETION cement grout to ground surface	GROUNDWAT	ERF	READIN	NG: [IG DR		i					ING (DATE-TIME) 12/07 11:00AM
		- C	e	П			area -	Π	LABO		ORY		IZOT TI.OUTAN
Sa Est - Cet		Location	du di	%	e ii	Foot	Ŵ	ts.	%			0	
ro tite Modern (Description)	MATERIALS		ž	Ver)	ž.	per	N _{ex} (ASTM)	ş		P.±	ticit)	es, #20	REMARKS
FIELD CLASSIFICATION OF (Description)		Sample	Sample Numb	Кесомегу,	Blows	Blows	N ₈	PP or TV, tsf	Water Content,	함	Plasticity Index	iE ∨	
- •	F 1 10 51	ű	ഗ്ഗ	_	В	В		_					0040 000 0040
CLAYEY GRAVEL (GC); dense; light of 5/3); dry; medium to coarse sand; fine	to coarse gravel;	Ŋ۱	1	61	19 15	30	36						S01B_000_001S, S01A_001_001S
1 - \base rock (FILL). LEAN CLAY with Sand (CL); very dark	grayish brown	Έ			15								
(10YR 3/2); moist; medium plasticity, n strength, no to slow dilatancy, medium (FILL).	neaium to high ary toughness fines;												
3 - 1													
4 Poorty Graded SAND (SP); medium de 4/3), dry, fine to medium sand, trace m	ense; brown (10YR	1											
25— 5— (FILL).	iica				_			_		_	_		S02B 005 006S.
		Х	2	61	6 7	12	14						S02A_006_006S
SANDY SILT (ML); loose to medium de	ense; very dark medium dry	Λ	_		5								
grayish brown (2.5Y 3/2); moist, 65% r	nness fines; 35%	Т											S03A_008_010T 3" Shelby
137 (FILL). 8 147 Dark yellowish brown (10YR 4/4), fine	to medium sand	Ш							19	27	2	65	3" Shelby T 0 psi
	o rapid dilatancy	Ш	3	93									
9													
20 10			_		_								S04A 010 011S
1 1 1		ΙX	4	44	3	6	7						55 11 12 15 15 15 15
-0000 -0000		1	_		3								
12 LEAN CLAY (CL); dark grayish brown	(10YR 4/2); dry;	-											
medium dry strength, slow dilatancy, lo	ow toughness fines;	Л											S05A_013_015T 3" Shelby
(FILL). LEAN CLAY with Sand (CL); very dark	grayish brown	4	5	90					32	43	20		0 psi
14 (2.5Y 3/2); moist; medium plasticity, m strength, no to slow dilatancy, low toug		Ш	-										
15— 15— mica, oxidized (FILL).		L		_	_			_			_		S06A_015_016S
		X	6	56	3	6	7						300A_013_0103
16 -		1			3								
17 -													
18 -													
-													
19 -													
10			Ļ.										
Fina	al Report V	ers	ion	9/3	30/2	008							
Borehole Location: Crest of Levee							- T			LO	G OF	ВО	RING
Coordinates: North 2.120.457.89	East_0						-			W	R001	17_0	74B
Levee Station or Milepost_STA: 1595+ GPS: Latitude 37.81561	33.28 Offset: 4.31 Longit		_		1		: L						Sheet 1 of 5
Channel / River Name / Feature: San J	loaquin River						-	Urb					rt Services ical Evaluations
County: San Joaquin							-	511				gram	

feet	-			on	ē	%	in.	ot		sf	LABO	ORAT(ORYE	ATAC	
	8	ie S	FIELD CLASSIFICATION OF MATERIALS	ocat	E	<u>ح</u>	60	r Fe	Ē.	, t	_%		≱	.00	
Elevation,	Depth, feet	Material Graphics	(Description)	Sample Location	Sample Number	Recovery,	Blows per	Blows per Foot	N _{ex} (ASTM)	PP or TV, tsf	Water Content	Liquid	Plasticity Index	ines #2	REMARKS
E e	2	≥⊙		amp	amb	æ	NO SI	Slow	ž	ద	٥ ح	ij	E -	ω.%	
-	- 20-	SECRET	People Craded CAND with Sit (CD CM): leases dark	S	S	_	_	-							907C 020 024M
		-	Poorly Graded SAND with Silt (SP-SM); loose; dark grayish brown (10YR 4/2); 88% fine to medium sand; 12% fines; trace mica, oxidized.	М	7	94	3 4	10			11				S07C 020 021M, S07B 021 021M, S07A 021 022M
	21 -		Dark brown (10YR 3/3) below 21.0'.	Δ			6								
-	22 -	-		M	8	72	4	7	8		9			12	S08A_022_023S
	-			Μ	Ĭ	12	4	, ,	Ů		۰			12	
	23 -		SANDY SILT (ML); dark gray (2.5Y 4/1); moist; medium plasticity, medium to high dry strength, no to slow dilatancy, medium toughness fines; with clay, trace mica,	Г											
∥ -∣	24 -	-1111	dilatancy, medium toughness fines; with clay, trace mica, oxidized.												
5-	0.5		ondized.												
_ ×	— 25- !			∇			1				35			11	S09B 025 026S, S09A_026_026S
∥ ⊣	26 -	-814	Poorly Graded SAND with Silt (SP-SM); loose; dark grayish brown (2.5Y 4/2); moist; 89% fine to medium	ľ	9	83	3	5	6						
		1	sand; 11% fines; oxidized, trace mica.	П		\vdash									No Sample Taken.
	27 -			Ш											Switch to Rotary
-	28 -	-811		Ш		14									
	29 -	-	Dark gray below 28.5'.	Ш		l									
	29			Ш											
0-	- 30-	-	Medium dense below 30.0'.	Н											S10A 030 031S
∥ _	24			ΙX	10	39	5	10	12						
	31 -			$\langle \rangle$			5								
-	32 -		CLAYEY SAND (SC): medium dense: dark greenish grav	╢											S11A_031_032P
			CLAYEY SAND (SC); medium dense; dark greenish gray (10Y 4/1); wet; 86% fine to medium sand; 14% fines; trace mica.	Ш											
	33 -		and initial	Ш	11	29									
-	34 -	900		Ш											
-5-	- 35-	1000		Ш											
້	- 35-			V			5								S12A_035_036S
∥ ⊣	36 -	900		M	12	50	6 7	13	16		31			14	
∥ _	37 -			П		\vdash									S13A_036_037P
	31			Ш											
-	38 -	99		Ш	13	24									
∥ _	20	M		Ш		-									
	39 -			Ш											
-10-	- 40 -	-000		Ц											No Recovery
	44			M	NR	0									Hydraulically Advanced SPT
	41 -		Greenish gray (5GY 5/1) below 41.0'.	Δ											Sampler
-	42 -			M	14	33	4 5	12	14						S14A_042_042S
	42			Λ			7	12							
	43 -		87% sand; 13% fines.	П											S15A_043_044P
-	44 -				15	38					29			13	
-15-	45														
-13 7	- 45-														
			Final Danast V		ion	0/3	20/2	ഹദ	,						
			Final Report Ve	:15	ION	9/3	0/2	UUO							
AT OF	WATER		orehole Location: Crest of Levee						- T			LOG	G OF	ВО	RING
		6 C	coordinates: North 2.120.457.89 East 6	32	5.060.	90			-			W	R001	17_0	74B

Levee Station or Milepost: STA: 1595+33.28 Offset: 4.31 feet Right GPS: Latitude: 37.81561 Longitude: -121.31911 Channel / River Name / Feature: San Joaquin River County: San Joaquin

Sheet 2 of 5



				c	<u></u>		-	+			LABO	RAT	ORY	ATA	
Elevation, feet	Depth, feet	Material Graphics	FIELD CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blows per 6 in.	Blows per Foot	N _{eo} (ASTM)	PP or TV, tsf	Water Content, %	Liquid	Plasticity Index	Fines, % < #200	REMARKS
-	- 70- 71 - 72 -				NR	0									No Recovery 3" Shelby 0 psi
	73			X	27	100	6 8 10	18	22	2.3P					S27A_073_074S
-45-	74		Grayish brown (2.5Y 5/2), low to medium toughness, trace organics and mica below 74.0'.		28	100				1.8P	27	49	34		S28A_074_075P
-	- 75- 76 ·				29	83									S29A_075_077T 3" Shelby
	78		LEAN CLAY (CL.); olive gray (5Y 5/2); moist; high dry strength, no dilatancy, low toughness fines; oxidized.	X	30	100	0 1 7	8	10	0.1P	26	41	28		S30A_078_079S
-50-	79 -			Π	31	100				0.5P 3.5T					S31A_079_080P
	- 80- 81 ·			V	32	100	0 4	9	11	0.8P					S32B_080_081S
-	82		SANDY LEAN CLAY (CL); stiff; olive gray (5Y 5/2); moist; 52% medium dry strength, no to slow dilatancy, low toughness fines; 48% sand; oxidized. SANDY SILT (ML); greenish gray (10Y 6/1); moist; low	/\ 			5				26	32	19	52	S33A_082_083P
-55-	83 · 84 ·		plasticity, low dry strength, slow dilatancy, low toughness fines; oxidized, trace mica. Dark greenish gray (5GY 4/1) below 84.5'.		33	100				0.1P					
-	86 -		LEAN CLAY (CL); soft to medium stiff; dark greenish gray (5GY 4/1); moist low plasticity, medium dry strength, no to slow dilatancy, low toughness fines; trace mica. SANDY SILT (ML); dark greenish gray (5GY 4/1); moist;	X	34	83	0 4 14	18	22	0.6P 0.3P					S34C_085_086S, S34B_086_086S, S34A_086_086S
- - -	87 · 88 · 89 ·		low plasticity, low to medium dry strength, slow dilatancy, low toughness fines; trace mica. Well-Graded SAND with Silt (SW-SM); medium dense; dark greenish gray (5GY 4/1); fine to coarse sand. FAT CLAY (CH); soft, greenish gray (10Y 5/1); wet, medium to high plasticity, no dry strength, no dilatancy, low toughness fines.			52				0.3P					No Sample Taken
<u>-60</u> _	91 ·		SANDY LEAN CLAY (CL); olive gray (5Y 5/2); moist; low dry strength, slow dilatancy, low toughness fines; with sand, oxidized.	ľ	35	90					30	60	43		\$35A_090_093T 3" Shelby
-	93 -		LEAN CLAY (CL); medium stiff to stiff; light olive gray (5Y 672); moist; low plasticity, high dry strength, no dilatancy, medium toughness fines; oxidized, trace mica.	X	36	83	6 6 7	13	16	1.5P					S36B_093_093S, S36A_096_094S
-65-	- 95-	-////	•			100									No Sample Taken
	30		Final Report Ve	rs	ion	9/3	0/2	008	!						

LOG OF BORING WR0017_074B

Sheet 4 of 5

County: San Joaquin

LOG OF BORING WR0017_074B

Sheet 5 of 5

DATE STARTED 12/15/06	DATE COMPLETED 12/21/06	GROUND ELEVATION 22.9 ft	ELEVATION BASIS Andregg Survey	TOTAL DEPTH OF BORING 126.5 ft
DRILLING CONTRACTOR Westex		DRILLER'S NAME Chris Minor	HELPER'S NAME Boyd Dortsch	TOTAL DEPTH OF FILL 15 ft
DRILLING METHOD 0'-25' HSA, 25'-126.5' Ro	otary	DRILL RIG MAKE AND MO CME 550	DEL	CONSULTANT COMPANY Fugro West, Inc.
DRILL BIT SIZE AND TYPE (4 3/8 inches	HOLE DIAMETER)	DRILLING ROD TYPE AND HQ core 94mm, NWJ 6		FIELD LOGGER Spyridon Giannakos
☑ VERTICAL ☐ INCLIN	NED	CASING TYPE, DIAMETER HSA, 10", 25'	R, INSTALLATION DEPTH	FIELD LOG REVIEWER Duston Marlow
	e(2.25"), Shelby Tube(3')	HAMMER TYPE, MAKE/MO Automatic CME 140 lb		HAMMER EFFICIENCY 72%
BOREHOLE BACKFILL OR (cement grout to ground		GROUNDWATER READIN	IG: DURING DRILLING 19 ft	AFTER DRILLING (DATE-TIME) 31 ft on 12/19/06 8:00AM

Centrent	t grout	to grot	and surface					1911							13/00 0.00AM
Elevation, feet	Depth, feet	Material Graphics	FIELD CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blowsper 6 in.	Blows per Foot	N _∞ (ASTM)	PP or TV, 1sf	Water S Content % G		Plasficity 30		REMARKS
_	1-		CLAYEY GRAVEL (GC); loose; brown (7.5YR 4/4); dry to moist; medium to coarse sand; fine to coarse gravel; (FILL). LEAN CLAY (CL); brown (7.5YR 4/4); moist; medium plasticity, low dry strength, slow dilatancy, medium	X	1	100	333	6	7						S01A_000_002S
20-	2 - 3 -		toughness fines; some sand (FILL).												
_	4 - - - 5-			1/			6				12	22	5		S02B_005_006S, S02A_006_006S
_	6 - 7 -		SILTY CLAYEY SAND (SC-SM); loose; dark reddish brown (5YR 3/4); fine to medium sand; (FILL).	Λ	2	56	3	7	8		-		_		302A_000_0003
15-	8 - - 9 -														
_	- - 10 - - - 11		CLAYEY SAND (SC); loose; yellowish brown (10YR 5/4); moist, 84% fine to medium sand; 16% fines; (FILL).												\$03A_010_013T 3" Shelby 300 psi
10-	12 -				3	72					5				
_	13 - - 14 -		(BASE OF FILL).	X	4	100	3 2 4	6	7		7			16	S04A_013_015S
- - -	- 15- - 16 - - 17 -		SILTY SAND (SM); dark grayish brown (10YR 4/2); moist; 86% fine sand; 14% fines; (NATIVE).		5	80					26			14	S05_A_015_018T 3" Shelby 300 psi
	18 -		SANDY LEAN CLAY (CL); dark reddish brown (5YR 3/2); moist, low plasticity, low dry strength, no to slow dilatancy, low toughness fines; trace mica.	X	6	100	2 2 4	6	7						S06A_018_019S
	- 19 - - - 20 -		Wet at 19.0'. <u>CLAYEY SAND</u> (SC); loose; dark reddish brown (5YR		7	77					26	32	12		S07A_019_021T 3" Shelby
			Final Report Ve	rs	ion	9/3	0/2	008							

LOG OF BORING WR0017_019B

Sheet 1 of 6

				_											
\$	-			S	ĕ	*	.⊑	ă		tsf	LABO	RAT	ORY	ATA	
Elevation, feet	pet	Material Graphics	5151 D 01 1001510171011 05 111755111 0	Sample Location	Sample Number	5	40	Blows per Foot	N ₆₀ (ASTM)		. %		Σ	.8	
Lio Lio	Depth,	ater	FIELD CLASSIFICATION OF MATERIALS (Description)	12	2	Recovery,	Blows per	ed.	AS	PP or TV,	Water ontent,	P #	Plasticity Index	Fines, % <#200	REMARKS
9.49	ĕ	≅ 5	(Description)	ď	흍	ĕ	ow.	OWS.)°°	6	Water Content,	Liquid	28	Ë×	
<u> </u>				Sa	Sa	Œ	8	畜	_	-	0	_	_	0.	
	— 20 -	1111	3/2); moist; low dry strength, no dilatancy, low toughness	I											300 psi
1 4	21	999	fines.		7	77					26	32	12		
		-99		Щ											0000 000 0000
\parallel	22 -	1100	6" silty sand slough at 21.5'. Poorly Graded SAND with Clay (SP-SC); loose to medium	٠V	8	100	2	8	10						S08B_022_022S, S08A_022_023S
		- 12	dense; dark gray (10YR 4/1); wet, 94% fine sand; 6%	Λ	Ů	100	4	ľ	10		28			6	
0-	23		fines; micaceous.	Г											
$\parallel \perp$	24														
		- 100													
	- 25-	199	LEAN CLAV with Sand (CL); et# modifich gray (EVD 50);	\vdash	<u> </u>		_	\vdash							S09 025 027S
			LEAN CLAY with Sand (CL); stiff, reddish gray (5YR 5/2); moist; low dry strength, low toughness fines.	Ŋ	9	89	2	9	11		31	35	13		Switch to Rotary
7	26			Λ			5	-		4.3P					
$\parallel \perp$	27			П											S10A_028_029P
	21			Ш											
-5-	28	1////		Ш	40	0.4									
				Ш	10	81									
1	29			Ш											
$\parallel \perp$	- 30-			Ш											
	30		SANDY SILT (ML); medium dense; dark reddish brown (5YR 3/2); wet; some iron oxide mottling, micaceous.	V			5								S11A_030_032S
4	31	-111	(or note), wet, some non-oxide modaling, microcous.	X	11	100	7 9	16	19		28	26	4		
		-		Н											S12A_032_033P
1	32			Ш											
-10-	33			Ш											
"	33			Ш	12	45									
∥ ⊣	34	-1111		Ш											
		-111		Ш											
	- 35-			V			5								S13A 035 036S
$\parallel \perp$	36		2" medium sand lens at 35.5'.	ΙX	13	72	11	18	22						
	36			۱)			7								
∥ ⊣	37	-1111		Ш											S14A_038_039P
			LEAN CLAY with Sand (CL): stiff to year stiff dark reddish	╢											
-15-	38		LEAN CLAY with Sand (CL); stiff to very stiff; dark reddish gray (5YR 4/2); moist to wet; medium dry strength, no dilatancy, medium toughness fines; micaceous.	Ш	14	90				2.3P	25	45	31		
			diatancy, medium lougriness lines, micaceous.	Ш											
	39														
	- 40-		CHIE 5 40 0' to 42 0'	Щ						_					C15A 040 040C
		1///	Stiff from 40.0' to 43.0'.	V	15	100	3 5	10	12	1.8P					S15A_040_042S
	41			Λ	,,,		5	10	12	1.01					
	42		1" to 2" subangular gravel lens at 41.5'.	П											S16A_042_043P
	42														
-20	43					400									
					16	100				3.3P					
	44														
	_ 45-				<u> </u>					L					
'	45														
			Final Report Ve	ers	ion	9/3	0/2	008							
-25	NATE	Bo	prehole Location: Crest of Levee					LOC	G OF	BO	RING				
August Co	- ARR		oordinates: North <u>2,152,579.89</u>		_						19B				
PAR	-	34	vee Station or Milepost_STA: 1151+05.61 Offset: 11.19) fee	et Left				_			•••		"	Sheet 2 of 6
R W	IIII VI	//	PS: Latitude 37,90375 Longitu	ude_	-121.3	32397	7		- -		Enr	inco	ine 6		
(A)		7	nannel / River Name / Feature: San Joaquin River						-	Urb					rt Services cal Evaluations
. OF	CALF		ounty: San Joaquin											gram	

늄				8	ĕ	-0	in.	ot		4-	LABO	DRAT	ORY	ATAC	
Elevation, feet	pet	<u>™</u> 8		Sample Location	Sample Number	×, %	φ	Blows per Foot	N ₆₀ (ASTM)	, tsf	*		>	2	
tion	Depth,	Material Graphics	FIELD CLASSIFICATION OF MATERIALS (Description)	12	Z	Recovery,	Blows per	pe	AS	PP or TV,	Water ontent,	모	Plasticity Index	#20 #20	REMARKS
eva	륟	₹5	(Description)	ď	g	8	SW/S	SW(C)09	Р	Water Content,	Liquid	las Luc	받※	
ū				Sal	Sa	œ	ä	ĕ	_	_	Ö	_	_	6	
	- 45 -	11/1/	White mottling at 45.0'.	1			6								S17A_045_047S
∥ ⊣	46			ΙX	17	100	9	19	23						
		- (////		()			10								C104 DED DEDD
∥ ⊣	47	- (////		Ш											S18A_050_050P
25				Ш											
-25-	48			Ш	18	14									
∥ ⊣	49			Ш											
		- /////		Ш											
l 1	- 50-	- (////		Ц			_								S19B 050 051S
				Ŋ	19	100	7 13	29	35						S19B_050_051S, S19A_051_052S
ll	51		SILTY SAND (SM); dense; dark reddish brown (5YR 3/3);	Λ			16								
1 4	52		moist; 70% fine sand; 30% fines; some brown and black mottling.	П							24			26	S20A_052_053P
		-													
-30-	53		Light olive gray (5Y 5/2), fine to medium sand at 53.0'.		20	76									
				Ш											
	54			Ш											
∥ ⊣	- 55-			Ц											
		<i></i>	Medium to coarse sand at 55.0'.	W	21	100	6	17	20	2.8P					S21A_056_057S
∥	56	- /////	LEAN CLAY (CL.); very stiff; brown (7.5YR 4/2); moist; medium to high plasticity, medium dry strength, no dilatancy, medium toughness fines; micaceous.	Λ	-	100	8		20						
l ↓	57 -	/////	diatancy, medium loughness lines, micaceous.	П											S22A_057_058P
	31	/////		Ш											
-35-	58 -	-////		Ш	22	100				2.5P					
		1////		Ш	22	100									
∥ ⊺	59			Ш											
∥ ⊣	- 60-			Ш											
			SANDY LEAN CLAY (CL); medium stiff; (5GY 3/1) (4/4); moist, low dry strength, slow dilatancy, low toughness	V	23	100	0	_	_		22	34	20		S23A_060_062S
	61 -		fines; fine sand.	Λ	23	100	2	2	2	0.8P	33	34	20		
▎ 」				П											S24A_062_063P
	62			Ш											
-40-	63	944	CLAVEVOLUB (CO.)	╢											
		- 88	CLAYEY SAND (SC); dense; dark grayish brown (10YR 4/2); moist to wet; fine to medium sand; micaceous.	Ш	24	81									
	64														
	- 65-														
	- 65-			\backslash			6								S25B_065_066S, S25A_066_067S
-	66	00	Dark greenish gray (5G 4/1): 88% sand: 24% fines: dark	Å	25	89	15 17	32	38						
		99	Dark greenish gray (5G 4/1); 68% sand; 34% fines; dark greenish gray (5G 4/1) below 68.0°.	П	\vdash										S26A_067_068P
1	67										27			34	
-45-	68 -														
				$\ \ $	26	76									
	69 -														
	- 70														
	70-														
			Final Banast Va		ia-	0/2	0/2	ഹര							
			Final Report Ve	:15	ION	3/3	0/2	000							
A OF	NATER		orehole Location: <u>Crest of Levee</u>						- T						RING
		<i>G</i> /	oordinates: North 2,152,579.89 East 6						-			W	R001	17_0	19B
a l	A. A	B Le	evee Station or Milepost: STA: 1151+05.61 Offset: 11.19	rie	et Left				-						Sheet 3 of 6

Sheet 3 of 6

				_	<u>_</u>			-			LABO	ORAT	ORYE	DATA	
Elevation, feet	Depth, feet	Material Graphics	FIELD CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blows per 6 in.	Blows per Foot	N ₆₀ (ASTM)	PP or TV, tsf					REMARKS
	- 70- 71 -		LEAN CLAY with Sand (CL); very stiff; dark greenish gray (5G 4/1); dry to moist; no dilatancy, medium toughness	X	27	100	14 13 16	29	35	2.5P					S27B_070_071S, S27A_071_072S
-	72 -		fines; some iron oxide mottling.	Ī											S28A_073_074P
-50-	73		Decrease in stiffness, trace fine sand from 73.0'.		28	100				1.0P					
_	- 75 -		Hard at 75.0'.	V	20	100	6	21	25		22	27	24		S29A_075_077S
- -	76 - 77 -			Λ	29	100	10 11	21	25	4.3P	23	37	24		S30A_077_078P
-55—	78 -		Very stiff at 78.0'.		30	100									
	79 - - 80 -		Reddish brown (5YR 4/4) mottled with iron oxide staining				10								S31A 080 082S
-	81		at 80.0°.	X	31	100	12 16 18	34	41	3.0P					S32A 082 083P
-60-	82 -		Dark greenish gray (5BG 4/1) at 82.0'.		32	100				3.5P					
-	84				_										
	85 - 86 -		SILTY SAND (SM); dense; dark greenish gray (5G 4/1); wet; 87% fine sand; 33% fines; micaceous.	X	33	100	8 12 16	28	34		33			33	S33A_085_087S
-	87 -	- -													S34A_086_087P
-65— _	88 -				34	31									
	- 90-		SANDY SILT (ML); loose; dark olive gray (5Y 3/2); moist to wet; high plasticity, low dry strength, no dilatancy, low toughness fines; micaceous.	V	35	100	0	8	10	0.3P					S35A_090_092S
	91 -	-	очуппеза плез, пполосова.	Λ			8								S36A_094_095P
-70-	93		2" medium to coarse sand lens at 93.5".		36	71					40				
	94 -		SANDY LEAN CLAY (CL); very stiff; very dark greenish gray (10GY 3/1); dry; 57% medium dry strength, no								16			57	
			Final Report Ve	ers	ion	9/3	0/2	008							
_			-										- 0		

LOG OF BORING WR0017_019B

Sheet 4 of 6

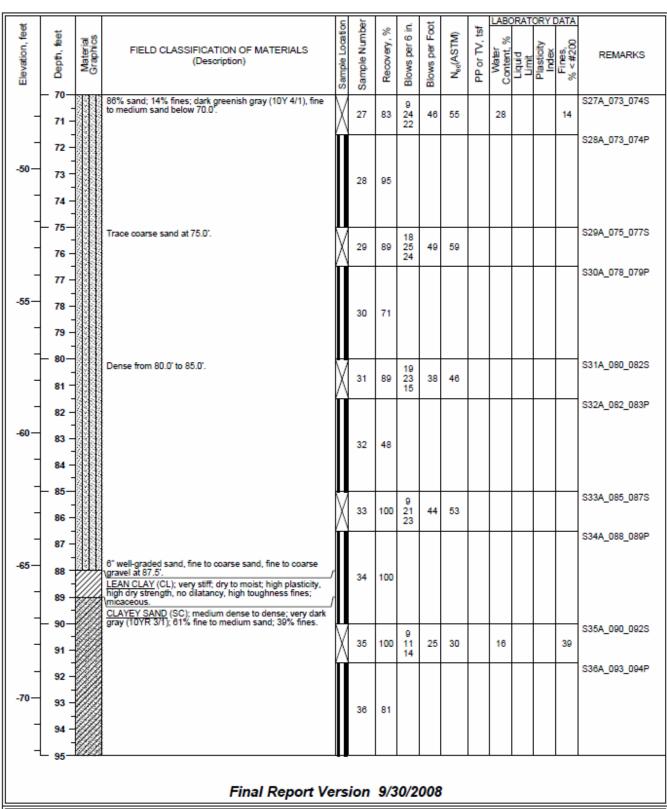
¥				8	Þ	,0	i.	ot		4 =	LABO	RAT	ORY	ATA	
Elevation, feet	Depth, feet	Material Graphics	FIELD CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blows per 6 i	Blows per Foot	N ₆₀ (ASTM)	PP or TV, tsf	Water Content, %	Liquid Limit	Plasticity Index	Fines, % <#200	REMARKS
İ	- 95-		dilatancy, medium toughness fines; 43% fine sand; micaceous.	V	37	100	8 12	27	32	3.7P					S37A_095_097S
٦	96 -		FAT CLAY with Sand (CH); very stiff; dark greenish gray (5G 4/1); dry to moist; medium dry strength, no dilatancy, medium toughness fines; white mottling.	Λ	31	100	15	21	32	5.71					S38A 097 098P
1	97 -		Hard from 97.0' to 100.0'.							4.5+F					5504_567_5661
-75—	98 -				38	100									
1	99 -														
7	-100-			V	39	100	10 15	34	41	3.3P	29	53	38		S39A_100_102S
٦	101 -		Trace fine sand below 101.0'.	Λ	38	100	19	34	71	3.3F	28	55	30		S40A 102 103P
٦	102 -		6" silt lens at 102.5".												340A_102_1031
-80-	103 -				40	100				4.5+F					
1	104 — Hard below 103.5°. 105 — V 41 100 8 24 29 S418 S41A														
1															
	106	-111	SILTY SAND (SM); very dark greenish gray (10Y 3/1); moist to wet; 80% fine sand; 20% fines.	Λ			14								S42A_107_108P
	107 -		Dark gray (10YR 4/1), fine to medium sand, micaceous below 107.0'.								20			20	
-85-	107 — 3333 Dark gray (10YR 4/1), fine to medium sand, micaceous 20 20 20 20 20 20														
	109 -														
]	-110-	-///	CLAYEY SAND (SC); very dense; dark gray (2.5Y 4/1); wet; 82% sand; 18% fines.	V	43	100	22 32	61	73		21			18	S43A_110_112S
	111			Λ			29			4.00					S44A_113_114P
-90-	112									4.0P					
	113	-////	LEAN CLAY (CL); olive gray (5Y 5/2); moist; medium to high dry strength, no dilatancy, high toughness fines; iron oxide mottling.		44	57									
	-114														
	116 -	-	SILT (ML); medium dense; light gray (5Y 7/2); moist; low plasticity fines; fine sand; trace sand.	M	45	67	8 10	22	26						S45A_115_116S
	117 -		LEAN CLAY with Sand (CL); stiff; bluish gray (5B 5/1); dry; medium dry strength, no dilatancy, high toughness fines; some iron oxide staining, interlayered with lenses of	/ \ 			12								S46A_118_119P
-95-	118 -		soft silt.												
	119 -				46	100				1.5P					
_	-120-														
			Ft. 18			0.00	0/0								
			Final Report Ve	rs	ion	9/3	0/2	008							

LOG OF BORING WR0017_019B

Sheet 5 of 6

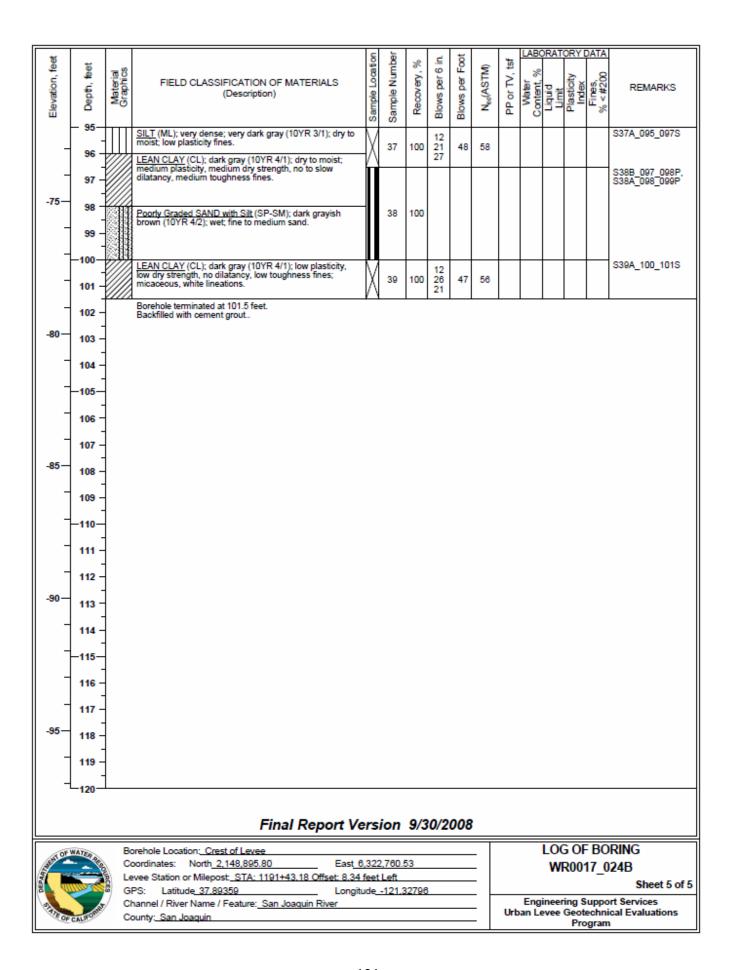
DATE OTABLED	DATE COMPLETED	LODGING SI DI		201		5,43	TION I	14.010				TOT:		DTU OF BORNIO
DATE STARTED 12/13/06	DATE COMPLETED 12/15/06	GROUND ELEV 22.8 ft		ON	F	Andre		urvey				101	.5 ft	PTH OF BORING
DRILLING CONTRA Westex	CTOR	DRILLER'S NAN Chris Minor	1E				R'S NA Dorts					15 f	ft	PTH OF FILL
DRILLING METHOD 0'-25' HSA, 25'-1		DRILL RIG MAK CME 550	ΕA	ND MO	DEL									ANT COMPANY est, Inc.
DRILL BIT SIZE AND	TYPE (HOLE DIAMETER)	DRILLING ROD HQ core 94m					₹					FIELD	LOG	•
	Thiches	CASING TYPE, HSA, 10", 25"	DIA				ATION	DEPT	Н			FIELD	LOG	REVIEWER
SAMPLER TYPE(S)		HAMMER TYPE	, M/					ROP				HAM	MER E	EFFICIENCY
BOREHOLE BACKE	ch Core(2.25"), Shelby Tube(3') FILL OR COMPLETION	Automatic CI GROUNDWATE				URIN	G DR	ILLING	;		A		DRILL	ING (DATE-TIME)
cement grout to	ground surface	<u> </u>					20 ft			LARC	DAT	ORYE		easured
, ge 1	= 92		Sample Location	Sample Number	%	6 in.	Foot	ŝ	超	8	JIA I			
evation, fer Depth, feet	등 등 FIELD CLASSIFICATION OF MA 한편 (Description)	ATERIALS	2	- N	wery	owsper	ĕ	N _{eo} (ASTM)	Ş		모=	ficity tex	es, #200	REMARKS
Elevation, Depth, fe	(Description)		James	due	Recovery,	Blows	Blows	ž	PP or TV,	Water	Liquid	Plasficity Index	Ē.×	
" - •	CLAYEY GRAVEL (GC); brown (7.5YR 4)	(4): madium to	Ö	Š	_	_	В		<u> </u>		_			S01B 000 001S.
∥ - ,∄	coarse sand; fine to coarse gravel; well gr.		đΧ	1	44	5	13	16						S01A_001_001S
∥ ∣ '-∦	SANDY LEAN CLAY (CL); brown (7.5YR dry strength, slow dilatancy, low to mediur	4/3); dry; low m toughness	Μ			8			_		_			
2 -	fines; trace gravel and organics (FILL).													
20 3														
4 1														
7 5	63% fines; 37% sand; with orange-brown micaceous below 5.0'.	mottling.	7			3								S02A_005_006S
6-6	micadedus below 5.0.		IX	2	39	9	13	16		16	32	17	63	
- , #	LEAN CLAY with Sand (CL); reddish brov	un (5VP 4/4):	Ľ											
15-	moist, 75% low dry strength, slow dilatand toughness fines; 25% fine sand; some iro	cy, low												S03A_007_009T 3" Shelby
13 8	(FILL).			3	50					22	32	14	75	0 psi
∥ 」"∦	With approximately 0.5 mm lenses of silty clay, medium brown (5YR 3/4) to dusty br	sand, some rown (5YR 2/2)	M	4	67	3	9	11						S04A_010_011S
11 - 1/2	at 10.0'.		Δ	·		4	Ĭ							
12-														
10- 13														
14 -	///													
15	(BASE OF FILL). FAT CLAY with Sand (CH); medium stiff;	dark yellowish												S05A_015_017T
16-1	brown (10YR 4/4); moist; low dry strength low toughness fines; micaceous (NATIVE)	, slow dilatancy,		_										3" Shelby T 300 psi
				5	87					31				
			Į.											C084 C40 C400
5 18			M	6	100	3	6	7	1.0P	43	53	30		S06A_018_019S
19 1		Animin of the I	Δ			3								
↓ €	Dusty brown (5YR 2/2), some iron oxide s 19.0°.	saining below												
- 20-42	Final	Report Ve	rs	ion	9/3	0/2	008							
	Borehole Location: Crest of Levee							T			LO	S OF	BO	RING
MATER PROP	Coordinates: North 2,148,895.80	East 6			53			_						24B
A CONTRACTOR	Levee Station or Milepost: STA: 1191+43. GPS: Latitude 37.89359				2700			-						Sheet 1 of 5
	GPS: Latitude 37,89359 Channel / River Name / Feature: San Joa	Longitu quin River	ide_	-121.	2/80			<u> </u>						rt Services
OF CALIFORN	County: San Joaquin							-	Urb	an Le	evee		echni gram	ical Evaluations
			_											

ㅎ		1		8	ĕ		.⊑	ŏ		4-	LABO	RAT	ORYE	ATA	
Elevation, feet	feet	Material Graphics		Sample Location	Sample Number	%	φ	Foot	N ₆₀ (ASTM)	tsf,	*		_	0	
l é	-	- Sec	FIELD CLASSIFICATION OF MATERIALS	Š	ž	Recovery,	ĕ	æ	ST	PP or TV,		ъ.,	Plasticity Index	Fines, 6 < #200	REMARKS
慢	Depth,	E E	(Description)	용	음	8	SS.	8	₹,	ö	Water ontent,	富富	ast	# 1	TIEMP TITLE
<u> </u>	ă	-0		all	a a	æ	Blows	Blows per	ž	ద	٥,	Liquid	≝-	-%	
	20-			S	Ś		В	В			•				
	20			Ш											S07A_020_023T 3" Shelby
-	21		<u> </u>												300 psi
	"	3000	SANDY LEAN CLAY (CL); soft, dark olive gray (5Y 3/2);	Ш	7	100									
-	22	000	moist; 69% no dilatancy, low toughness fines; 31% fine sand.	Ш											
	22														
0-	23		Lenses of iron oxide staining, fine grained sand at 22.5'.				2								S08A_023_024S
	23			IΧ	8	67	3	6	7	0.3P	25	29	16	69	
-		1990		V	l		3								
	24			Г											
-		799													
	25 -	100		∇			2								S09B_025_026S,
-	26		SILTY SAND (SM); loose; dark olive gray (5Y 3/2); wet;	٦X	9	100	2	6	7						S09A 025 027S Switch to Rotary
	26		fine sand; trace mica.	V			4								,
-	27	TITI	SILT (ML); olive gray (5Y 5/2); moist; low plasticity, low							4.5P					S10A_028_029P
	27	7111	dry strength, low toughness fines; some iron oxide staning, trace mica.	Ш						4.56					
-5-	20	1111	Saming, adoc mos.	Ш											
	28	/////	LEAN CLAY (CL); stiff; olive gray (5Y 4/2); moist; medium	1	10	100				2.0P					
-			plasticity, medium dry strength, slow dilatancy, medium toughness fines.	Ш						2.UP					
	29	11/1/	SANDY LEAN CLAY (CL); very stiff, dark grayish brown	1											
-	30-	1000	(10YR 4/2); medium dry strength, slow dilatancy, medium toughness fines; trace fine sand and mica.	Ш											
	_ 30-	1111	toughness lines, trace line sand and mica.	17			6								S11A_030_032S
-	24	1999		JΧ	11	100	9	14	17	2.5P	31	38	19		
	31]]]]	SILT (ML); reddish brown (5YR 4/4); wet; fine to medium	V			5								
-	32	7111	sand; with clay lenses.												S12A_033_034P
	32	$\Box \Box \Box \Box$		Ш						2.5P					
-10-	33	1111	Some iron oxide staining at 32.5'.	Ш						2.5F	28			90	
	33	Ш	Sand and silt lenses at 33.0'.		12	71					20			80	
-	34		LEAN CLAY (CL); reddish brown (5YR 4/4); moist; 90%												
	34		medium plasticity, medium dry strength, medium toughness fines; 10% sand.	Ш											
-	35-														
	33			17			6								S13A_035_037S
-	36			JΧ	13	100	7	16	19						
	"	999	CLAYEY SAND (SC); medium dense; dark yellowish brown (10YR 4/4); 72% fine to medium sand; 28% fines;	$\langle \cdot \rangle$			9								
-	37	999	poorly graded, trace clay.	Ш							25			28	S14A_037_038P
		200		Ш											
-15-	38	- 1999		Ш											
	"	1999		Ш	14	64									
-	39	999		Ш											
	"	200		Ш											
-	40-	900		Ш		\sqcup		\Box		Ш		\Box	\Box	$oxed{oxed}$	
	~		1	M	,-		3		_						S15A_040_042S
-	41		Loose at 40.5'.	ΙĂ	15	100	1 2	3	4	2.5P					
		-1999		1		\vdash	-			\vdash		\vdash	\vdash		C184 040 0440
-	42	999													S16A_043_044P
		-99													
-20-	43				40	100									
		1///	SANDY LEAN CLAY (CL); reddish gray (5YR 5/2); low		16	100									
-	44		plasticity, medium dry strength, medium toughness fines; fine to medium sand.												
		-(///													
-	L 45-	11111		Щ						ш					
			Final Dances Ve			0/2	0/0	000							
			Final Report Ve	rs	ion	9/3	0/2	UUÖ	•						
	WAS	D.	orehole Location: Crest of Levee						T			LOC	i OF	B∩	RING
SHT OF	MATER PA		prenoie Location: <u>Crest or Levee</u> pordinates: North 2,148,895.80 East 6	32	2 780	53			-						
Š -		(S)	evee Station or Milepost: STA: 1191+43.18 Offset: 8.34			00			-			W	KUU1	1/_0	24B
9	more	C24)	PS: Latitude 37.89359 Longit			27700			-						Sheet 2 of 5
		// -	hannel / River Name / Feature: San Joaquin River	we_	-1414	2180			- -		Engi	ineer	ing S	uppo	rt Services
CATTE	CALLEGE	9/	ounty: San Joaquin						-	Urb			Geote	echni	ical Evaluations
- OP	GREE	-							- I				Den	oram	

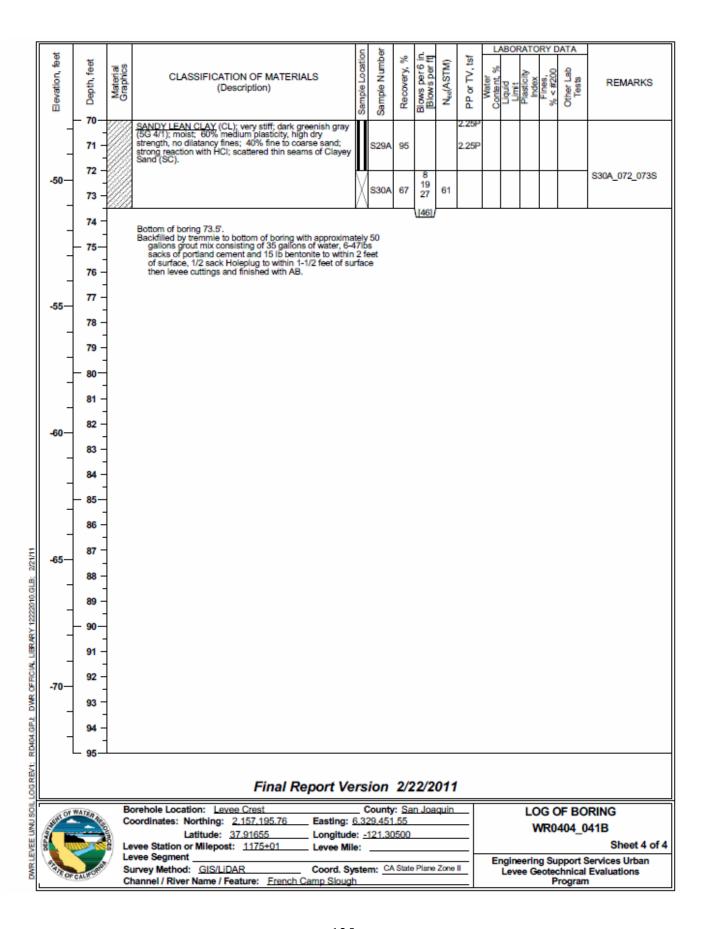

											LABO	DAT	ODV.	NATA	
Elevation, feet	Depth, feet	Material Graphics	FIELD CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blows per 6 in.	Blows per Foot	N ₆₀ (ASTM)	PP or TV, tsf	%		Plasticity 30		REMARKS
	- 45- 46 -		CLAYEY SAND (SC); dense; yellowish brown (10YR 5/4); 73% fine to medium sand; 27% fines.	X	17	44	6 12 19	31	37		20			27	S17A_045_047S
-25-	47 -														S18A_048_049P
-	49 -				18	81									
	- 50- 51 -		FAT CLAY with Sand (CH); stiff to very stiff; yellow (10YR 8/8); low dry strength, no dilatancy, medium toughness fines; pockets of black organics and iron oxide stained	V	19	100	1 4	10	12	2.5P	31	54	41		S19A_050_052S
-	52 -		fine sand.	/\ 			6			3.5P					S20A_053_054P
-30 — -	53 - 54 -		Stiff from 53.0' to 57.0'.		20	100				1.8P					
-	- 55-		Dark yellowish brown, micaceous at 55.0'.	V	21	100	6 9	21	25	4.2T 1.3P					S21A_056_057S
	56 - 57 -		Interlayered fine to medium sand from 57.0' to 58.5' (1" to	Λ	-21	100	12	21	20						S22A_058_059P
-35-	58 - 59 -		4" in thickness).		22	100				2.5P 4.0T					
-	- 60- 61 -		SILTY SAND (SM); dense; dark reddish brown (5YR 3/2); wet; rounded to subrounded gravel; 83% fine to coarse sand; 17% fines; micaceous.	X	23	100	8 19 22	41	49		18			17	S23A_060_062S
- -40-	62 - 63 -														S24A_063_064P Driller's Note (DN): Hard drilling below 62.0'
	64 -	- - -	Increase in coarse sand at 64.0'.		24	86									
	- 65- 66 -	- - -	Grayish brown (10YR 5/2), very dense below 65.0'. Dark yellowish brown below 68.0'.	X	25	44	17 30 32	62	74						S25A_065_066S
- -45-	67 - 68 -	-													S26A_066_067P
	69 -	- - -	3" poorly-graded sand lens, medium to coarse sand, dark yellowish orange (10YR 2/2) at 68.5".		26	100									
,	- 70-	na janji	Final Report Ve	rs	ion	9/3	0/2	008	,						
			prehole Location: Crest of Levee						_						RING

County: San Joaquin

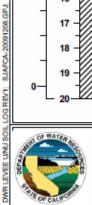
LOG OF BORING WR0017_024B


Sheet 3 of 5

LOG OF BORING WR0017_024B


Sheet 4 of 5

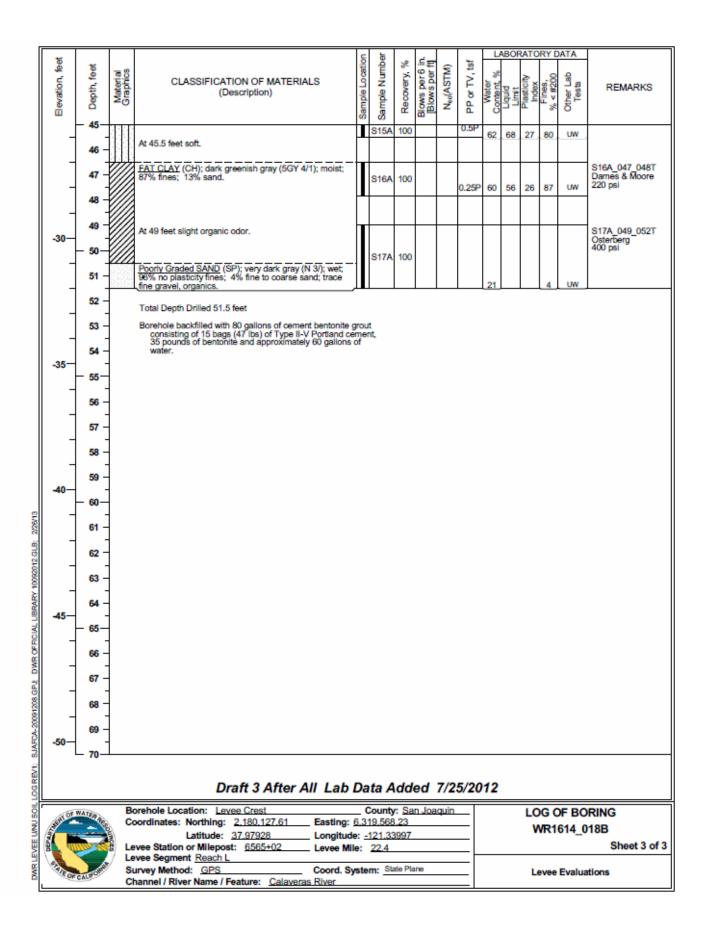
DATE STAI 10/19/10			DATE COMPLETED 10/19/10	GROUND ELEV	ATIC	ON		LEVAT NAVE		DATUM					TAL DE	PTH OF BORING
DRILLING Pitcher		TOF	10.10.10	DRILLER'S NAM James Music			Н	ELPER	R'S NA					то		PTH OF FILL
DRILLING HSA and		tary	,	DRILL RIG MAK CME-55, PD	ΕA	ND M								CC	NSULT	ANT COMPANY rporation
DRILL BIT	SIZE AND	TYF	PE (HOLE DIAMETER) ag bit, 4.25 HQ bit	DRILLING ROD 3-1/2" HQ. 2-	TYF				2					FIE	ELD LOC	GGER
_			CLINED	CASING TYPE, I 5.5 OD x 5" II	DIA	METE	R, INS		TION	DEPTH	1			FIE		REVIEWER
SAMPLER	TYPE(S)			HAMMER TYPE,	M	AKE/M	ODEL,			ROP				HA	MMER	EFFICIENCY
BOREHOL	E BACKFI	що	, 3" Osterberg OR COMPLETION	GROUNDWATER				DURIN	G DR	ILLING			-		0% R DRILI	LING (DATE-TIME)
Cement-	bentonite	gro	but	<u> </u>	L_	I -	-	No	t note	ed		AROE	PATO	D V G	DATA	T .
Elevation, feet		Graphics	CLASSIFICATION OF MATE (Description)	RIALS	Sample Location	Sample Number	Recovery, %	Blows per 6 in. [Blows per ft]	N _{eo} (ASTM)	PP or TV, 1sf			Plasticity			REMARKS
	*** <u>+</u>	\exists	Asphalt Concrete Road.				Τ									0-17.5' HSA with center plug
20-	1 - 2 -		AB Road Base. [LEVEE FILL] SANDY I FAN CLAY (CL); olive brown (moist; 70% low to medium plasticity, hig no dilatancy fines; 30% fine sand; micac	(2.5Y 4/3); in dry strength, beous.												
+	3 -				X	S01/	17	1 2 3 [5]	7							S01A_003_004S
\dashv	*78															4-5' HSA with center plug
-	6 -		[LEVEE FILL] SILT with Sand (ML); black (10YR 2/1); high dry strength, no to slow dilatancy fin	moist; 75%	I	S02/	87									S02A_005_007T 3" Osterberg Piston sample 150 psi
15-	7 -		sand.	2070 11110	Ц			Ļ			24	34	8		UW	
-	8 1		[LEVEE FILL] SANDY LEAN CLAY (CL); dark olive bn 60% low plasticity, high dry strength, slov	w dilatancy	X	S036 S037	44	1 3 2 [5]	7							S03B_007_008S S03A_008_009S
1	10-		fines; 40% fine to coarse sand; no react orange and black mottling; micaceous.	ion with HCI;												9-10' HSA with center plug S04A 010 012T
-	11					S04/	83									3" Osterberg Piston sample 200 psi
10-	12 -		[LEVEE FILL] SANDY SILT (ML); loose; olive brown (2 63% low dry strength, rapid dilatancy fine	2.5Y 4/3); moist; es; 37% fine to	V	ensi		2 2	_		16	NP	NP		UW	S05A_013_014S
∄]	14 -		coarse sand; weak reaction with HCl; mi laminations.	caceous, some	Δ	S05/	50	2 [4]	5					63	HD	
-: <u>:</u> -	15-		SANDY SILT (ML); loose; ofive brown (2 51% low dry strength, rapid dilatancy fine coarse sand; strong reaction with HCl; m	es; 49% fine to	I	S06/	100				14				UW	14-15' with center plug S06A_015_018T 3" Osterberg Piston sample 100 psi
5-	17 -		At 17.5 feet 54% fines; 46% sand.		V	S07/	67	2 2 3	7		18	18	. 1.	. 51 54	UW HD	After SPT, pull augers and set 5. x 5.0" steel casing to 15', then cleanout and
	19 -				Ş	3077	07	3 [5]	_							advance with 4-7/ drag bit to 20'. S07A 018 019S 19' - 20' Mūd Rotary drag bit
L	20	(F)	Final	Report Ve	rs	ion	2/2	22/2	011			<u> </u>			I	riotary drag bit
SEMT OF WA	TER Re.		orehole Location: Levee Crest coordinates: Northing: 2.157.195.76		_ (Count	y: Sa									RING
			Latitude: 37.91655	Longitude	: :	121.3				=			٧	VR0	404_0	
Name OF CA		Le Su	vee Station or Milepost: 1175+01 vee Segment	Levee Mil	ste		A State	Plane	Zone	<u> </u>	E			eoteo		Sheet 1 of Services Urban Evaluations


Г					$\overline{}$				Ι	Г	1./	ABOE	ATO	DV F	ATA	
	Elevation, feet	Depth, feet	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blows per 6 in. Blows per ft	N _{eo} (ASTM)	PP or TV, tsf						REMARKS
	0	21 - 22 -		Well-Graded SAND with Silt (SW-SM); loose; olive brown (2.57 4/3); wet; 92% fine to medium sand; 8% no plasticity fines; no reaction with HCl; micaceous.		S08A	0									3" Osterberg Piston sample 300 psi Sample fell out of tube into mud tank. Sand.
	-	23 -			\rangle	S09A	50	2 2 2 [4]	5					8	HD	S09A 023 024S 22.5-73.5 101 geobarrel
	-	24 - - - 25-				0404	22									
	-	26 -				S10A	33									25' - 27" NR
	-5-	27 - 28 -		LEAN CLAY (CL); stiff; grayish brown (2.5Y 5/2); moist; 90% high dry strength, no dilatancy fines; 10% fine sand; variably strong reaction with HCl.	\rangle	S11A	72	2 5 6	15	1.5P	25	39	20			S11A_027_028S
		29 - - - 30-		Sand in cuttings indicate SILTY SAND (SM).				([11])								29' - 30' NR
	-	31 -				S12A	14									
	-10-	32 - 33 -		LEAN CLAY (CL); stiff; light olive brown (2.5Y 5/3); moist; 90% high dry strength, no dilatancy fines; 10% fine to medium sand; weak reaction with HCl; scattered orange and black mottling.	\rangle	S13A	100	0 2 3	7	1.0P	26	39	18			S13A_032_033S
		34 -			Í	S14A	100	[5]		1.0P						
		- 35- - 36 -			İ	S15A	100			1.0P 1.0P						
2/21/11	-15-	37 -		LEAN CLAY with Sand (CL); very stiff; light olive brown (2.5Y 5/3) grades to olive brown (2.5Y 4/3); moist; 80%		S16A	94	6 8 10	24		23	40	19			S16A_037_038S
22010.GLB;		39 -		high dry strength, no dilatancy fines; 20% fine to medium sand; no reaction with HCl; orange iron oxide mottling throughout; blocky texture.	Í			[18]		2.25P						
RD404.GPJ, DWR OFFICIAL LIBRARY 122	-	- 40 - 41 -		FAT CLAY (CH); very stiff; olive brown (2.5Y 4/3); moist; 90% high plasticity, very high dry strength, no dilatancy fines; 10% fine to medium sand; black mottling throughout, micaceous.		S17A	95			3.0P 2.75P						
WR OFFICIA	-20-	42 - 43 -		At 41.9 feet 1-inch thick black medium sand lens.	\rangle	S18A	50	9	24	2.5P	29					S18A_042_043S
D404.GPJ; [44 -		At 44 feet grayish green (5G 4/2).		S19A	100	[18]								
LOGREV1; RI		- 45-		Final Report Vo	ers	sion	2/2	2/2	011							
	,000	NATE	Bo	orehole Location: Levee Crest		County	r: Sa	n Joa	guin	T			10	G C)E BO	RING
S	SENT OF L	MATER RES		pordinates: Northing: 2,157,195,76 Easting:				., 500	Septem 1							
SE CA	\$ E	THE SECOND	NACE I	Latitude: 37.91655 Longitud			500			-			٧	VICU	404_0	Sheet 2 of 4
DAR LEVEE UNU SOIL	2		Le	vee Station or Milepost: 1175+01 Levee Milepost: vee Segment			State	Plane	Zone		Er					Services Urban Evaluations
Ď	COF	CALFOR		nannel / River Name / Feature: French Camp Sloug								Leve	e 06		rogran	

	Т	Т	П		-	-				Ι	L	ABOR	CATO	RY D	ATA	
Elevation, feet	Depth, feet		Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blows per6 in. Blows per ft	N ₆₀ (ASTM)	PP or TV, tsf		Liquid				REMARKS
	46	-0		LEAN CLAY with Sand (CL); medium stiff; dark greenish gray (5G 4/1); moist; 80% high dry strength, no to slow dilatancy fines; 20% fine sand; weak reaction with HCl; trace brown organic fibers.		S19A	100									
-25-	47	-0			X	S20A	83	1 6 9	20	0.5P 3.5P	28					S20A_047_048S
	49			At 48' very stiff.	ĺ			[15])		3.75P						
	_ 50 51	-0				S21A	21									49.75-52' NR Sample blocked off in shoe.
-30-	- 52	-0			\setminus			3 8								S22A_052_053S
	53 54	-1/2		At 52.5 feet up to 20% calcium carbonate precipitation throughout; strong reaction with HCl.	Å	S22A	100	9 ([17])	23		24	41	22			
	- 55	-8		CANDY CILL AE LANGE		S23A	86									
	_ 56 57	-1		SANDY SILT (ML); dense; dark greenish gray (5G 4/1); moist; 55% low plasticity, high dry strength, slow to rapid dilatancy fines; 45% fine sand; no reaction with HCl; micaceous.				5								924A 057 0500
-35-	58	-			X	S24A	78	11 16 [27])	36							S24A_057_058S
	_ 59 _ 60	-85	9569559	SILTY SAND (SM); very dense; dark greenish gray (5G 4/1); moist, 76% fine sand; 24% no plasticity fines; no reaction with HCl.		S25A	20	(
	61	 				020A	29									59.5-62 NR
-40·	62	-8			X	S26A	67	13 25 32	76					24		S26A_062_063S
222010.6LB;	64	-8	\$2000 \$2000					[57])								
LUBRART	66	-88				S27A	43									
45.	67	-//		FAT CLAY (CH); very stiff; dark greenish gray (5G 4/1); moist; 90% medium to high plasticity, very high dry strength, no dilatancy fines; 10% fine sand; strong reaction with HCl; white calcium carbonate mottling	V	S28A	56	7 8 12	27							S28A_067_068S
Of GPL D	69			throughout.		S29A	95	[20]		2.25P						
21.09/901 DMC 249/900 109/901	L 70			Final Report Ve		ion	2/3	2/2	011							
	WATER	Resour		orehole Location: Levee Crest ordinates: Northing: 2.157,195,76 Easting: Latitude: 37,91655 Longitude	6,3	County 29,451	r: <u>Sa</u> .55								F BO	RING 41B
DEL CONTROLLE CAND SOL	OF CALFO	NOTES MANUAL PROPERTY OF THE P	Le Su	vee Station or Milepost: 1175+01 Levee Mil vee Segment irvey Method: GIS/LIDAR Coord. Sy annel / River Name / Feature: French Camp Sloug	e: ste			Plane	Zone	<u> </u>	Er			eotec		Sheet 3 of 4 Services Urban Evaluations

10/6/11			DATE COMPLETED 10/6/11	GROUND ELEV 19.5 ft	ATIC	ON		NAVE		ATUM					TAL DE 1.5 ft	PTH OF BORING
	CONTR Drilling 8		R ing, Inc.	DRILLER'S NAM Angel Salaza				ELPER Martin							TAL DE	PTH OF FILL
RILLING	METHO	D	d Rotary	DRILL RIG MAK Mobile B-80	EΑ		DEL									NT COMPANY poration
RILL BI	T SIZE A	ND TY	PE (HOLE DIAMETER)	DRILLING ROD 2-1/2" NWJ	_		DIAN	METER	t					FIE	LD LOG	GER
			er, 4-7/8" drag bit	CASING TYPE,	DIA	METER	, INST	TALLA	TION	DEPTH	1			FIE	LD LOG	REVIEWER
VERT SAMPLE	TICAL R TYPE(S		CLINED	6-5/8" O.D. S HAMMER TYPE				WEIG	HT/DI	ROP				_	. Nixon	FFICIENCY
			"x20"), Osterberg (3"x36"), SPT(1.375") OR COMPLETION	Marl, automa GROUNDWATE	_										5% R DRILL	ING (DATE-TIME)
	t-bentor			S. S. S. S. S. S. S. S. S. S. S. S. S. S		Not end					ng m	etho				(27112 11112)
æ	ıt				tion	ber	%	Ē.	_	ß	L	ABOF	RATO	RYD	ATA	
Elevation, feet	Depth, feet	Material Graphics	CLASSIFICATION OF MAT (Description)	ERIALS	Sample Location	Sample Number	Recovery,	Blows per 6 in. [Blows per ft]	N _{eo} (ASTM)	PP or TV, t	Water Content, %	Liquid	Plasticity Index	Fines, % < #200	Offier Lab Tests	REMARKS
-	- 0- - 1-		[LEVEE FILL] SANDY LEAN CLAY (CL); yellowish b moist; 55% high dry strength, slow dila 45% fine sand; no reaction with HCl.	rown (10YR 5/6); stancy fines;												Hand Auger to 6 HSA to 5'
	2 -		,		\											S01A_002_0048
_	3 -				\	S01A					14	31	10	55		
15-	4 -				┝											
-	- 5-		[LEVEE FILL] LEAN CLAY with Sand (CL); very stiff; brown (2.5Y 4/2); moist; 85% low plast strength, no to slow dilatancy fines; 15	dark grayish ticity, high dry % fine to	I											S02A_005_008* Osterberg
-	6 - 7 -		medium sand; no reaction with HCl; recode staining throughout; micaceous.	ddish-orange iron		S02A	72			3.0P	19	39	22		UW	400 psi
-	8 –				┸											Advance with 6" HSA.
10-	9 -					S03A	91			3.9P	19	39	15	70	uw	S03A_009_010* Dames & Moore 250 psi
-	- 10-		[LEVEE FILL] LEAN CLAY with Sand (CL); very stiff; moist; 70% high dry strength, no to slo 30% fine to medium sand.	olive (5Y 5/3); w dilatancy fines;	ľ							00			0.1	Set casing to 10 Clean out and advanced to with
-	11 - 12 - 13 -		FAT CLAY (CH); dark grayish brown (2 high plasticity, very high dry strength, n 10% fine sand; weak reaction with HCI	2.5Y 4/2); 90% o dilatancy fines;		S04A	63				24 24	55	40		UW UW CCRS	4-7/8" drag bit, switched to Mud Rotary. S04A_011_0141 Osterberg 500 psi
_	14 -		FAT CLAY with organics (CH); very da	rk gray (5Y 3/1);	┸											
5-	- 15- -		moist; 88% high dry strength, no dilatar organic matter; carbonized organic ma- size); slight organic odor; slight spongy	tter (fine grave)		S05A	89									S05A_015_016 Dames & Moore 350 psi
-	16 -				┸											
-	17 - 18 -					S06A	67				78 43	58	33		UW OC SG UW DS	S06A_017_020 Osterberg 350 psi
-	19 -					Court	31			1.0P	45	58 73	49		UW	

Draft 3 After All Lab Data Added 7/25/2012


County: San Joaquin Easting: 6,319,568,23 Borehole Location: Levee Crest Coordinates: Northing: 2,180,127.61 Latitude: 37.97928 Levee Station or Milepost: 6565+02 Longitude: -121.33997 Levee Mile: 22.4 Levee Segment Reach L Survey Method: GPS Coord
Channel / River Name / Feature: Calaveras River Coord. System: State Plane

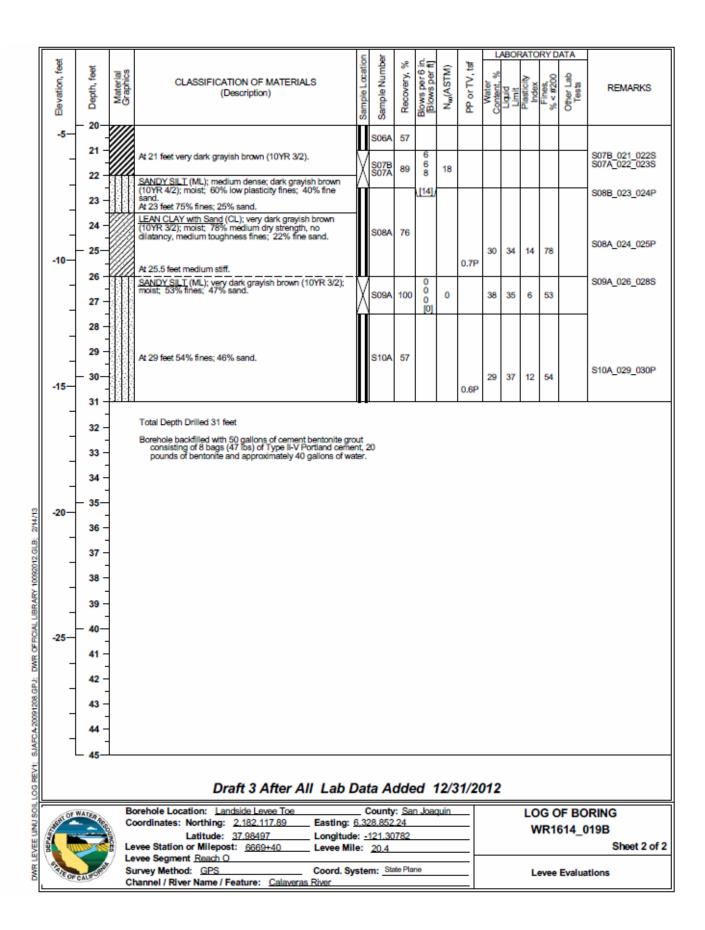
LOG OF BORING WR1614_018B

Sheet 1 of 3

Levee Evaluations

_					_	_								-		
	Elevation, feet	Depth, feet	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery, %	Blows per 6 in. Blows per ft	N ₆₀ (ASTM)	PP or TV, tsf	. 0			Fines, 28 < #200 AB		REMARKS
	-	- 20 - 21 -		SILT with organics (ML); soft; very dark gray (5Y 3/1); moist; 95% slow dilatancy fines; 5% fine grained brown and black organics; slight organic odor; micaceous.	I	S07A	84			0.5P	35	43	16		UW	S07A_021_022T Dames & Moore 180 psi
		22 - 23 -		TTACTIC CHI Y. M							98	145	91		UW	S08A_023_026T Osterberg
	-5-	24 - - 25-	 }}}	ELASTIC SILT with organics (MH); soft; very dark gray (5Y 3/1); moist; 90% fines; 10% black fibrous organics; slight organic odor; micaceous. ORGANIC ELASTIC SILT (OH); very stiff; very dark gray (10YR 3/1); moist; 70% fines; organic odor; fibrous; 30% organic material.		S08A	100			2.4P	157 170 190	300 278	178 174		UW OC UW DS UW DS	320 psi
	-	26 - 27 -	\$\$\$ 	ELASTIC SILT with organics (MH); very dark gray (5Y 3/1); moist, 90% low plasticity, medium to high dry strength, rapid dilatancy fines; 10% fine grained organics; slight organic odor; trace shell fragments at							100				CCRS	S09A_027_029T
	-	28 - 29 -		organics; slight organic odor; trace shell fragments at bottom of sample. At 29 feet 89% low plasticity, medium dry strength, rapid		S09A	100				163	140	65		UW	Dames & Moore 380 psi
	-10	- 30 - 31 -		dilatancy fines; 6% organic material; 5% fine to medium sand; strong reaction with HCl; shell fragments, spongy texture.		S10A	100				132				UW OC SG	S10A_030_032T Osterberg 300 psi
	-	32 - 33 -		At 32.5 feet medium stiff; dark greenish gray (5GY 4/1); 95% low plasticity, medium to high dry strength, rapid dilatancy fines; 5% fine sand; no reaction with HCl;						0.4P	160 145	125 127	41 56		UW CCRS UW DS	
	-15-	34 - - - 35-		dilatancy fines; 5% fine sand; no reaction with HCl; trace mica; scattered brown, woody fragments.		S11A	89			0.6P						S11A_033_035T Dames & Moore 500 psi
LB; 2/26/13	-	36 -		LEAN to FAT CLAY with organics (CL/CH); dark greenish gray (5GY 4/1); moist; 5% organics. At 36.5 trace shells variably scattered shells have		S12A	100				65 94	94	60		UW OC UW CCRS	S12A_036_038T Osterberg 520 psi
AL LIBRARY 1005012/GLB;	-	38 -		strong reaction with HCI. Poorly Graded SAND with Silt (SP-SM); black (N 2.5/); wet; 90% fine to medium sand; 10% no plasticity fines; no reaction with HCI; trace brown woody fibrous							27	29	14		CORS	Lost 3" sample out of tube.
	-20 -	39 - - 40-		fragments. At 40.5 feet very loose.		S13A	100	2								S13A_039_041T Dames & Moore 100 psi S14A_041_042S
SGPLE DWRLE	-	41 -		ELASTIC SILT with Sand (MH); dark greenish gray	X	S14A	100	1 1 [2]	3							
LOGREYI, SZANCA-ZOGRIZOS GPG, DWR OFFIC	-25-	43 - 44 - 45		(5GY 4/1); moist; 95% low plasticity, medium to high dry strength, rapid dilatancy fines; 5% fine to medium sand; no reaction with HCi; trace brown woody fibrous fragments.		S15A	100									S15A_043_046T Osterberg 500 psi
				Draft 3 After All Lab	Da	ata A	dd	ed	7/2	5/20	12					
DOWN LEVEE UND SOIL	SOLIT OF	WATERAGO	C L	orehole Location: Levee Crest oordinates: Northing: 2,180,127.61 Easting: Latitude: 37,97928 Longitudevee Station or Milepost: 6565+02 Levee Milepost:	6,3 e: :	121.33	.23	n Joa	quin						OF BO 614_0	RING 18B Sheet 2 of 3
	OATE OF	CALFORN	S	evee Segment Reach L urvey Method: GPS Coord. Sy hannel / River Name / Feature: <u>Calaveras River</u>	ste	em: St	ate Pla	ne					Le	evee	Evalua	tions

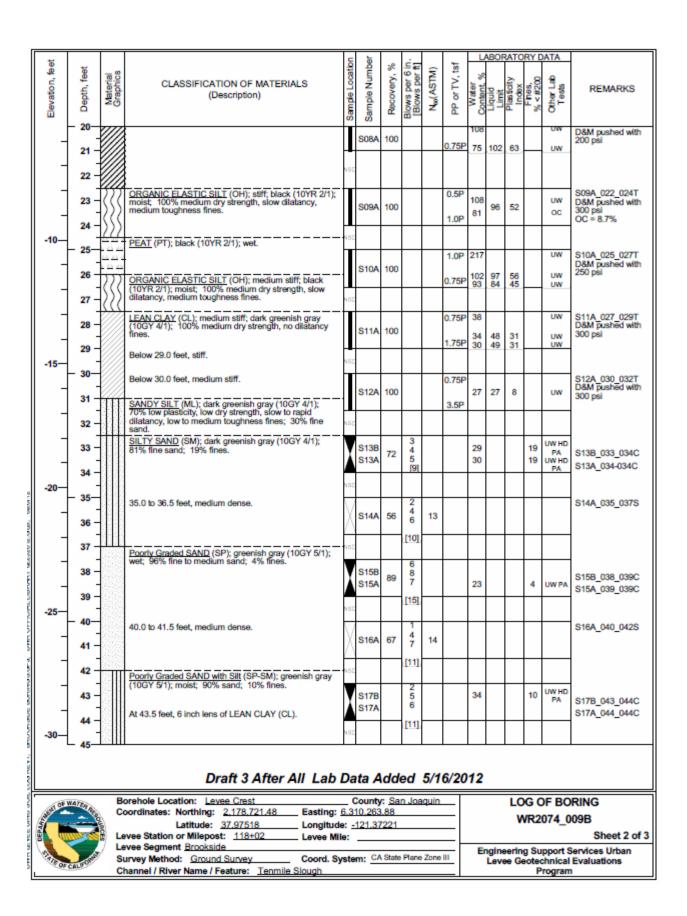
11/3/11			DATE COMPLETED 11/3/11	GROUND ELEV 15.4 ft	ATIC	ON		LEVAT NAVD		MUTA					TAL DE 1.0 ft	PTH OF BORING			
	G CONTE			DRILLER'S NAM Luis Torres	ΛE			Rob R						TO		PTH OF FILL			
	G METH		ıry	DRILL RIG MAK Mobile B-53 (DEL								URS Corporation				
RILL BI 4-5/8" (T SIZE A	ND TY	PE (HOLE DIAMETER)	DRILLING ROD 2-1/2" NWJ, 4			DIAM	ETER							Crispe				
X VER	TICAL	□IN	CLINED	CASING TYPE, 8" LCS to 12'	CASING TYPE, DIAMETER, INSTALLATION DEPTH 8" LCS to 12'										FIELD LOG REVIEWER M. Turner				
	R TYPE(2.5"), SPT		ຶ່ງ		HAMMER TYPE, MAKE/MODEL, WEIGHT/DROP Marl, automatic, 140 lbs / 30-inch drop										MMER I 7%	EFFICIENCY			
	LE BACK t-benton		R COMPLETION ut	GROUNDWATE		Not en				LLING drillin		thod		VFTE	R DRILL	ING (DATE-TIME)			
Elevation, feet	Depth, feet	Material Graphics	CLASSIFICATION OF MA (Description)	ATERIALS	Sample Location	Sample Number	Recovery, %	Blows per 6 in. [Blows per ft]	N _{co} (ASTM)	PP or TV, tsf	Water Content, %	BOR				REMARKS			
15-	- 0- 1-		SILTY SAND (SM); brown (7.5YR 5/4 sand; 40% low plasticity, low dry stree low toughness fines.); moist; 60% fine ngth, slow dilatancy,												Hand auger to 5'			

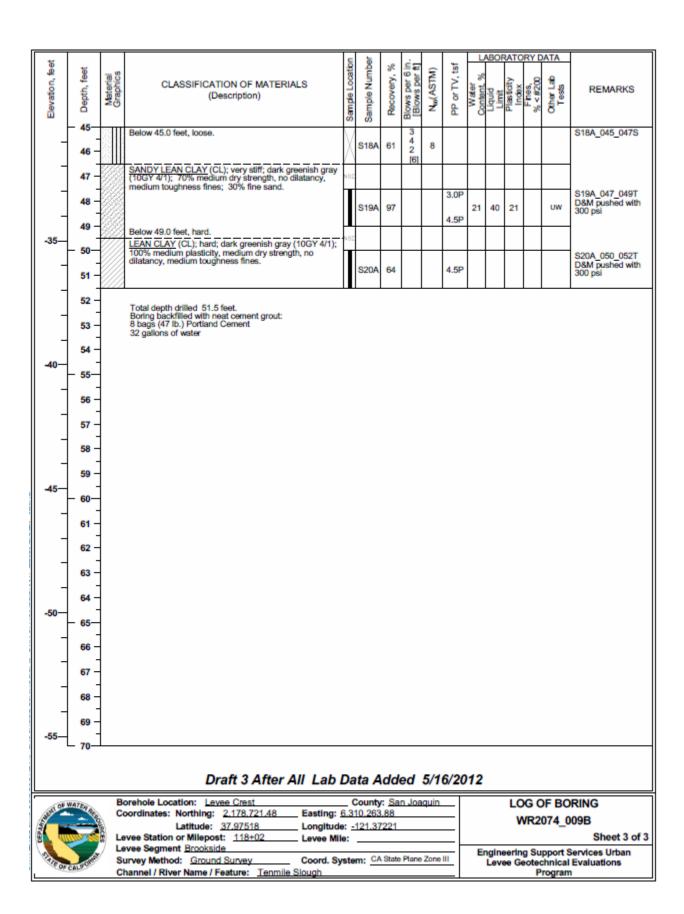

5-S01A_005_007S At 5 feet very dense. 10-21 22 S01A 33 55 24 46 40 [43] At 6.5 feet hard pan. S02A 93 9 SJARCA-20091208.GPJ; DWR OFFICIAL LIBRARY 10092012.GLB; 2/14/13 Gradational change. 10 SILT with Sand (ML); loose; brown (7.5YR 4/3); wet; 81% low dry strength, slow dilatancy, low toughness fines; 19% fine sand; indurated. 5-11 S03A_011_013S 3 5 81 S03A 72 10 43 46 11 12 LEAN CLAY with Sand (CL); brown (7.5YR 4/3); moist; 85% fines; 15% fine sand. S04A_014_015P 13 14 S04A 64 42 41 20 0 0.9P ELASTIC SILT (MH); medium stiff, dark brown (10YR 3/3); molst; 100% high dry strength, no dilatancy, low toughness fines. 16 S05A_016_018S S05A 78 10 45 50 13 5 17 181 FAT CLAY (CH); dark brown (10YR 3/3); moist; 100% high plasticity, very high dry strength, no dilatancy, high toughness fines. 18 S06A 57 19 JOG REV1: Draft 3 After All Lab Data Added 12/31/2012

Channel / River Name / Feature: Calaveras River

LOG OF BORING WR1614_019B Sheet 1 of 2

Levee Evaluations


DATE ST			DATE COMPLETED	GROUND ELEV	ATK	ON				DATUM						PTH OF BORING
8/20/10 DRILLING	CONTI		8/20/10 R	14.00 ft DRILLER'S NAM	E		HE	IAVD ELPER	R'S NA					то		PTH OF FILL
Neil O.				Mike Young DRILL RIG MAK	FΛ	ND MO		Sean	McNe	eil				_	.5 ft	ANT COMPANY
HSA/R	otary W	/ash	DE (UO) E DIAMETED)	CME 75				ETER						K	leinfeld	er
10" HS			PE (HOLE DIAMETER) g Bit	NWJ 2-5/8*										G	LD LOG	nan
X VERT	TICAL	□ IN	ICLINED	HSA 10" OD,			INST	ALLA	TION	DEPTH	1				LD LOG	REVIEWER nan
SAMPLE SPT (1.3				HAMMER TYPE, CME Auto Ha											MMER E	FFICIENCY
Grout	LE BAC	KFILL (OR COMPLETION	GROUNDWATE	RR		i: E	URIN	G DR	LLING		ethod		AFTE	R DRILL	ING (DATE-TIME)
T		Т			Τ_		Jusu		uc 10		_			RYD	DATA	
feet	feet	TE 88			Location	mple Number	%	er6 in per ft]	ĵ.	tsf.	20				۵	
tion	Depth, f	Material Graphics	CLASSIFICATION OF MATE (Description)	ERIALS	9	ž	Recovery,	s per	N ₆₀ (ASTM)	or TV,	ater ent,	nid nit	sticity dex	188, #20(Other Lab Tests	REMARKS
Ele vation,	Ded	Σტ	(2000)		Sample	Samp	Rec	Blows pe	Z 8	Ь	Cont.	p) ji	Plasticity Index	E,%	g e	
+	- 0-	344	SANDY SILT (ML); very stiff; yellowish	brown (10YR	S	Ø		9						\vdash	-	S01A 000 002S
_	1-		5/4); dry; 55% low dry strength, slow di toughness fines; 45% fine to medium s	latancy, low and; strong	Ŋ	S01A	75	10 11	28	2.25P		39	13			S01A_000_002S
			reaction with HCl; [Levee Fill]. At 1.0 foot, 1 inch lens of silty gravel (G	M).	Λ			[21]								Hollow-Stern Auger to 22 feet
٦	2 -	17/2	GRAVELLY LEAN CLAY with Sand (CL 4/3); moist; 60% medium plasticity, me	dium dry	П			- 1								S02A_002_005P S02A_002_005P
Ⅎ	3 -		strength, no dilatancy, medium toughne fine, subrounded gravel; 20% fine to m strong reaction with HCl; [Levee Fill].	ss fines; 20%		0004										
10-	4 -	86	strong reaction with HCI; [Levee Fill].			S02A	44									
			SANDY LEAN CLAY (CL); very stiff; ve	ry dark grayish	╢											
T	- 5-		SANDY LEAN CLAY (CL); very stiff; ve brown (10YR 3/2); 70% high dry streng medium toughness fines; 30% fine san	th, no dilatancy, d; [Levee Fill].	1			1		2.0P	16	37	13			S03A 005 007S S03A 005 007S
\dashv	6 -		SILTY SAND (SM); dark yellowish brow	n (10YR 4/4);	łX	S03A	75	2	5							
4	7 -		moist; 76% fine to medium sand; 24% Fill].	fines; [Levee	П			[4]								S04A 007 010P
J	8 -															S04A_007_010P
╛	٠.					S04A	39							24	PA	
5-	9 -				$\ \ $					0.75P						
+	- 10-		LEAN CLAY (CL); medium stiff; very da (10YR 3/2); moist; 90% medium plastic	ity, medium dry	Ш					0.701					_	S05A 010 012T
_	11 -		strength, no dilatancy, medium toughne fine sand; with organics.	ss lines; 10%		S05A	67								SG	S05A 010 012T SG = 2.80
┪	12 -	1	At 12.0 feet, 5 inch lens of sandy lean of		М											S06A 012 015P S06A 012 015P
\dashv	13 -		SANDY SILT (ML); very soft; very dark (10YR 3/2); moist; 70% low dry strengt dilatancy, low toughness fines; 30% fin	grayish brown h, slow e sand	$\ \ $											
0-	14 -				$\ \ $	S06A	100			0P	37	40	14		ос	OC = 4.6%
	45		SANDY SILT (ML); dark yellowish brow moist; 70% low plasticity, low dry streng dilatancy, low toughness fines; 30% fin	gth, slow e sand.	$\ \ $				<u> </u>					L		
7	- 15-	333	ORGANIC SILT with Sand (OL); soft; bi moist; 85% medium plasticity, medium	lack (N 2.5/);				0			41				ос	S07A_015_017S S07A_015_017S
\dashv	16 -	\$45	slow dilatancy, medium toughness fines sand.		X	S07A	100	0	0	0.25P	62					OC = 14.6%
4	17 -		LEAN CLAY with Sand (CL); medium st 2/1); moist: 80% medium plasticity, me	tiff; black (10YR dium dry	H			[0]								2084 047 020B
	18 -		strength, no dilatancy, medium toughne fine sand.	ss fines; 20%						0.5P					-	S08A_017_020P S08A_017_020P
٦	10 -	\prod	SILT (ML); black (N 2.5/); moist; 90% r dry strength, slow to rapid dilatancy, low fines; 10% fine sand; with organics.	no plasticity, low v toughness	$\ \ $	S08A	100			0.5P					ос	OC = 12.2%
-5-	19 -	7))	ORGANIC SILT with Sand (OH); mediu	m stiff; black (N	$\ \ $					0.5P	71	60	21			
Т	- 20-	277	2.5/); moist; 80% medium dry strength,	slow dilatancy,								00	21			
			Draft 3 Afte	r All Lab	Dá	ta A	dd	ed	5/1	6/20	12					
CAT OF V	VATERA		orehole Location: Levee Crest	Eastlean		County			quin	$\overline{-1}$			LO	G (OF BO	RING
189	1		oordinates: Northing: 2,178,670,55	Easting:	1,3	10,266	.10			—1			14	/Do	074 0	O3M



Levee Segment Brookside Survey Method: Ground Survey Coord. System: CA State Plane Zone III
Channel / River Name / Feature: San Joaquin River

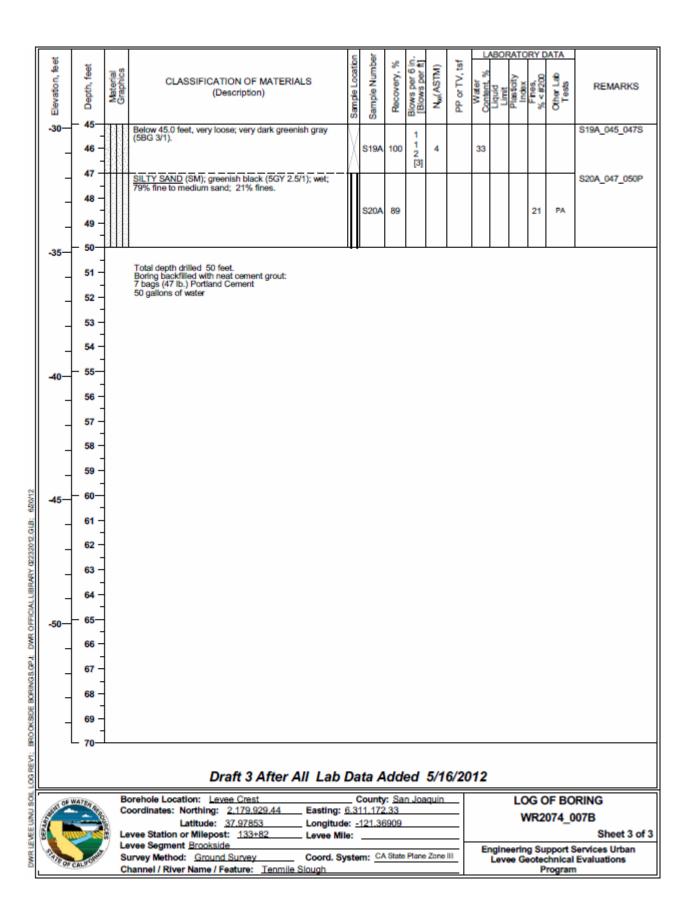
		_		_	Τ.					1 1	.DOE	RATO	DV D	ATA	 1
feet	ti.			tion	ě	8	ë Z	(tsf						1
	n, feet	Material Graphics	CLASSIFICATION OF MATERIALS	Sample Location	Sample Number	Recovery,	Blows per 6 in [Blows per ft	N _w (ASTM)	or TV,	it 9.	_	Plasticity Index	8, 200,	8 2	REMARKS
Elevaton,	Depth,	Match	(Description)	90	90	000	ws p	A)00	ō	Wate	imit	lasti Inde	Fine A #	Other Lab Tests	REMARKS
E	ā	-0		Sam	Sam	2	Blo [B]	Z	d d	-8	'n	о.	- %	8	
-	- 20-	377	medium toughness fines; 20% fine sand.							\vdash			Н		S09A_020_022T
_	21 -	335			S09A	100								sg	S09A 020 022T SG = 2.62
		335													
-	22 -	\$55	At 22.0 feet, 6 inch lens of sandy lean clay (CL).	M					0.5P	\vdash			Н		S10A 022 025P
	23 -	287	SANDY ORGANIC SILT (OH); medium stiff; black (7.5YR 2.5/1); moist; 70% medium dry strength, slow						U.SP						Switch to Rotary Wash
		3/2	dilatancy, medium toughness fines; 30% fine sand.		S10A	100									S10A_022_025P
-10-	24 -	22							0.5P	145	65	7		ос	OC = 23.7%
-	- 25-	333	LEAN CLAV with Sond (CL); you coft; you dork	Щ	ļ					_					S11A 025 027S
			LEAN CLAY with Sand (CL); very soft; very dark greenish gray (10BG 3/1); wet; 80% medium plasticity, medium dry strength, no dilatancy, medium toughness fines; 20% fine sand; with organics.	N		400	0		0P						S11A_025_027S
	26 -		fines; 20% fine sand; with organics.	Λ	S11A	100	0	0		89					
-	27 -	5335	LEAN CLAY (CL): stiff: very dark greenish gray (10BG	Ь	1		[0]			-			Н		S12A 027 030P
			LEAN CLAY (CL); stiff; very dark greenish gray (10BG 3/1); wet; 93% high dry strength, no dilatancy, medium toughness fines; 7% fine sand.								44	20	93		\$12A_027_030P
	28 -				S12A	44					44	20	93		
-15-	29 -			$\ \ $					1.25P						
	- 30-	M	SILTY SAND (SM); loose; very dark greenish gray (10BG 3/1); wet; 75% fine to medium sand; 25% fines.	Ш											
	30		(10BG 3/1); wet, 75% line to medium sand, 25% lines.	١,	/		1			32					S13A 030 032S S13A 030 032S
-	31 -			IX	S13A	100	3	8							
	32 -			Ľ			[6]								
	٠.		SILT with Sand (ML); very dark greenish gray (10BG 3/1); wet; 74% low plasticity, low dry strength, slow										74		S14A 032 035P S14A 032 035P
-	33 -	1111	dilatancy, low toughness fines; 26% fine sand.												
-20-	34 -		At 33.5 feet, 6 inch lens of poorly graded sand with silt (SP-SM).		S14A	89									
	٠.	1111	(or only.												
-	- 35-		Poorly Graded SAND with Silt (SP-SM); medium dense;	۳			2			\vdash			Н		S15A_035_037S
	36 -		bluish black (5B 2.5/1); wet; 90% fine to medium sand; 10% fines.	Ŋ	S15A	100	4	11							Vibrating wire piezometer
		- 1		ľ	\		[8]								installed at 35 feet S15A_035_037S
-	37 -		CLAYEY SAND (SC); greenish black (5GY 2.5/1); wet; 69% fine to medium sand; 31% fines.	П							28	9	31		S16A_037_040P S16A_037_040P
-	38 -	-111	SILTY SAND (SM); very dark greenish gray (10BG 3/1); wet; 75% fine to medium sand; 25% fines.	Ш											310A_03/_040P
			At 38.5 feet, 4 inch lens of poorly graded sand with silt		S16A	86									
-25	39 -		(SP-SM).												
-	- 40-	111	l	Ш	<u> </u>								Ш		
	41 -	1	Total depth drilled 40 feet.												
8	-*1	-	Boring backfilled with neat cement grout: 2 bags (94 lb.) Portland Cement												
-	42 -	1	20 lbs. of bentonite 50 gallons of water												
	43 -	1													
		1													
-30-	44 -	1													
	45-														
			Draft 3 After All Lab	Dá	ata A	dd	ed	5/1	6/20	12					
-	WAS:	P	orehole Location: Levee Crest		County	r Se	n Jos	quin	T			10	6.0	E BO	RING
MENT OF	- Tale		oordinates: Northing: 2,178,670.55 Easting:	6,3	10,266	.10		age of the	=					074_0	
P. A.	Mily of	MACE	Latitude: 37.97505 Longitude evee Station or Milepost: 117+51 Levee Mile			7220			-			•	rc2	074_0	Sheet 2 of 2
9			evee Segment Brookside						二十	F	ngine	erin	a Su	pport 5	Services Urban
TAIR OF	CALFORN		urvey Method: Ground Survey Coord. Sy	ste	em: <u>C/</u>	State	Plane	Zone	Ш	-			eotec	hnical	Evaluations
		C	hannel / River Name / Feature: San Joaquin River						$-\bot$				Р	rogran	1

DATE STA			DATE COMPLETED	GROUND ELEV	ATK	ON				DATUM	<u> </u>			то	TAL DE	PTH OF BORING
10/14/11 DRILLING	•	RACTO	10/14/11 R	14.60 ft DRILLER'S NAM	1E			NAVE		AME				-	1.5 ft TAL DE	PTH OF FILL
Pitcher	-		-	James Music		ND MO		Malak	ai Fa	kalolo)			_	5 ft	ANT COMPANY
HSA/Ro	otary W	ash	PE (HOLE DIAMETER)	CME 55				IETEO						K	leinfeld	ier
8" HSA,				NWJ 2-5/8*							_			M	l. Luna	
X VERT			CLINED	CASING TYPE, HSA, 10" OD	, 15	5 ft					1			M	. Brise	
	.5"), SP	(1.375	"), DM (2.5")	CME Auto Ha	amr	mer 14	0 lbs	/30-ir	nch d	rop				7	7%	EFFICIENCY
Grout	LE BAC	KFILL (OR COMPLETION	GROUNDWATE		Not M				Drillin		ethoo		AFTE	R DRILL	LING (DATE-TIME)
Elevation, feet	Depth, feet	Material Graphics	CLASSIFICATION OF MATE (Description)	ERIALS	Sample Location	Sample Number	Recovery, %	Blows per 6 in. Blows per ft]	N ₆₀ (ASTM)	PP or TV, tsf				Fines, 230 A30		REMARKS
	- 0-		LEAN CLAY (CL); reddish gray (10R 5/ medium plasticity, medium dry strength		Sa	S,	Œ	留里		а.	0					
-	1 -		medium toughnéss fines; [Levee fill].		NSD											Hand Auger to 5 feet
-	3 -				/	S01A										S01A_002_004B
10-	4				NSC											
-	6 -		FAT CLAY (CH); very stiff; dark brown (moist, 85% high dry strength, no dilatar toughness fines; 15% fine to coarse, st [Levee fill].	(10YR 3/3); ncy, high ubangular sand;		S02A	61			2.5P	38 36	71	52		UW	S02A 005 007T Switch to Hollow-Stem Auger D&M pushed with 250 psi
<u> </u>	7 - 8 -		SILT (ML); dark brown (10YR 3/3); mois plasticity, low dry strength, slow to rapid toughness fines.	st; 100% low dilatancy, low	NSD	S03A	100			1.5P	24				UW	S03A_007_009T D&M pushed with 300 psi
5-	9 -		Below 9.0 feet, very dark grayish brown inch lens of poorly graded sand (SP); traces (<5%).	(2.5Y 3/2); 4 ace of organics	NBD					0.75P						
-	11		LEAN CLAY (CL); soft; very dark gray (moist; 100% medium dry strength, no d	10YR 3/1); filatancy,	1	S04A	97			0.75P		49	25		UW	S04A_010_012T D&M pushed with 250 psi Switched to mud
1	12 -		medium toughness fines. Below 11.25 feet, dark grayish brown (1	0YR 4/2);.	NBD											rotary
-	13		Below 12.5 feet, medium stiff.		I	S05A	97			0.50P 0.60P	20	43 42	20 20		UW	S05A_012_014T D&M pushed with 200 psi
0-	15-		FAT CLAY (CH); medium stiff; greenish	black (5BG	NSC					0.75P					UW	S06A 015 017T
-	16 -		FAT CLAY (CH); medium stiff, greenish 2.5/1); moist; 95% high dry strength, no toughness fines; 5% fine sand.	o allatancy, high		S06A	100			0.75P	40 46	51 54	25 31		UW	Switch to Rotary Wash D&M pushed with 275 psi
-	17 -		FAT CLAY (CH); stiff; black (10YR 2/1), high dry strength, no dilatancy, high tou with organics.	ghness fines;	NSE	S07A	100			1.25P	66 69	85 97	58 59		UW UW	S07A_017_019T D&M pushed with 300 psi
-5	19 -		At 18.4 feet, lense of ELASTIC SILT(Mi Below 19.0 feet, medium stiff.	1).	NS()	S08A	100			0.75P 0.5P		88 92	49 55		UW	S08A_020_022T
	- 20-		Draft 3 Afte	r All Lab	Da	ita /	dd	ed	5/1	6/20	12					
MENT OF W	ATER RES		orehole Location: Levee Crest pordinates: Northing: 2,178,721,48	Easting:		County 10,263		n Jos	quin							RING
) Le	Latitude: 37.97518 evee Station or Milepost: 118+02 evee Segment Brookside	Levee Mil	le:						E	ngine			074_0	Sheet 1 of 3 Services Urban
ATE OF C	AL O DE		urvey Method: <u>Ground Survey</u> hannel / River Name / Feature: <u>Tenn</u>	Coord. Sy nile Slough	/ste	m: <u>C/</u>	State	Plane	Zone					eotec		Evaluations

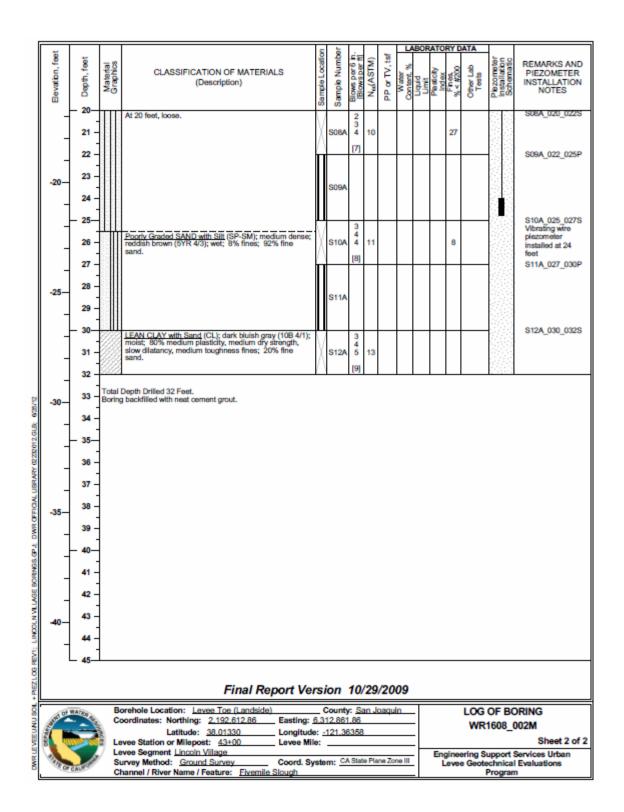
8/16/10	B/17/10	GROUND ELEVATION ELEVATION DATUM TOTAL DEPTH OF BORING 50.0 ft						
DRILLING CONTRACTOR Neil O. Anderson		DRILLER'S NAME HELPER'S NAME TOTAL DEPTH OF FILL Mike Young Sean McNeil 13.5 ft						
DRILLING METHOD HSA/Rotary Wash		DRILL RIG MAKE AND MODEL CME 75 CONSULTANT COMPANY Kleinfelder						
10" HSA, 4-7/8" Drag Bi		DRILLING ROD TYPE AND DIAMETER NWJ 2-5/8" FIELD LOGGER G. Lenehan						
X VERTICAL □INCLI	NED	CASING TYPE, DIAMETER, INSTALLATION DEPTH HSA 10" OD FIELD LOG REVIEWER G. Lenehan						
SAMPLER TYPE(S) SPT (1.375"), PC (2.5")		HAMMER TYPE, MAKE/MODEL, WEIGHT/DROP CME Auto Hammer 140 lbs/30-inch drop T9% HAMMER EFFICIENCY 79%						
BOREHOLE BACKFILL OR COMPLETION GROUNDWATER READING: DURING DRILLING AFTER DRILLING (DATE-TIME) Grout Not Measured Due to Drilling Method								
feet s		LABORATORY DATA						

	n, feet	feet	rial	CLASSIFICATION OF MATERIALS	ocation	umber	ry. %	r6 in.	TM)	TV, tsf				RYE		
	Elevation,	Depth, fe	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery,	Blows per 6	N ₆₀ (ASTM)	PP or T	Water Content.	Liquid	Plastici	Fines, % < #200	Other Lab Tests	REMARKS
11 '	15-	- 0-	•	SAND AND GRAVEL at surface [Levee Fill].	Ī.	/		6								S01A_000_002S
	\exists	1-		LEAN CLAY with Sand (CL); very stiff; very dark gray (7.5YR 3/1); moist; 75% medium plasticity, high dry strength, no dilatancy, medium toughness fines; 25% fine sand; weak reaction with HC; [Levee Fill].	IX	S01A	100	7 7 [14]	18	2.75P						Hollow-Stern Auger to 15 feet
	\dashv	2 -		Below 2.0 feet, black (5YR 2.5/1.	П							Г	Г	Г		S02A_002_005P
	+	3 -				S02A	100									
	1	4 -		FAT CLAY (CH); hard; very dark grayish brown (10YR 3/2); moist; 87% high dry strength, no dilatancy, high toughness fines; 13% fine sand; [Levee Fill]. Below 5.0 feet, very stiff; black (2.5Y 2.5/1).						4.5P		52	25	87		
1	10-	- 5-		Below 5.0 feet, very stiff; black (2.5Y 2.5/1).	Ū	1		3		2.25P						S03A_005_007S
	4	6 -			IX	S03A	100	8	17		18					
		7			Н			[13]				_	_			S04A_007_010P
		8 -			.											
		9 -		LEAN CLAY (CL); hard; very dark greenish gray (5GY 3/1); moist; 90% medium dry strength, no dilatancy, medium toughness fines; 10% fine sand; [Levee Fill].		S04A	100					30	16			
	5	- 10-		At 9.5 feet, 6 inch lens of clayey sand (SC).	Ш	ļ		3		4.5P						S05A 010 012S
	-	11 -		Below 10.5 feet, very dark greenish gray (10Y 3/1).	N	S05A	100	6	14		16					000-010-0120
	\dashv	12 -		Below 12.0 feet, very stiff.	h			[11]		3.5P						S06A_012_015P
F	4	13 -			Ш											
ľ	_;_	14		LEAN CLAY with Sand (CL); very stiff; dark greenish gray (10Y 4/1); moist; 75% high dry strength, no dilatancy, medium toughness fines; 25% fine sand.		S06A	100			3.5P						
	0	- 15-			۳	-	_	3	_			\vdash	\vdash	\vdash		S07A_015_017S
	4	16 -		Below 16.0 feet, black (N 1.5/).	X	S07A	100	9	20	3.75P	21	32	13			Switch to Rotary Wash
	4	17 -		LEAN CLAY with Sand soft; dark greenish gray (10Y	Ю			[15]		3.70						S08A_017_020P
	4	18 -		4/1); moist; 75% high dry strength, no dilatancy, medium toughness fines; 25% fine sand; with organics. At 18.0 feet, wet.		S08A	53			0.5P					ос	OC = 7.2%
		19 -				SUGA	33					_				
	Į	- 20-	1990	Below 19.5 feet, very stiff.						3.5P	30	37	16			
				Draft 3 After All Lab	Dá	ata A	dd	ed	5/1	6/20	12					

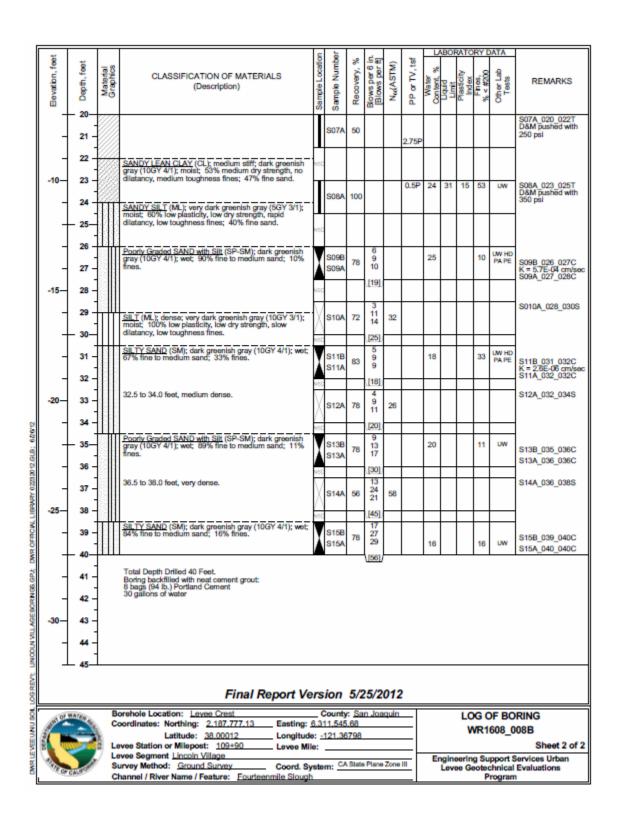
WATE OF THE PARTY

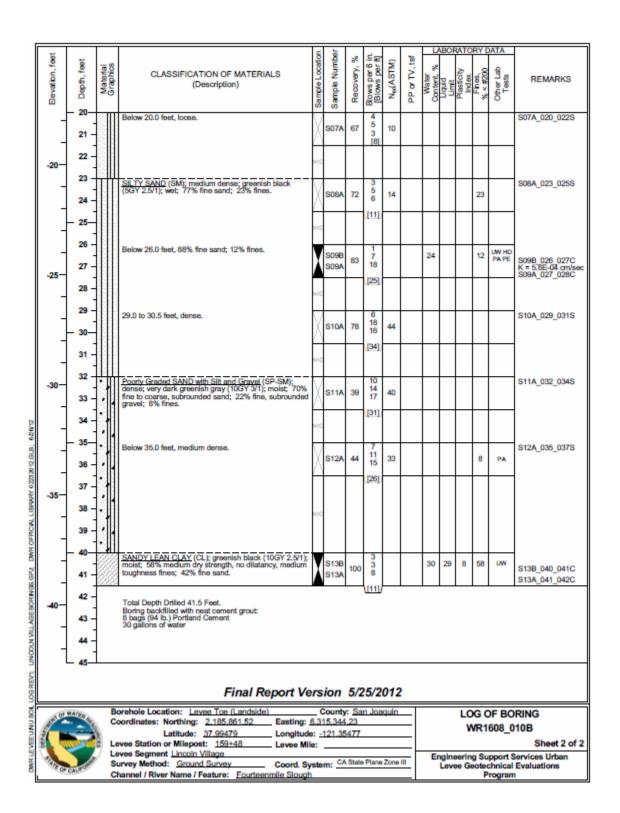

Borehole Location: Levee Crest	County: San Joaquin
Coordinates: Northing: 2,179,929,44	Easting: 6,311,172,33
Latitude: 37,97853	Longitude: -121,36909
Levee Station or Milepost: 133+82	Levee Mile:
Levee Segment Brookside	
Survey Method: Ground Survey	Coord. System: CA State Plane Zone III
Channel / River Name / Feature: Tenmile S	Slough

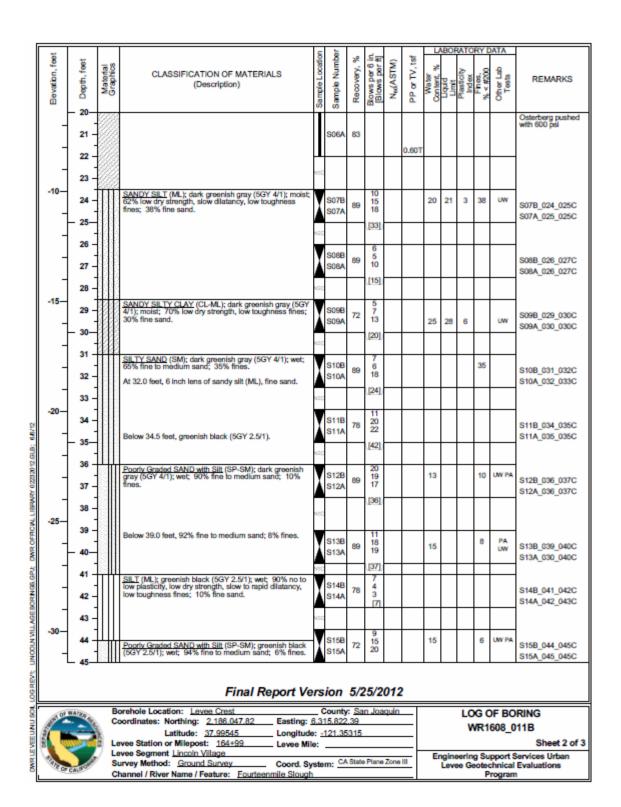
LOG OF BORING WR2074_007B

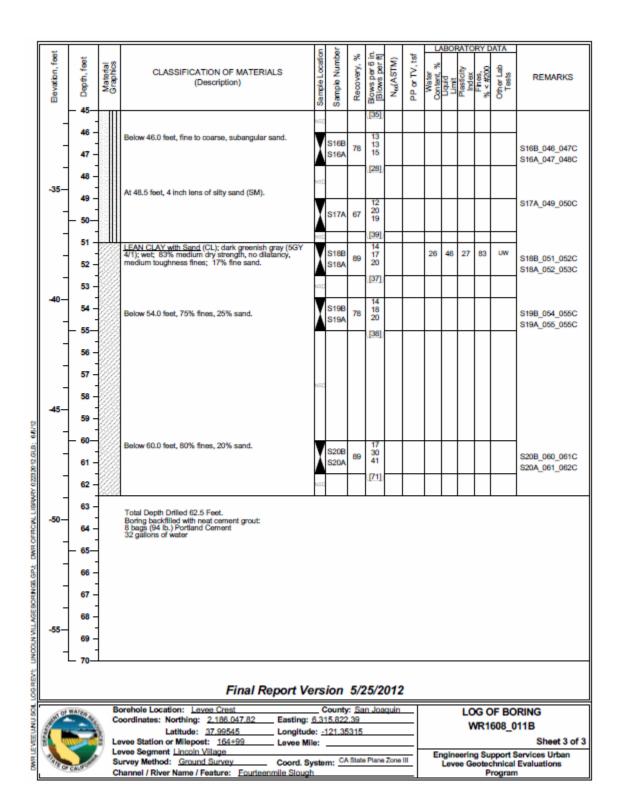

Sheet 1 of 3

Engineering Support Services Urban Levee Geotechnical Evaluations Program

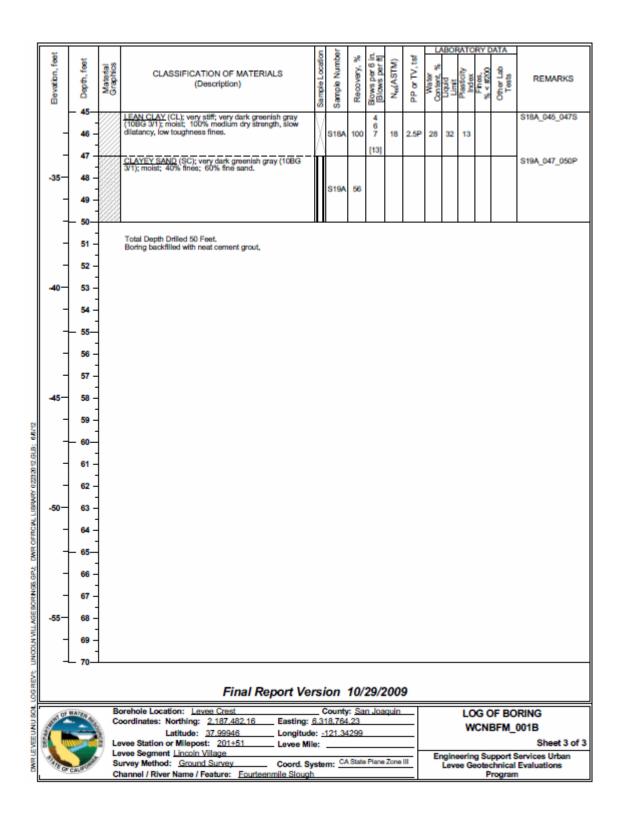

_			_		_									D1 / D		
	ı, feet	feet	la c	01.400/5/04.7701/05.44.7501/10	nation	Sample Number	y, %	r 6 in.	(MI	V, tsf		ABOR				
	Elevation,	Depth,	Material	CLASSIFICATION OF MATERIALS (Description)	Sample Location	N eld	Recovery,	Blows per 6 i	N ₀₀ (ASTM)	or TV,	Water intent.	Liquid	lætidit Index	Fines, % < #200	Other Lat Tests	REMARKS
		 _ 20_			S	Sam	R	Blo [B]	Z	рР	8	ור	п.	%	ŏ	
	-5-	21 -				S09A	67								SG	S09A 020_022T SG = 2.55
	_	-				SUSIA	07									
	-	22 -	\prod	ELASTIC SILT (MH); medium stiff; greenish black (10Y 2.5/1); wet; 100% low dry strength, no dilatancy, low											ос	S10A_022_025P OC = 13.4%
	-	23 -		toughness fines; with organics.		S10A	69				82	77	31			
	-	24		Below 24.0 feet, moist.						0.5P						
	-10-	25		CLAYEY SAND (SC); medium dense; dark bluish gray (5B 4/1); moist; 70% fine to medium sand; 30% fines.	ľ			2								S11A_025_027S
	-	26 -			1	S11A	100	3 5 [8]	11	1.5P	28				HD	
	-	27 -		SILT with Sand (ML); dark greenish gray (5BG 4/1); moist, 78% low dry strength, slow dilatancy, low	T			2		2.0P	\vdash	Н				S12A_027_030P
	-	28 -		toughness fines; 22% fine sand.		S12A	72					32	7	78		
	_	29 -	1													
	-15-	- 30-	1		L			7				\vdash		Н		S13A_030_032S
	_	31 -	888	SILTY SAND (SM); medium dense; very dark greenish	1)	S13A	100	10 13	30		25					
	_	32 -		gray (10BG 3/1); moist; 51% fine sand; 49% fines. Below 32.0 feet, very dark greenish gray (5BG 3/1).	H			[23]								S14A_032_035P
	_	33 -												40		
	_	34 -				S14A	83							49	PA	
620V12	-20-	- 35-			μ	<u> </u>						Н				S15A_035_037S
	_	36 -		CLAYEY SAND (SC): medium dense; verv dark	4)	S15A	88	3 5	11							
OPPICAL LIBRARY 0232012 GLB;	_	37 -		CLAYEY SAND (SC); medium dense; very dark greenish gray (5BG 3/1); moist; 80% fine sand; 20% fines.	ŀ			[8]			25	29	12			S16A 037 040P
7	_	38 -		SANDY SILT (ML); very dark greenish gray (5BG 3/1);	$\ $											
LIBRA	_	39 -		moist; 53% low plasticity, low to medium dry strength, no to slow dilatancy, low toughness fines; 47% fine sand.		S16A	89							53		
A S	-25-	40-		40.0 to 41.5 feet, medium dense.	μ	<u> </u>		5								S17A 040 042S
		41 -		40.0 b 41.0 loot, medium derise.	Ŋ	S17A	92	8	22		29					0177_040_0420
3		42		Below 42.0 feet, 67% fines; 33% sand.	Ļ			[17]								S18A 042 045P
Sulve		43 -		Delow 42.0 leet, 07% liftes, 33% salid.												310A_042_043P
200		44				S18A	89							67		
OG HEVY: BROOKSIDE BORINGSGPJ, DWR		45														
Mer VI																
<u> </u>				Draft 3 After All Lab						6/20	12					
9	SHT OF	WATER		Borehole Location: Levee Crest Coordinates: Northing: 2,179,929,44 Easting:		County 311,172		n Joa	quin	-						RING
5			8	Latitude: 37.97853 Longitud						=			٧	VR2	074_0	
DWR LEVEE UNU SOIL	F 0	uno se		Levee Station or Milepost: 133+82 Levee Milevee Segment Brookside	le:					$ \mid$			_	_		Sheet 2 of 3
/ A	Pare		e/		yst	em: C/	State	Plane	Zone	Ш	E					Services Urban Evaluations
Survey Method: Ground Survey Coord. System: CA State Plane Zone III Levee Geotechnical Evaluations Channel / River Name / Feature: Tenmile Slough Levee Geotechnical Evaluations Program																


DATE STARTED 2/6/09		DATE COMPLETED 2/6/09	GROUND ELEVA 3.27 ft	ATI	ON			ATIO		UM				OTAL DI 32.0 ft	EPTH OF BORING
Neil O Anders		OR .	DRILLER'S NAM James Young			١		ER'S						OTAL D	EPTH OF FILL
DRILLING METH	00		DRILL RIG MAK		ND MO	0EL	368	ar mic	14011				-	ONSULT	ANT COMPANY
HSA/Rotary W DRILL BIT SIZE A		PE (HOLE DIAMETER)	CME 75 DRILLING ROD	TY	PE AND	DIA	METI	ER						Kleinfel	
10" HSA, 5" P	unch (Core	NWJ 2-5/8 OI CASING TYPE. I	-,		,			NI DE	DTU			_	M. Shul	oert G REVIEWER
VERTICAL		CLINED	HSA: 10" O.D)/6	3" I.D. (Ċase	e to	5'						A. Killin	ger
	8 ^e I.D.,	2-1/2" Punch Core	CME Auto Ha	m	mer, 1	40 It	s/3	30-inc	ch dr	op.				84%	EFFICIENCY
Grout BAC	KFILL	OR COMPLETION	GROUNDWATE	RR	EADIN	3:	DUR	IING D		ING			AFT	TER DRIL	LING (DATE-TIME)
*			•	5	ь		П	_	LA	BOR	ATO	RY D	ATA	1	
Elevation, fed Depth, feet	Material Graphics	CLASSIFICATION OF MATE (Description)	ERIALS	Sample Location		Slows per 6 in Blows per fill	N _{ec} (ASTM)	Por TV, ts	Water ontent, %	Liguid	Plastidity	Fines. % <#200	Other Lab Tests	Plezometer Installation Schematic	REMARKS AN PIEZOMETER INSTALLATION NOTES
<u> </u>	977	CLAYEY SAND (SC); dark brown (7.5Y)	R 3/2): moist:	Š	S	<u>.</u>	_	а.	0	_	_	6	_	25100	S01A_000_005
1-		40% fines; 60% fine sand; [Fill].													
2 -		Poorly Graded GRAVEL with Clay and S brown (107R 4/3); moist; 10% fines; 60 subrounded gravel; 30% fine to coarse, subangular sand; strong reaction with H	Sand (GP-GC); % fine, angular to		S01A										
0-3-		FAT CLAY with Sand (CH); very stiff; bla	ack (5YR 2.5/1);	ı	OU IA										
4-		moist; 84% high dry strength, no dilatar toughness fines; 16% fine sand; [Fill].	cy, nigh					3.5P	17	57	39	84	HD		,
5-		LEAN CLAY with Sand (CL); yellowish n moist; 80% medium dry strength, no dil toughness fines; 20% fine sand; [Fil].	ed (5YR 5/6); atancy, medium	V		5 11						Н			S02A_005_007 Switched to mud rotary
_ 6-		toughness fines; 20% fine sand; [Fill].		A	S02A	15 [26]	36		19	38	21		ос		OC = 2.6%
7-												П			S03A_007_010
-5- °.		CLAYEY SAND (SC); yellowish red (5Y) 34% fines; 66% fine to medium sand.	R 5/6); moist;		S03A							34	PA		
				Ц		6		3.0P							S04A_010_012
11 -		LEAN CLAY (CL); very stiff; grayish gre- moist; 85% medium dry strength, slow o medium toughness fines; 15% fine sand	en (5G 5/2); dilatancy,	X	S04A	9	27	4.50	23	37	20				
12 -		induiti coginess intel, 10% into sain		П		[19]		4.5P							S05A_012_015
-10- 13 -					S05A					38	19				
- 14 -	Ш	SILTY SAND (SM); medium dense; redo 5/4); wet; 73-84% fine sand; 16-27% fine	dish brown (5YR nes.												PORA DES CATA
16 -				V	S06A	7 8 10	25					16	PA		S06A_015_017
17 -				A		[18]									S07A_017_020
-15 18 -															SG = 2.74
19 -					S07A							24	PA SG		
20-		Final	Report Vei	S	ion	10	/29	/20	09			Ш			
2000										_			100	OF 51	DINC
SET OF WATER		orehole Location: Levee Toe (Lands coordinates: Northing: 2,192,612.86	Easting: (County 12,861		an J	oaqu	ın	:				OF B0 1608_	DRING 002M
	200	Latitude: 38.01330 evee Station or Milepost: 43+00	Longitude Levee Mile		121.3	3358	}			-			•••	.000_	Sheet 1 o
	Jι	evee Segment Lincoln Village					la Fil-		no III	\vdash					Services Urban
OF CALO		urvey Method: Ground Survey hannel / River Name / Feature: Fiver	Coord. Sy	stu	em: <u>G</u>	Otal	e mi	H9 Z0	W III		L	.evec		schnica Prograr	Evaluations


DRILLING CONTRAC		13.00 ft				NAVD		DATUM					0.0 ft	PTH OF BORING
Fitcher Drilling in		DRILLER'S NAM James Musici				ELPER		ME kalolo					TAL DE	PTH OF FILL
DRILLING METHOD		DRILL RIG MAK		ND MO		vialak	aira	Kalolo				co	NSULT	ANT COMPANY
DRILL BIT SIZE AND	TYPE (HOLE DIAMETER)	DRILLING ROD	TYP	E AND	DIAN	METER	1					_	LD LOG	
8" HSA, 3-7/8" Dr		NWJ 2-5/8" CASING TYPE, I						DEDT	_				. Lenel	nan REVIEWER
	INCLINED	HSA, 10" OD	, 15	ft.								M	. Brise	no
SAMPLER TYPE(S) StdCal(2.5"), SPT (1.		CME Auto Ha	mm	ner, 14	40 lbs	s / 30-	-inch	drop				77	7%	FFICIENCY
Grout BACKFI	LL OR COMPLETION	GROUNDWATE		Not Me						thod	٠ '	AFTE	R DRILL	ING (DATE-TIME)
ж			Ę	ъ	- 0	ď		4	U	ABOR	МТО	RY D	ATA	
	CLASSIFICATION OF MATER	RIALS	Sample Locatio	Sample Number	Recovery, %	Blows per 6 in. [Blows per ft]	N _® (ASTM)	PP or TV, ts	Water Confert, %	Liquid	Plasticity Index	Hnes, % <#200	Other Lab Tests	REMARKS
- 1-	Asphalt concrete - 3 inches. Aggregate base - 4 inches. LEAN CLAY (CL); hard; black (2.5Y 2.5//high dry strength, no dilatancy, medium to fines; [Levee Fill].	1); moist; 90% oughness	N80											Hand Auger to 4 feet
- 2-	fines; [Levee Fill].		V	S01A						Н		Н		S01A_002_003B
10- 3-			ven	00 111						Н		Н		
4-			T							Н		Н		S02A 004_006T Switch to
+ 5-				S02A	61			>4.5P	22	40	20		UW	hollow-stem auger at 4 ft. D&M pushed with
- 6-														450 psi
7-			NSD											
5- 8-			┢							H		\vdash		S03A_008_010T D&M pushed with
9-			Щ	S03A	72			>4.5P						450 psi
10-			NSD											
= 11-	Below 11.0 feet, stiff.			S04A	89			1.25P		\forall		Н		S04A_011_013T D&M pushed with
12	LEAN CLAY (CL); stiff; black (2.5Y 2.5/1) high dry strength, no dilatancy, medium to fines.		Щ					1.5P		\square		Н		350 psi
0 13 -			NSD											
15		F1 440		S05A	61				22	40	26		UW OC	S05A_014_016T D&M pushed with 300 psi
16	Below 15.0 feet, very stiff; olive brown (2.	.DY 4/4).	No.					3.25P		H		Н		OC = 4.2% Began rotary wash at 15 ft.
- 17	LEAN CLAY (CL); very stiff; dark greenis	h gray (10GY												S06A 017 019T
-5 18	4/1); moist; 90% medium plasticity, med strength, no dilatancy, medium toughness fine sand.			S06A	67			2.0P						D&M pushed with 300 psi
19-			NSD											
⊥ 20-1	Final	Report Ve		ion	5/2	25/2	012	,		Ш		Ш		
		Report ve						_						
MIT OF WATER	Borehole Location: Levee Crest Coordinates: Northing: 2.187,777.13	Easting:		ounty 11,545		n Joa	quin							RING
	Latitude: 38,00012	Longitude		121.36	798			-			٧	VICT	608_0	
TO CALO	Levee Station or Milepost: 109+90 Levee Segment Lincoln Village Survey Method: Ground Survey Channel / River Name / Feature: Fourte	Levee Mile Coord. Sy	ster	m: CA	State	Plane	Zone	<u> </u>				ootec		Sheet 1 of 2 Services Urban Evaluations



DATE STARTED	DATE COMPLETED	ON				DATUM						PTH OF BORING		
DRILLING CONTRAC		2.40 ft DRILLER'S NAM			н	NAVD ELPER	TS NA					то		PTH OF FILL
Pitcher Drilling In DRILLING METHOD	t.	James Music DRILL RIG MAK		ND MO		Valak	ai Fa	kalolo				0	••	ANT COMPANY
Rotary Wash	TYPE (HOLE DIAMETER)	CME 55 DRILLING ROD	TY	PE AND	DIAN	IFTER							leinfeld	
3-7/8" Drag Bit	The process of the second	NWJ 2-5/8" CASING TYPE										G	. Lenel	han
	INCLINED	HSA, 10" OD	, 1	5 ft.					1			M	. Brise	
SAMPLER TYPE(S) StdCal(2.5"), SPT (1.		CME Auto Ha			40 lbs	s / 30-	-inch	drop					MMER E 7%	EFFICIENCY
Grout BACKFI	LL OR COMPLETION	GROUNDWATE	RR	Not M				Drillin		thod		AFTE	R DRILL	ING (DATE-TIME)
*		•	9	b		Ę		4-	U	NBOF	ATO	RYD	ATA	
iii iii	CLASSIFICATION OF MATE (Description)	RIALS	Sample Locatio	Sample Number	Recovery, %	Blows per 6 i	N _® (ASTM)	PP or TV, tsf	Water Content, %	Liquid	Plasticity Index	Hnes, % <#200	Other Lab Tests	REMARKS
	Asphalt concrete - 3 inches. Aggregate base - 6 inches.		1						Г					
1-	SANDY LEAN CLAY (CL); black (10YR); 70% medium plasticity, medium dry stret	nath no	t	S01A										S01A_002_003B
2-0	dilatancy, medium toughness fines; 30%	fine sand.	P	SUIA	_	_						\vdash		Hand Auger to 5 feet
0- 3-														
I 1 1			NS:											
- 1	LEAN CLAY (CL); stiff; dark greenish gramoist; 60% high dry strength, no dilatan	ay (5GY 4/1); cv. medium	1											
5	toughness fines; 40% fine sand.		П	\vdash		\vdash	\vdash	1.5P	\vdash			Н		S02A 005_007T Switch to
6	SILTY SAND (SM); dark greenish gray (5GY 4/1):	╢	S02A	100			1.0	28	40	25		UW	hollow-stem auger at 5 ft.
7,4	moist; 54% fine sand; 46% fines.		╏	\vdash		\vdash			\vdash			Н		D&M pushed with 300 psi
-5-			NSI											
8 -			П											S03A_008_010T D&M pushed with
] 9-			Ш	S03A	94				29			46	UW	200 psi
10-														
1 1														
12 -	At 11.0 feet, 6 inch lens of Poorty Grader SILT (SP-SM). SILTY SAND (SM); dark greenish gray (1 81% fine sand: 19% fines.	GSAND With		S04A	89				31			11 19	PA PE	S04A_011_013T D&M pushed with 100 psi K = 1.0E-03 cm/sec
11 - 12 - 13 - 13 -	61% line sand; 19% lines.													
14														
I - I			Ш	S05A	89									S05A_014_016T D&M pushed with 300 psi
15			μ											Soo par
16 -			NSI											
-15- 17	Poorly Graded SAND with Silt (SP-SM);	dark greenish		0000		4	\vdash		\vdash	\vdash		\vdash		
	gray (5GY 4/1); wet; 90% fine to mediun fines.	n sand; 10%	X	S06B S06A	83	10								S06B_017_018C S06A_018_019C
						[19]	\vdash		\vdash	\vdash		10		300A_018_019C
II - 122			NSI											
L 20-1	Final	Report Ve	r	ion	5/2	25/2	012							
	Borehole Location: Levee Toe (Landsi			County				_			10	~	VE 50	DINO
BUT OF WATER AND	Coordinates: Northing: 2.185.861.52	Easting:	6.3	15,344	.23	500	epall i	=					608_0	RING 10B
	Latitude: 37,99479 Levee Station or Milepost: 159+48	Longitude		121.35	477			-			•		0	Sheet 1 of 2
A STATE OF THE STA	Levee Segment Lincoln Village Survey Method: Ground Survey	Coord. Sy		C/	State	Plane	Zone	<u>_</u>	Er					Services Urban
Or CAL S	Channel / River Name / Feature: Fourt	eenmile Slough))	mii. <u></u>						Leve	e G		chnical rogran	Evaluations


	TARTED		DATE COMPLETED	GROUND ELEV	ATK	ON				DATUM	1					PTH OF BORING
9/2/11 DRILLIN	IG CONTI	RACTO	9/2/11	13.60 ft DRILLER'S NAM	AE.		н	NAVD	rs N/					_	2.5 ft TAL DE	PTH OF FILL
	r Drilling		-	James Music DRILL RIG MAK		ND MO		Malak	ai Fa	kalolo					Oft	ANT COMPANY
HSA/F	Rotary W	/ash		CME 55										K	leinfeld	er
	SIT SIZE A SA, 4-7/0		PE (HOLE DIAMETER) Bit	DRILLING ROD NWJ 2-5/8"	TYI	PE AND	DIAN	IETER							LD LOC	
XVE	TICAL	П	CLINED	CASING TYPE, HSA, 10" OD			, INST	ALLA	TION	DEPTH	1				LD LOG	REVIEWER
SAMPLE	ER TYPE(2.5"), DN	S)		HAMMER TYPE	, MJ	KE/MC								HA		EFFICIENCY
BOREH			R COMPLETION	GROUNDWATE	RR	EADING	3: [DURIN	G DR	LLING		_		_		JING (DATE-TIME)
Grout		_			_	Not M	easu	red D	ue to	Drillin	9			F04 F		<u> </u>
26	15	- 22			Sample Location	Sample Number	86	8 in	Ŷ	12				RYD		1
	₹.	Material Graphics	CLASSIFICATION OF MATE (Description)	ERIALS	Š	ž	Wery	ped s	N _® (ASTM)	Ę	der m. 9	P.	doty ex	4200	T ab	REMARKS
levation,	Depth,	×0.0	(Description)		ď	ď	Recovery,	Blows per 6 Blows per f) [®] N	PP or	Water Confert, %	mb) Tida	Plas Ind	F.%	Other La Tests	
ш	- 0-		Annhalt assessed a Climber		8	ď		8		4	0					
-		979	Asphalt concrete - 3 inches. Aggregate base - 4 inches.		,											
_	1-		SANDY LEAN CLAY (CL); stiff; dark ye (10YR 3/4); moist; 65% medium plastic	ity, high dry												Hand Auger to 4 feet
	2 -		strength, no dilatancy, medium toughne fine sand; [Levee Fill].	ss fines; 35%	NS(
-	3 -															
10-	ļ Ť.															
_	4				T											S01A_004_006T D&M pushed with
	- 5-		Below 5.0 feet, black (10YR 3/1).		П	S01A	78			0.80T						450 psi Switch to
-	6 -				NS1					0.001						hollow-stem auger at 5 ft.
-	ļ Ť.								_		\vdash		_	Н		S02A 006 009T
_	7 -		LEAN CLAY (CL); stiff; olive brown (2.5	Y 4/3); moist;	1											Osterberg pushed with 350 psi
	8 -		90% high dry strength, no dilatancy, me fines; 10% fine sand; [Levee Fill].	dium tougimess	Ш	S02A	63				23	40	24		UW	
- 5-	9 -				Ц					0.50T						
# -	ļ *.				NSI											
ļ	10-		LEAN CLAY (CL); stiff; olive brown (2.5	Y 4/3); moist;	L											
	11 -		90% medium to high plasticity, high dry dilatancy, medium toughness fines; 10	% fine sand.	П	S03A	100									S03A_010_012T D&M pushed with
-	12				Ц	ouur.				0.60T						300 psi
- 0-					NS(
	13 -	1777	ORGANIC ELASTIC SILT (OH); mediur	m stiff; black (5Y	T							Т		П		S04A_013_016T Osterberg pushed
0-	14 -	$ \langle \langle \rangle \rangle$	2.5/1); moist; 90% medium dry strengti low toughness fines; 10% fine sand.	, no unatancy,		S04A	100				100	98	38		uw	with 250 psi
-	15-	$ \rangle\rangle\rangle$				5541						50	50			
-		()			μ				_	0.27T		\vdash	\vdash	Н		Began rotary wash at 15 ft.
	16 -	$ \langle \langle \langle $			NSI											
	17 -	1))	SANDY LEAN CLAY (CL): stiff: dark on	enish grav	╁		\vdash		_			\vdash	_	\vdash		S05A 017 019T
-	49		SANDY LEAN CLAY (CL); stiff; dark gr (5GY 4/1); moist; 70% medium plasticit strength, no dilatancy, medium toughne fine sand.	y, medium dry ss fines; 30%		S05A	100									D&M pushed with 400 psi
-5-	18 -		μ					0.60T		\vdash	_	\vdash				
	19 -				N8(L_			L_			L			
-	20 S06A_019_022T															
<u> </u>			Final	Report Ve	rs	ion	5/2	25/2	012	?						
A 01	WATER		orehole Location: Levee Crest			County		n Joa	quin				LC	G C)F BC	RING
	-/	Co	ordinates: Northing: 2.186.047.82 Latitude: 37.99545	Easting: Longitude						-			٧	VR1	608_0	11B
8	illin 10		vee Station or Milepost: 164+99	Levee Mil			111			$=$ [$_{-}$						Sheet 1 of 3
State of the state	1		vee Segment Lincoln Village urvey Method: Ground Survey	Coord, Sv	rste	m: C/	State	Plane	Zone	III						Services Urban Evaluations
0													rogran			

DATE STARTED 5/14/09	DATE COMPLETED 5/14/09	GROUND ELEV	ATI	ON		EVAT		DATUM					TAL DE	PTH OF BORING
DRILLING CONTRAC		DRILLER'S NAM			н	ELPER	TS NA					то	TAL DE	PTH OF FILL
Neil O Anderson DRILLING METHOD		James Young DRILL RIG MAK		ND MO		Sean	MCN	911				CO		ANT COMPANY
	TYPE (HOLE DIAMETER)	CME 75 DRILLING ROD	TY	PE AND	DIAM	ETER						_	leinfeld	
10" HSA, 5" Pund	h Core	NWJ 2-5/8 O CASING TYPE						DEPTH	-			-	I. Shub	ert REVIEWER
VERTICAL SAMPLER TYPE(S)	INCLINED	HSA: 10" O.E HAMMER TYPE)/6	" I.D. (Case	to 15			_			Α	. Killing	
SPT 2" O.D./1-3/8" I.I BOREHOLE BACKFII		CME Auto Ha	amı	mer, 14	40 lbs	:/30	inch	drop				8	4%	
Grout BACKFII	I OR COMPLETION	GROUNDWATE	KK	EADING	s: L		7.5 ft					AF IE	K URILL	ING (DATE-TIME)
Elevation, feet Depth, feet Material	CLASSIFICATION OF MATE (Description)	RIALS	Sample Location	Sample Number	Recovery, %	Blows per 6 in. [Blows per ft]	N _® (ASTM)	PP or TV, tsf	Water Confert, %		Plasticity St Index			REMARKS
0	LEAN CLAY with Sand (CL); dusky red (2.5YR 3/2);	w)	(I)		_								S01A_000_005P
1-1	moist; 76% low to medium plasticity, me strength, slow dilatancy, medium toughn fine sand; [Levee Fill].	ess fines; 24%												OC = 13.2% SG = 2.75
2-				S01A	43				12			76	oc sa	
10 3	ORGANIC LEAN CLAY (OL); very stiff, t 2/1); moist; 100% medium dry strength,	black (10YR	Ш					3.0P						
4-8	medium toughness fines; strong reaction [Levee Fill].	with HCI;	Ш											
↓ 5-78			Ш											S02A 005 007S
- 6-			V	S02A	100	4	11		23	43	27			3024_005_0073
1,1	<u> </u>		ľ			[8]								
_ 1	ORGANIC LEAN CLAY (OL); hard; blad moist; 100% medium dry strength, no di	k (10YR 2/1); latancy,	Ш											S03A 007 010P OC = 15.4%
5- 8-	medium toughness fines; (Levee Fill).		Ш	S03A	50			4.5P	17				ос	
- 9-			Ш											
+ 10-			Н											S04A 010 012T
11 1			Ш	S04A	83			4.5P	20			100	HD SG	SG = 2.78
 			Ш											
12 1	LEAN CLAY (CL); very stiff; weak red (2	EVD 470	Π											S05A_012_015P
0- 13	moist; 100% medium dry strength, no di medium toughness fines; [Levee Fill].		Ш	S05A	36			2.5P		34	16			
글 - 14-			Ш	Suun	30			2.5P		3	10			
Ť 15	<u> </u>		Ш											
16	SILTY SAND (SM); medium dense; wea 4/2); moist; 66-83% fine sand; 17-34%		V	S06A	100	3 4 5	13		26			34		S06A 015 017S Switched to mud rotary
17			ľ			[9]								
<u>}"</u>]														S07A_017_020P
10 -				S07A	39									
7 19 7														
	Final I	Report Ve	rs	ion	10/	29/2	200	9	_					
of WAR	Borehole Location: Levee Crest			County				T			10	G C	NE PO	RING
	Coordinates: Northing: 2,187,482,16	Easting:	6,3	18,764	.23			= $ $					BFM_	
	Latitude: 37,99946 Levee Station or Milepost: 201+51	Longitude		121.34	299									Sheet 1 of 3
	Levee Segment Lincoln Village	Coord. Sy						$ \vdash$	E	nin.	orin		nnort S	Services Urban

				_											
18e	foot	= 92		alion	mper	%	rigin.	(W	tst		BOR				
Bevation,	Depth, fo	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Locator	Sample Numbe	Recovery,	Blowsper6i Blowsperf	Ned(ASTM)	αTV,	Water Intent, 9	Uquid	dex	#200 #200	Other Lab Tests	REMARKS
Beva	Dec	Žΰ	(Bossipasi,)	dime	amp	Reco	Blov	Neol	ЬР	ĕuo	35	F 5	Ē,%	ğř	
-	20			60	o		5				\vdash				S08A_020_022S
-	21 -			Ŋ	SOBA	100	7	20							
	22 -			Δ			[14]				Ц				
40_	-			Ш											S09A_022_025P
-10-	23 -			Ш	S09A	39									
	24 -			Ш											
-	- 25-			U			5				\forall				S10A 025_027S SG = 2.75
-	26 -			X	S10A	100	6 7	18		25			17	PA SG	33 = 2.75
-	27 -			Н			[13]				\sqcup				S11A_027_030P
-15-	28 -														5.17 <u>02</u> 7_000
	29 -				S11A	44									
	-														
1	30-		At 30 feet, loose, 6% fine, subrounded gravel, 76% fine to coarse, subrounded sand, 18% fines.	V			4				П				S12A_030_032S
	31 -	Щ		X	S12A	100	3 4 [7]	10					18	PA	
-	32 -		Poorly Graded SAND with Silt (SP-SM); medium dense; weak red (2.5YR 4/2); wet; 90-94% fine sand; 6-10% fines.	П		_	64	_			\forall		\vdash		S13A_032_035P
-20-	33 -			Ш											
.	34 -			Ш	S13A	58			0.5P	17			6		
2/8/2	- 35-			Ш							Ц				
2.GLB;	-			V		***	3								S14A_035_037S
2330.5	36 -			Λ	S14A	100	4 [8]	11					10	PA	
MRY 02	37 -			П							Н				S15A_037_040P
-25-	38 -			Ш	S15A	81									
- HCM	39 -			Ш	STOR	01									
- WRO	40	- 4	Wall-Graded SAND with Silt and Ground (SW-SM)	Щ			44				Щ				S16A 040 042S
AGE BORNOS GPL: DWR OFFICH, LIBWAY 022130 92 GLB: 64/19 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	I −60		Well-Graded SAND with Silt and Gravel (SW-SM); dense; weak red (2.5YR 4/2); moist; 7% fines; 58% fine to coarse, subrounded sand; 35% fine, subrounded	V	S16A	100	11 12 19	43					7	PASG	SG = 2.68
NG8.	42 -		to rounded gravel.	Λ			[31]								
M BOR	-8			\prod											S17A_042_045P
III I	43 -	₩			S17A	33									
UNOOUN	44 -	1													
	45_			Ш						<u> </u>	Ш		Ш		
LOGREVE			Final Report Ver	-	ion	10/	20/9	200	0						
Š		D.	orehole Location: Levee Crest						_						DINO.
WIN LEWEE UND SOL	WATER AND		oordinates: Northing: 2.187.482.16 Easting:	6,3		.23		quiti	=					OF BO BFM_	RING 001B
NEE O			Latitude: 37,99946 Longitude evee Station or Milepost: 201+51 Levee Mile			299									Sheet 2 of 3
A STATE OF THE PERSON NAMED IN	S. A.	Le	waa Sagmant Lincoln Villaga			State	Plane	Zone	III						Services Urban Evaluations
D	Survey Method: Ground Survey Coord, System: CA State Plane Channel / River Name / Feature: Fourteenmile Slough													rogran	

Appendix E

Sensitivity Analysis with Respect to Coincident Water Elevation

General.

The influence on the liquefaction assessment results of the assumed coincident water elevation (CWE) was determined significant:

- Primarily, due to the relative location of potentially liquefiable layers with respect to CWE. If these layers are above CWE they should be considered non-saturated and, therefore, non-liquefiable.
- Secondly, CWE has a major impact on the ratio between the total vertical stress and the effective vertical stress at the depth analyzed for liquefaction. The cyclic stress ratio (CSR) varies in direct proportionality with this ratio:

$$CSR = 0.65 \left(\frac{a_{max}}{g}\right) \left(\frac{\sigma_{v0}}{\sigma'_{v0}}\right) r_d$$

as well as the factor of safety against liquefaction:

$$FS_{liq} = (CRR_{7.5}/CSR) \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha}$$

Because the stress ratio can roughly vary between 1.0 and 2.0, FS_{liq} may vary between a maximum value when CWE is exactly at the depth of evaluation and half of that when CWE is at the ground surface. In other words, FS_{liq} may be calculated as 1.6 for a low CWE, but can drop below 1.0 if a higher CWE is justified.

The draft ETL "Guidelines for Seismic Evaluation of Levees" includes the following recommendation with respect to CWE selection:

"The highest of the following three levels should be used to determine the coincident water level for combining with a 100-year return period or a less frequent seismic event (e.g., 200-year or 500-year):

- The median annual water level. This should be the higher of the river level or the groundwater level.
- The typical seasonal water level. For levees where the impact of failure would be low, the typical seasonal water level should be the average water level during the wettest month of the year, and is preferably a 10-year average (e.g., February for California's Central Valley levees). For levees where the impact of failure might be severe, 84th percentile of seasonal water level should be considered as the typical seasonal water level.
- The mean high tide elevation, for levees affected by tides. In these cases, consideration should be given to the predicted sea level rise expected in the decades ahead.

If the coincident water level is at or below the landside levee toe, then the material within the levee embankment does not need to be evaluated for liquefaction susceptibility. Potentially liquefiable materials in the levee embankment or foundation should be

evaluated for liquefaction, if these materials are saturated under the analyzed coincident or analysis water level."

With this study, when information was available, the coincident water level was assumed to be the maximum level in a year without flood event. If this was not available, a conservative assumption of a water level at the ground surface was considered (i.e. unsaturated material in levee and saturated material – therefore potentially liquefiable – in the entire foundation soil).

Example No.1: Boring WR0017 002B - Crest of levee.

This boring is located in Unit RD 17 at Station 1007+42. The liquefaction triggering evaluation at this location is presented in Figure C-9. There are two relatively low SPT blowcounts that may potentially correspond to liquefaction: at elevations 9.2 and -30.8. The ground surface elevation is 12.7 and the top of levee at elevation 20.2. Figure E-1 show the variation of FS_{liq} with the assumed CWE at the two elevations where liquefiability was suspected.

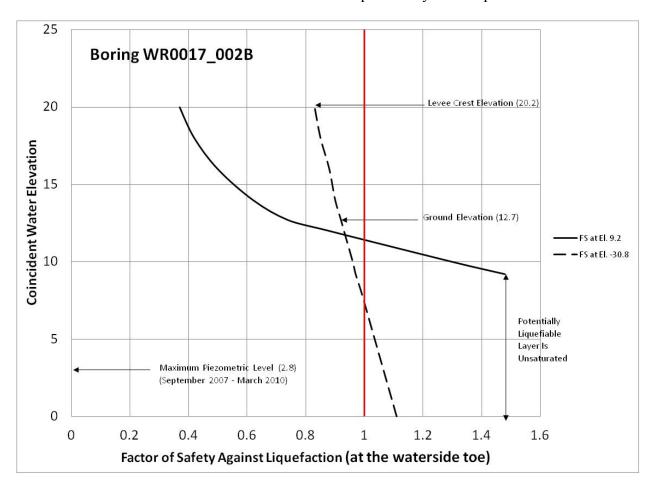


Figure E-1. Variation of FS_{liq} with the assumed CWE at the two elevations in boring WR0017_002B.

The effect of CWE on the calculated FS_{liq} is very important with the shallower potentially liquefiable layer:

- if CWE < 9.2, the layer is non-saturated and, therefore, non-liquefiable;
- for CWE = 9.2, FS_{liq} = 1.48, still non-liquefiable, although saturated;
- with higher CWE, FS_{liq} significantly decreases;
- it becomes $FS_{liq} = 0.74$ with CWE = 12.7, the ground surface elevation;
- and $FS_{liq} = 0.37$ with CWE = 20.0, close to top of the levee.

The deeper potentially liquefiable layer is less affected by the CWE selection, but still significantly:

- $FS_{lig} = 1.11$ for CWE = 0.0;
- $FS_{liq} = 0.99$ for CWE = 8.0;
- $FS_{liq} = 0.92$ for CWE = 12.7, the ground surface elevation;
- $FS_{lig} = 0.83$ for CWE = 20.0, close to top of the levee;

There is a piezometer (WR0017_001M) installed at Station 1048+84, close to the location of interest. Readings were available between September 2007 and March 2010. The maximum ground water level within this interval was 2.8. Assuming CWE = 2.8, it resulted $FS_{liq} = 1.07$ for the deeper layer; the shallower layer was determined to be well above CWE and, therefore, non-saturated.

Consequently, the location of Boring WR0017_002B was considered non-liquefiable. It is noted that the conservative assumption of water at the ground surface (CWE = 12.7) would imply the conclusion that both two layers were liquefiable.

Example No. 2: Boring WR0017_007B - Crest of levee.

This boring is located in Unit RD 17 at Station 1048+79. The liquefaction triggering evaluation at this location is presented in Figure C-10. There are two relatively low SPT blowcounts that may potentially correspond to liquefaction: at elevations -0.8 and -4.3, probably within the same geologic unit. The ground surface elevation is 8.7 and the top of levee at elevation 21.7. Figure E-2 show the variation of FS_{liq} with the assumed CWE at the two elevations where liquefiability was suspected.

The evaluated location is practically the same where piezometer readings were available: piezometer WR0017_001M installed at Station 1048+84 showed the maximum ground water level within a 2.5-year interval of 2.8. With CWE = 2.8 it resulted FS_{liq} of the order of 1.8 to 2.0 at the potentially liquefiable elevations.

It is noted that considering CWE at the ground surface elevation would still correspond to FS_{liq} in excess of 1.0 at both evaluated depths. Because CWE was credibly defined, this location was not considered seismically vulnerable.

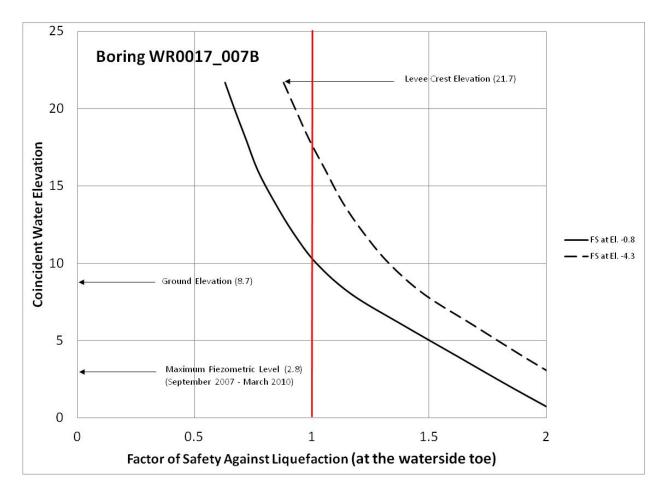


Figure E-2. Variation of FS_{liq} with the assumed CWE at the two elevations in boring WR0017 007B.

Example No. 3: Boring WR0017 041B – Crest of levee.

This boring is located in Unit RD 17 at Station 1330+01. The liquefaction triggering evaluation at this location is presented in Figure C-16. Five depths where SPT blowcounts were available have been examined in detail: 8.2 (not shown in Figure C-16, being in the unsaturated zone), 4.7, -0.3, -5.3, and -10.3. The ground surface elevation is 14.2 and the top of levee at elevation 25.7. Figure E-3 shows the variation of FS_{lig} with the assumed CWE at these five elevations.

The multi-annual maximum piezometric level (no flood events between September 2007 and March 2010) was available in Piezometers WR0017_005M & 006M at Station 1301+04 (maximum water elevation 4.8) and WR0017_008M & 009M at Station 1417+01 (maximum water elevation 5.5). The interpolated CWE = 5.0 was considered for Station 1330+01.

From Figure E-3 it is evident that no liquefaction is expected at any depth, with FS_{liq} of at least 1.4. If the CWE at ground elevation had been conservatively assumed, liquefaction would have been predicted at two shallower depths. Assuming all evaluated depths within the same geologic unit, variable CWE would correspond to different thickness of liquefiable layer, as shown in Figure E-4.

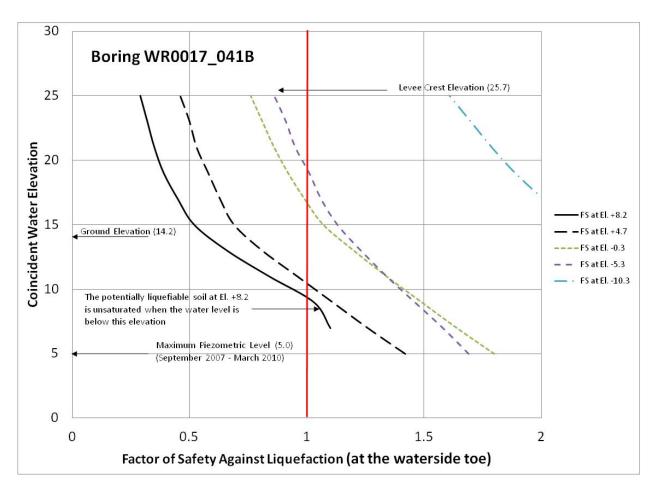


Figure E-3. Variation of FS_{liq} with the assumed CWE at the two elevations in boring WR0017_041B.

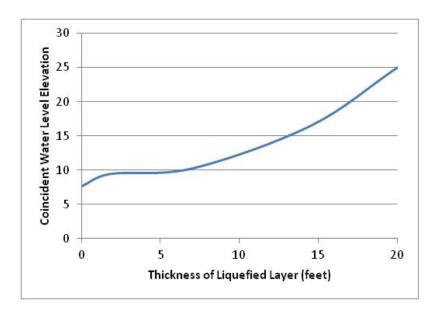


Figure E-4. Effect of assumed CWE on the thickness of layer determined as liquefiable at Boring WR0017_041B location.

Example No. 4: Boring WR0017 047B - Crest of levee.

This boring is located in Unit RD 17 at Station 1377+73. The liquefaction triggering evaluation at this location is presented in Figure C-17. Eight depths located probably within the same geologic unit have been examined in detail. The ground surface elevation is 14.2 and the top of levee at elevation 27.2. Figure E-5 shows the variation of FS_{liq} with the assumed CWE at these eight elevations.

The multi-annual maximum piezometric level (no flood events between September 2007 and March 2010) was available in Piezometers WR0017_005M & 006M at Station 1301+04 (maximum water elevation 4.8) and WR0017_008M & 009M at Station 1417+01 (maximum water elevation 5.5). The interpolated CWE = 5.3 was considered for Station 1377+73.

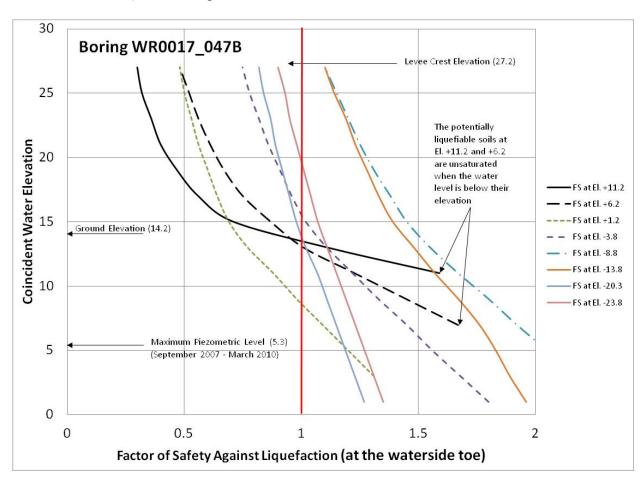


Figure E-5. Variation of FS_{liq} with the assumed CWE at the two elevations in boring WR0017 047B.

No liquefaction was predicted at this location when CWE = 5.3 was considered. However, if CWE = 14.2 (ground surface elevation) were conservatively assumed, a potential liquefiable layer of about 15 feet in thickness would have been assumed.

Example No. 5: Boring WR0017_102B – Crest of levee.

This boring is located in Unit RD 17 at Station 1825+94. The liquefaction triggering evaluation at this location is presented in Figure C-8. Six depths located probably within the same geologic unit have been examined in detail. The ground surface elevation is 14.0 and the top of levee at elevation 34.5. Figure E-6 shows the variation of FS_{liq} with the assumed CWE at these eight elevations.

The multi-annual maximum piezometric level (no flood events between September 2007 and March 2010) was available in Piezometers WR0017_022M & 023M at Station 1784+89 equal to 6.8, which was assumed CWE for Station 1825+94 too.

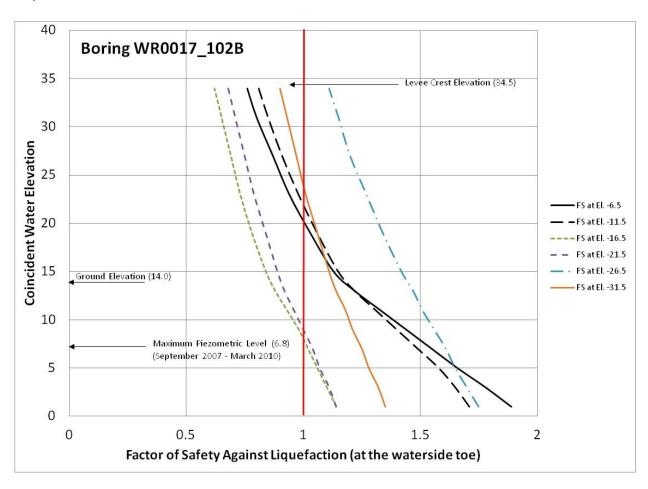


Figure E-6. Variation of FS_{liq} with the assumed CWE at the two elevations in boring WR0017 102B.

For CWE = 6.8 no liquefaction was predicted at this location. It is noted however, that the factor of safety against liquefaction in a 10-foot layer (approximately between elevations -14.0 and -24.0) was of the order of 1.02 - 1.05. With CWE as low as elevation 9.0 (5 feet below the ground surface elevation) liquefaction of this layer would have been predicted.

Appendix F

UTEXAS4 Post-Earthquake Stability Analyses

 $SOIL\ PARAMETERS-Post-lique faction\ residual\ strength\ is\ shown\ in\ red.$

					RD 17 - Northern			
					Sta. 1151	+06		
RD 17 - Sout	Layer USCS Soil Classificati				Layer ID	USCS Soil Classification	Φ	С
		USCS Soil Classification	Ф	С	1	Levee Embankment - CL	24	100
	ID				2	Levee Embankment - SC - SM	28	0
	1	Levee Embankment - SP-SM	30	0	3	Foundation - CL	25	100
	2	Foundation - ML	30	0	4	Liquefiable - SP - SC	0	201
	3	Blanket - SM	30	0	5	CL	25	100
	4	Liquefiable SP - SM	0	365	6	ML	28	0
	5	ML	28	0	7	CL	25	100
	6	SM	28	0	8	SM	28	0
	7	SP - SM	30	0	9	CL	25	100
	8	CL	25	100	4	Liquefiable - SP - SC	5.2	0
	4	Liquefiable SP - SM	6.9	0	Sta. 1191	+43		
		33			Layer ID	USCS Soil Classification	Φ	С
	_	USCS Soil Classification	Ф	С	1	Embankment - CL	29	200
	וט				2	Blanket - CH	25	100
	1	Levee Embankment - CL	24	100	3	Foundation - CL	25	100
	2	Levee Embankment - SP	33	0	4	Liqufiable - SM	0	164
	3	Levee Embankment - ML	30	0	5	CL	25	100
	4	Blanket - CL	25	100	6	Liqufiable - SC	0	111
	5	Liquefiable SP - SM	0	133	7	SC	28	0
	6	SC	28	0	8	CH	25	100
	7	SW-SC	30	0	9	SM	28	0
	8	SC	28	0	4	Liqufiable - SM	4.3	0
	5	Liquefiable SP - SM	3.9	0	6	Liqufiable - SC	2.7	0

RD 404				
	Sta. 1175+	01		
	Layer ID	USCS Soil Classification	Φ	С
	1	Levee Embankment - ML	28	50
	2	Foundation - ML	28	0
	3	Liquefiable - SW-SM	0	113
	4	ML	28	0
	5	SM	28	0
	6	CH/CL	28	50
	3	Liquefiable - SW-SM	3.6	0
Calavera	s River Sta. 6565+	02		
	5ta. 0505+	02		
	Layer ID	USCS Soil Classification	Φ	С
	1	Levee Embankment - CL	28	150
	2	Foundation - CH	28	150
	3	Blanket - MH	28	0
	4	Liquefiable - SP-SM	0	77
	5	Fat Clay - CH	28	150
	4	Liquefiable - SP-SM	2.6	0
	Sta. 6669+	40		
	Layer ID	USCS Soil Classification	Φ	С
	1	Levee Embankment - SM	28	150
	2	Foundation - ML	20	200
	3	Blanket - MH	28	0
	4	Liquefiable - ML	0	98
	4	Liquefiable - ML	2	0
			-	

<u>Brookside</u>			
Sta. 117+	51		
Layer ID	USCS Soil Classification	Φ	С
1	Sandy Lean Clay - CL	22	100
2	Silty Sand - SM	28	0
3	Lean Clay - CL	22	100
4	Sandy Silt with Organic Layers - ML	28	0
5	Sandy Lean Clay - CL	22	100
6	Liquefiable Silty Sand - SM	0	189
7	Silt with Sand - ML	28	0
6	Liquefiable Silty Sand - SM	4	0

Sta. 118+0	2		
Layer ID	USCS Soil Classification	Φ	С
1	Levee Embankment - CL	28	50
2	Foundation - ML	28	0
3	Blanket - CH	20	200
4	Organic Silt - OH	20	50
5	Lean Clay - CL	20	100
6	Silty Sand - SM	28	0
7	Poorly Graded Sand - SP	0	151
8	Poorly Graded Sand with Silt - SP-SM	0	151
9	Lean Clay - CL	20	100
7	Poorly Graded Sand - SP	4.3	0
8	Poorly Graded Sand with Silt - SP-SM	4.3	0

St	ta. 133+8			
	Layer ID	USCS Soil Classification	Φ	С
	1	Levee Embankment - CL	25	150
	2	Clayey Sand - SC	0	242
	3	Silt with Sand - ML	28	0
	4	Silty Sand - SM	28	0
	5	Clayey Sand - SC	28	0
	6	Silty Sand - SM	28	0
	2	Clayey Sand - SC	5.1	0

Lincoln Vil	lage				Sta. 109+9	90			
Sta. 43+57 Layer USCS Soil Classification		Φ	С	Layer ID	USCS Soil Classification	Φ	С		
	ID	USCS Son Classification	03C3 30II Classification	*		1	Sandy Lean Clay - CL	22	100
	1	Levee Embankment - CL	22	100	2	Sandy Silt - ML	28	0	
	2	Clayey Sand - SC	28	0	3	Poorly Graded Sand with Silt - SP-SM	0	282	
	3	Lean Clay - CL	22	100	4	Silty Sand - SM	28	0	
	4	Poorly Graded Sand with Silt - SP-SM	0	201	5	Poorly Graded Sand with Silt - SP-SM	30	0	
	4	Poorly Graded Sand with Silt - SP-SM	4.7	0	3	Poorly Graded Sand with Silt - SP-SM	6.0	0	
					Sta. 164+9	9			
					Layer ID	USCS Soil Classification	Φ	С	
					1	Levee Embankment - CL	22	100	
				2	Lean Clay - CL	22	100		
					3	Organic Elastic Silt - OH	30	75	
					4	Sandy Lean Clay - CL	22	100	
					5	Silty Sand - SM	28	0	
					6	Poorly Graded Sand with Silt - SP-SM	30	0	
	Sta. 159+48				7	Silt - ML	0	224	
					7	Silt - ML	3.4		
	Layer	USCS Soil Classification	Ф	С				0	
	ID							0	
- 1					Sta. 201+5	1		0	
	1	Sandy Lean Clay - CL	22	100	Layer		Ф		
	1 2	Sandy Lean Clay - CL Silty Sand - SM	22 28	100		USCS Soil Classification	Φ	0 C	
					Layer		Ф 22		
	2	Silty Sand - SM	28	0	Layer ID	USCS Soil Classification		С	
	2 3	Silty Sand - SM Poorly Graded Sand with Silt SP-SM	28 0	0 207	Layer ID 1	USCS Soil Classification Levee Embankment - CL	22	C 100	

5.1

0

3

Poorly Graded Sand with Silt SP-SM

3

Poorly Graded Sand with Silt - SP-SM

4.7

0

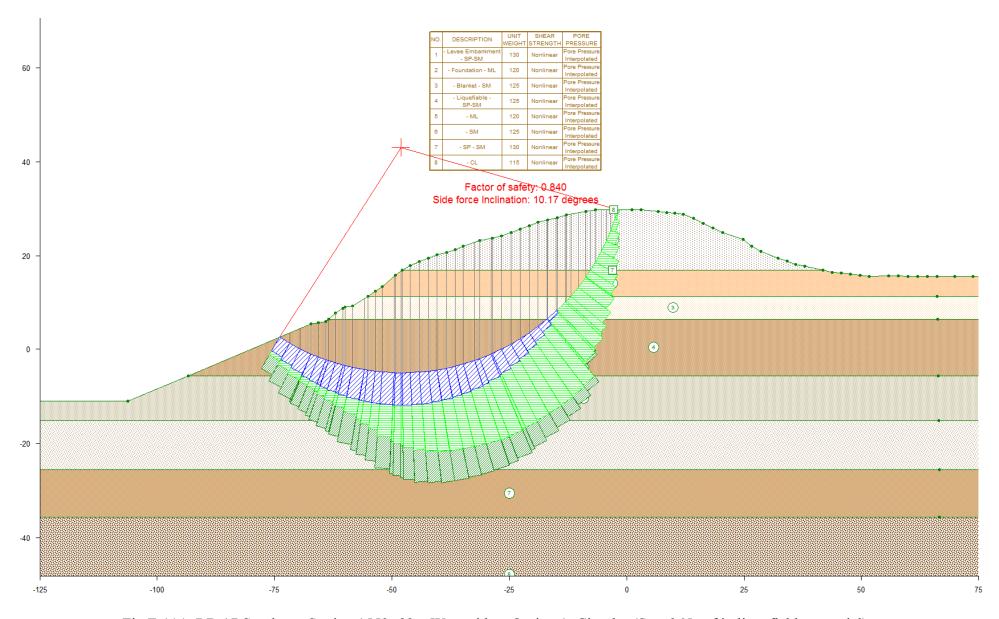


Fig F-1(a). RD 17 Southern, Station 1553+82 – Waterside – Option 1: Circular (Sr = 365 psf in liquefiable material)

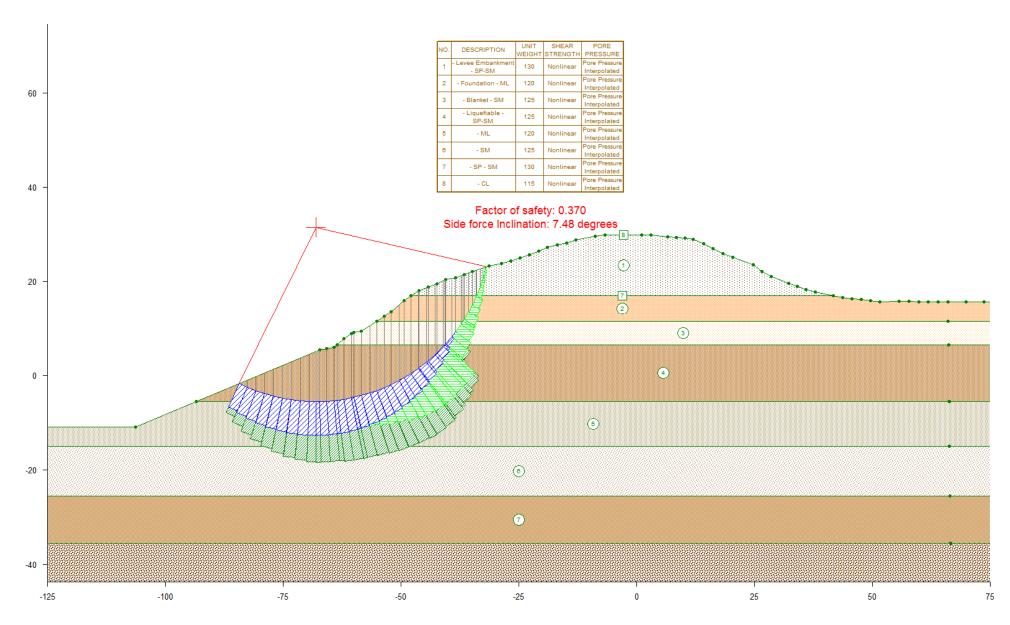


Fig F-1(b). RD 17 Station 1553+82 – Waterside – Option 1: Circular (PHI = 6.9 in liquefiable material)

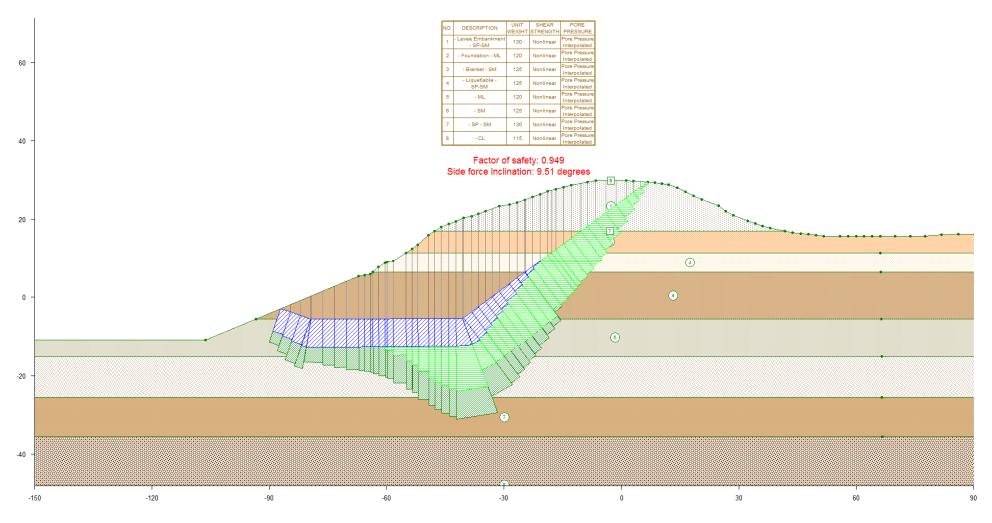


Fig F-2(a). RD 17 Southern, Station 1553+82 – Waterside – Option 2: Wedges (Sr = 365 psf in liquefiable material)

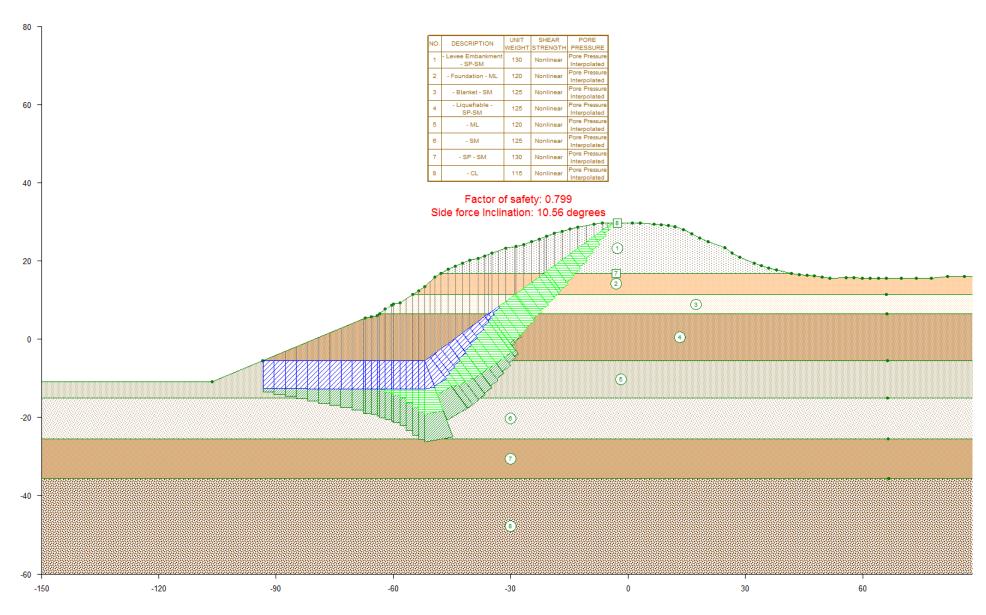


Fig F-2(b). RD 17 Station 1553+82 – Waterside – Option 2: Wedges (PHI = 6.9 in liquefiable material)

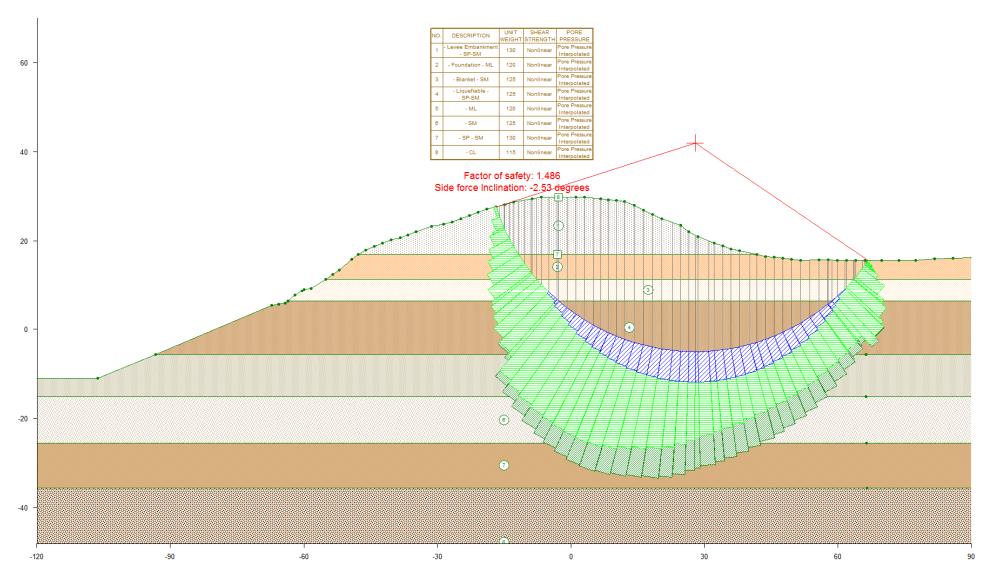


Fig F-3(a). RD 17 Southern, Station 1553+82 – Landside – Option 3: Circular (Sr = 365 psf in liquefiable material)

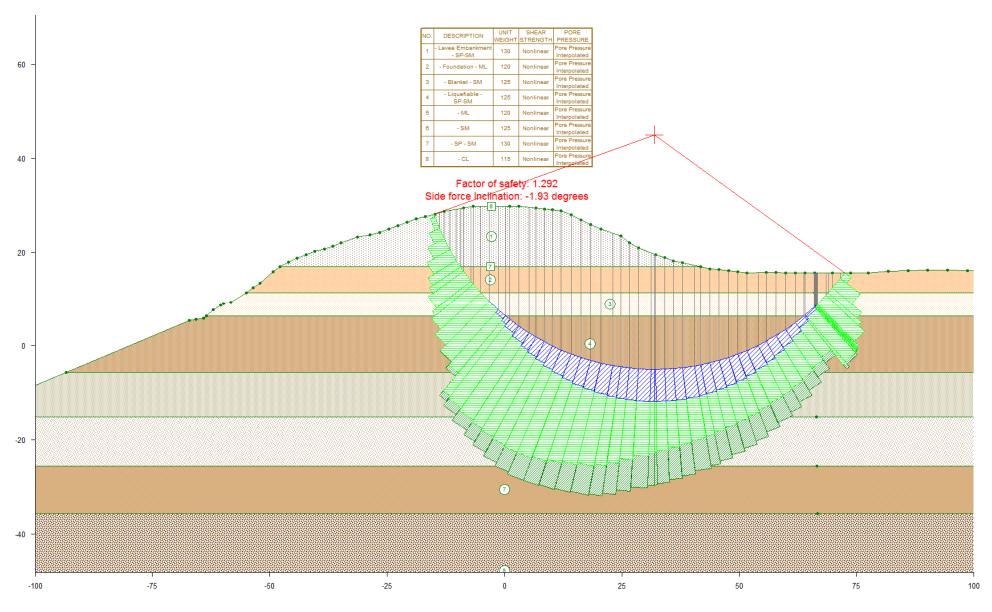


Fig F-3(b). RD 17 Station 1553+82 – Landside – Option 3: Circular (PHI = 6.9 in liquefiable material)

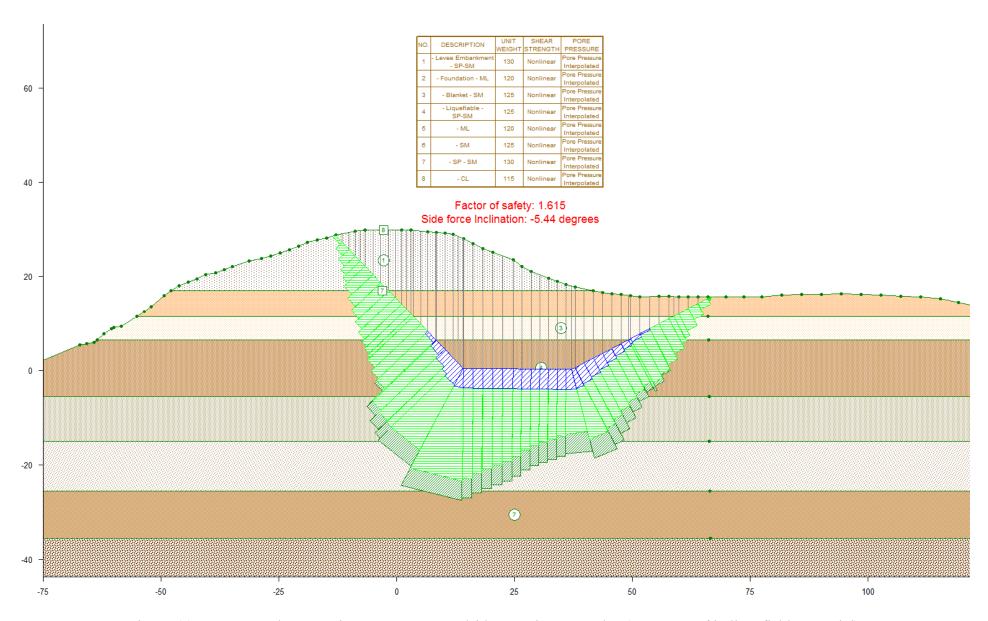


Fig F-4(a). RD 17 Southern, Station 1553+82 – Landside – Option 4: Wedge (Sr = 365 psf in liquefiable material)

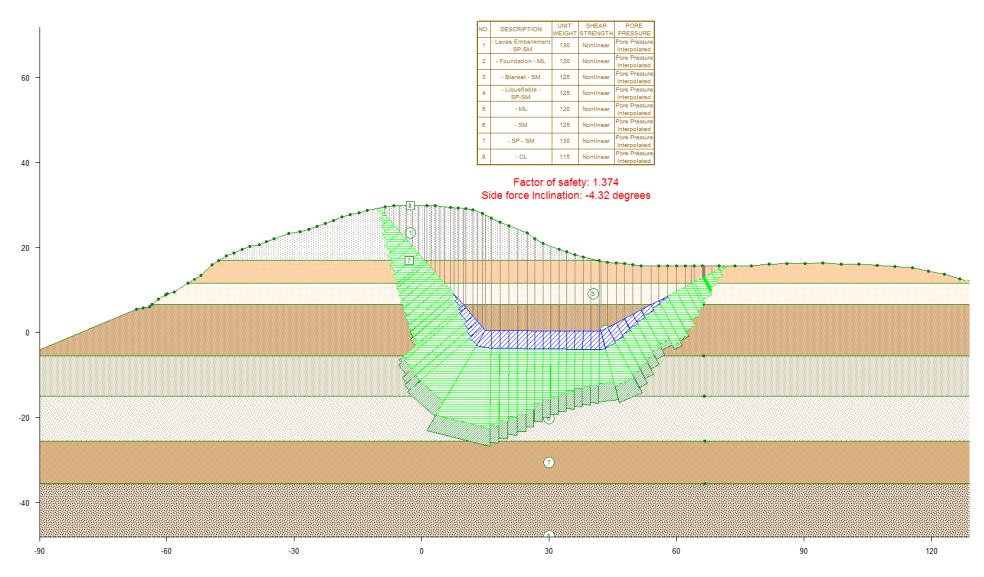


Fig F-4(b). RD 17 Station 1553+82 – Landside – Option 4: Wedge (PHI = 6.9 in liquefiable material)

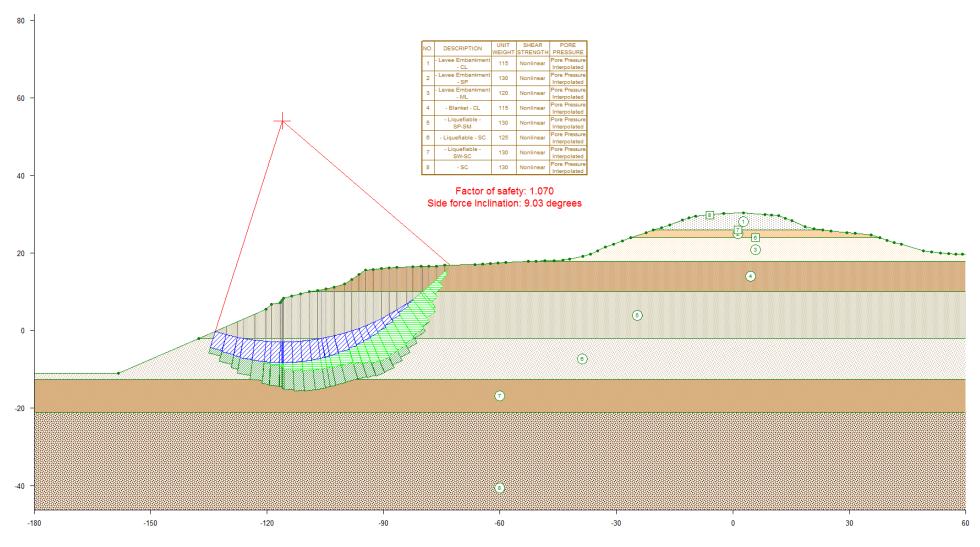


Fig F-5(a). RD 17 Southern, Station 1595+33 – Waterside – Option 1: Circular (Sr = 133 psf in liquefiable material)

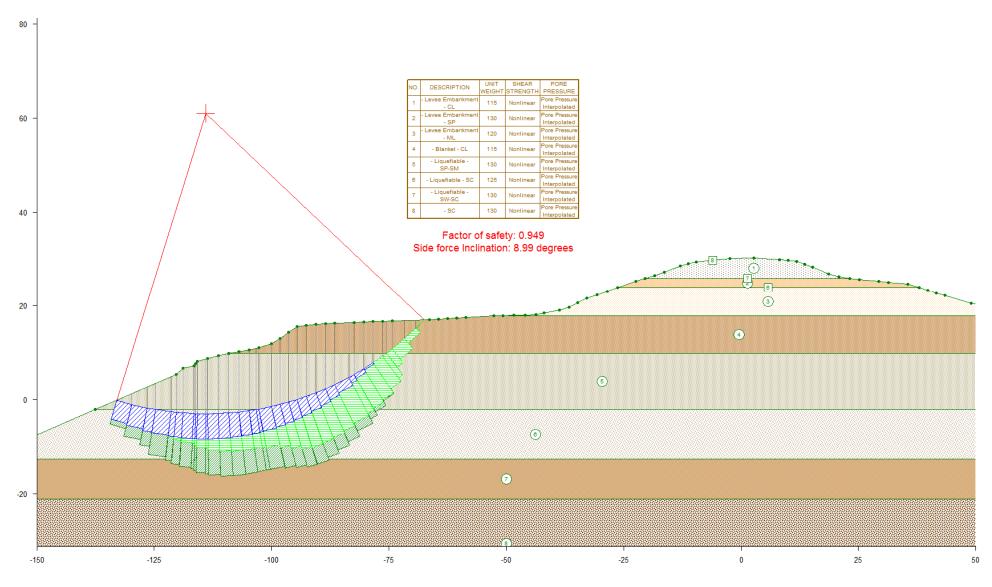


Fig F-5(b). RD 17 Station 1595+33 – Waterside – Option 1: Circular (PHI = 3.9 in liquefiable material)

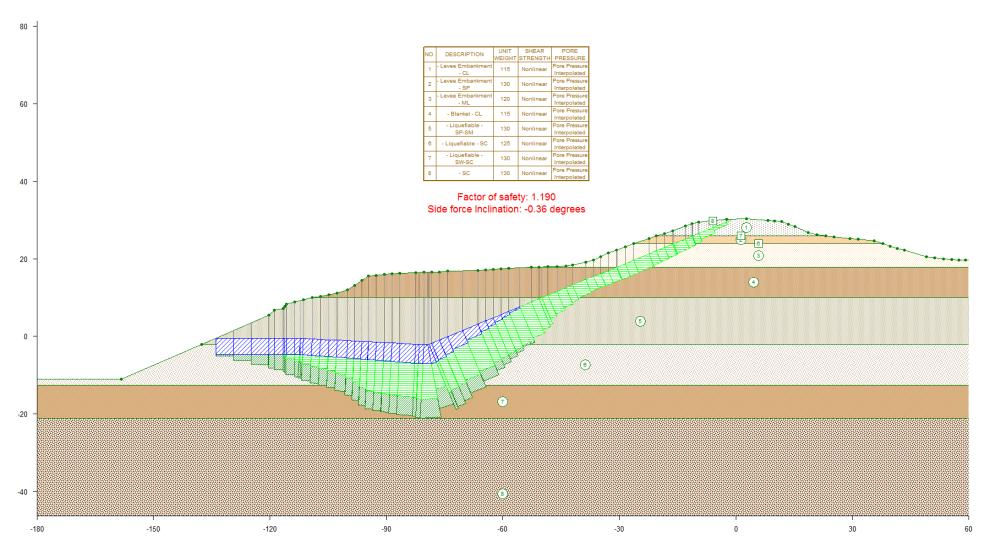


Fig F-6(a). RD 17 Southern, Station 1595+33 – Waterside – Option 2: Wedges (Sr = 133 psf in liquefiable material)

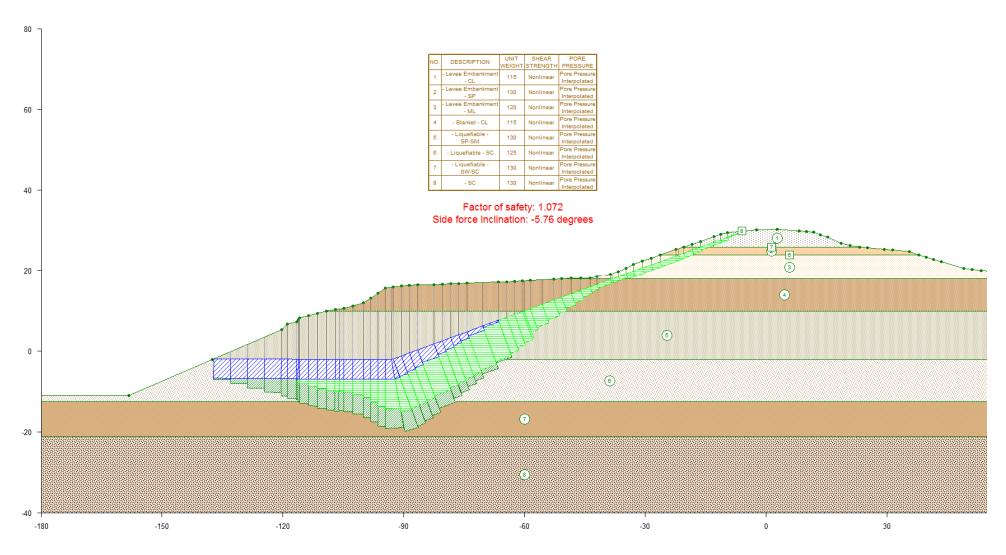


Fig F-6(b). RD 17 Station 1595+33 – Waterside – Option 2: Wedges (PHI = 3.9 in liquefiable material)

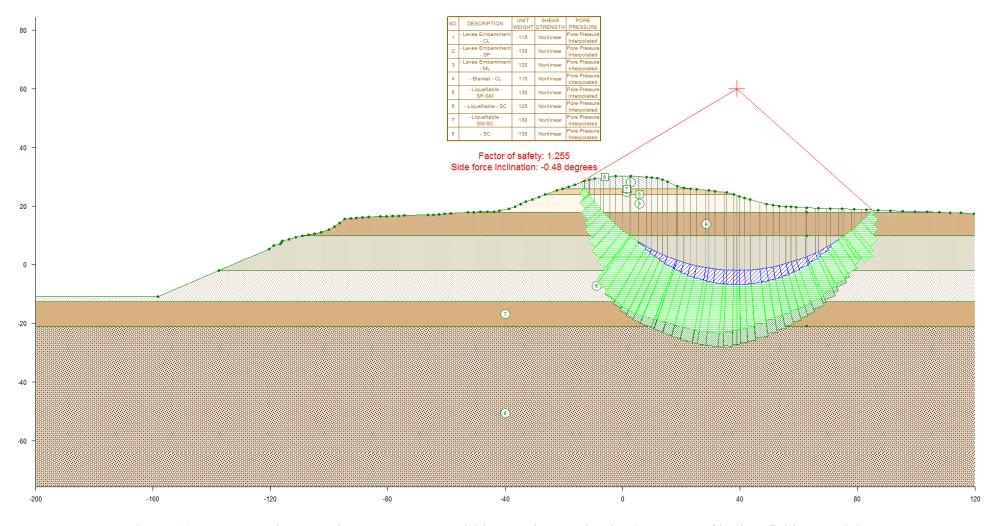


Fig F-7(a). RD 17 Southern, Station 1595+33 – Landside – Option 3: Circular (Sr = 133 psf in liquefiable material)

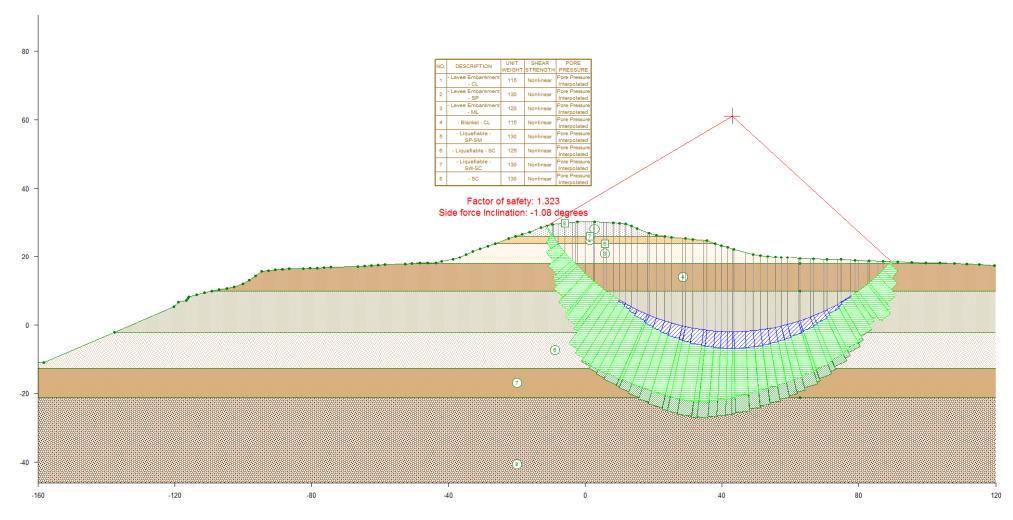


Fig F-(7). RD 17 Station 1595+33 – Landside – Option 3: Circular (PHI = 3.9 in liquefiable material)

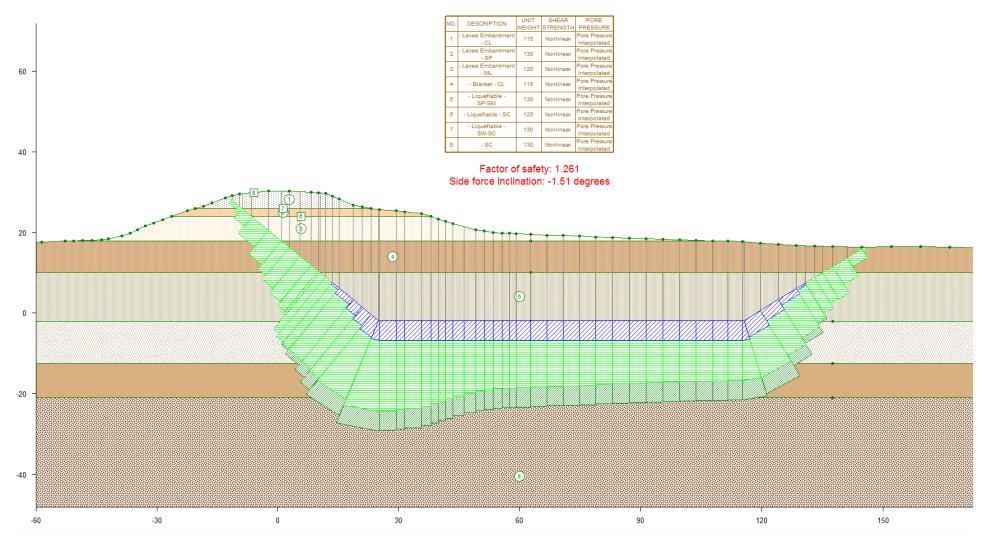


Fig F-8(a). RD 17 Southern, Station 1595+33 – Landside – Option 4: Wedge (Sr = 133 psf in liquefiable material)

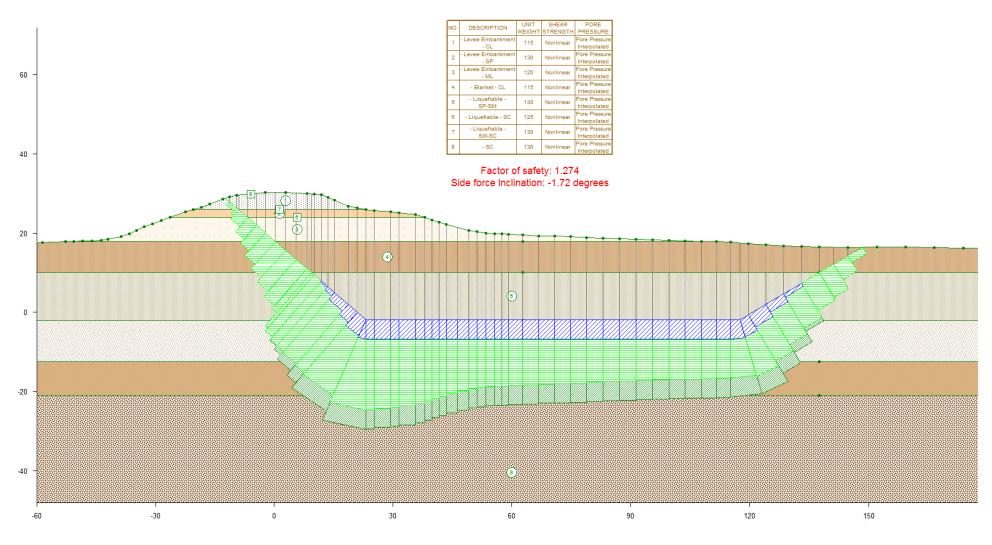


Fig F-8(b). RD 17 Station 1595+33 – Landside – Option 4: Wedge (PHI = 3.9 in liquefiable material)

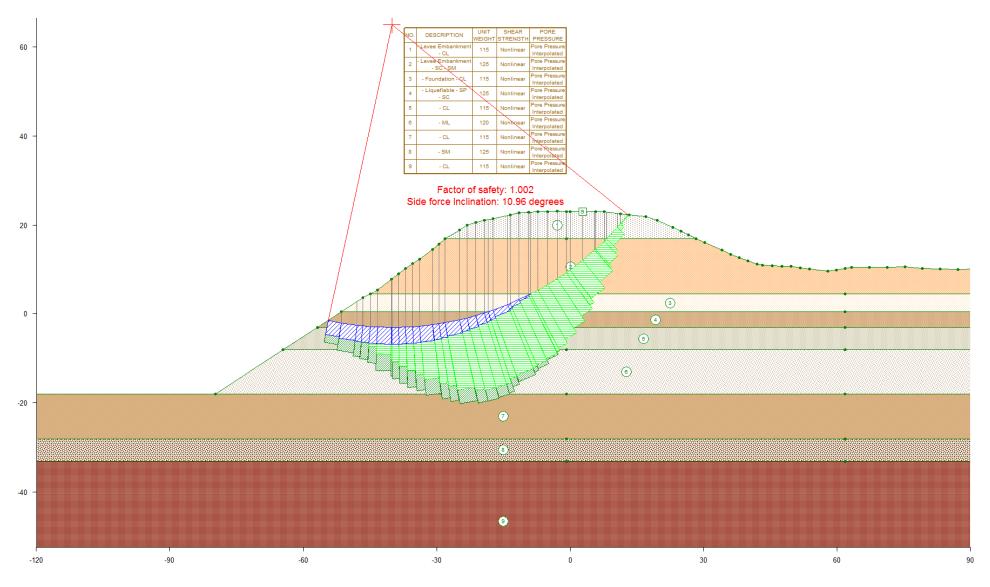


Fig F-9(a). RD 17 Northern, Station 1151+06 – Waterside – Option 1: Circular (Sr = 201 psf in liquefiable material)

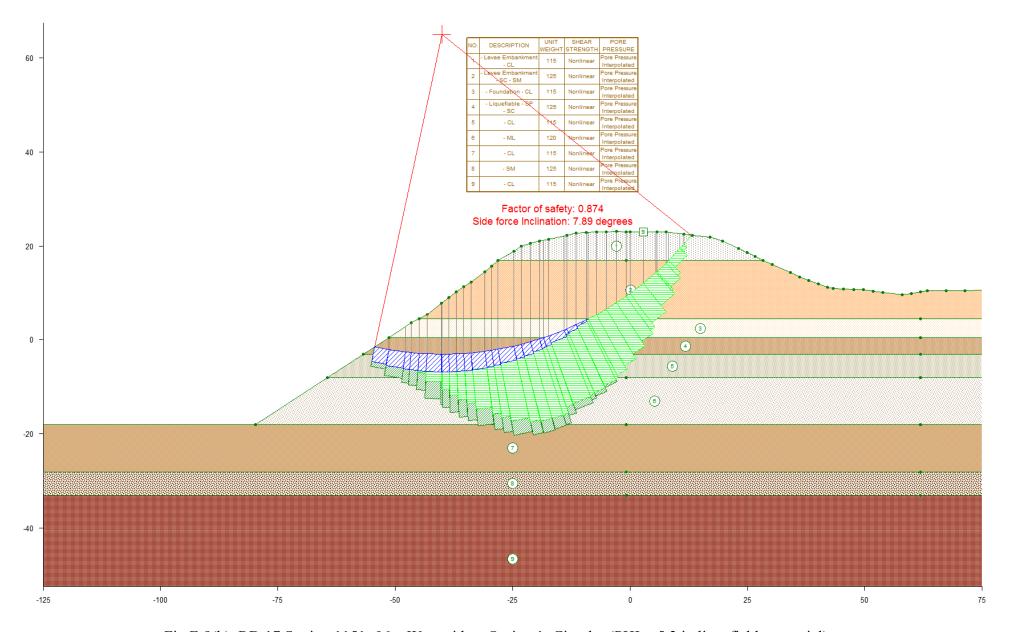


Fig F-9(b). RD 17 Station 1151+06 – Waterside – Option 1: Circular (PHI = 5.2 in liquefiable material)

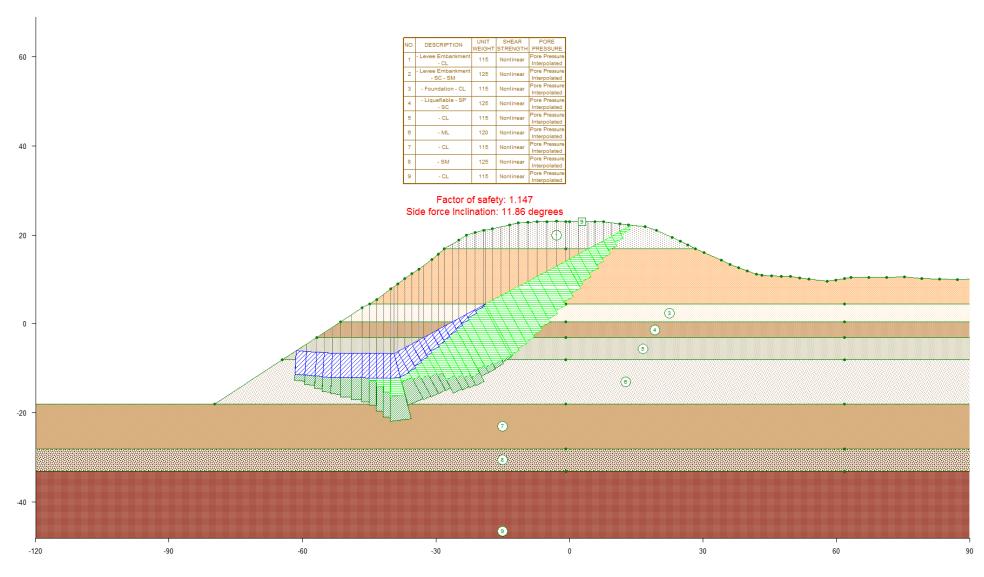


Fig F-10(a). RD 17 Northern, Station 1151+06– Waterside – Option 2: Wedges (Sr = 201 psf in liquefiable material)

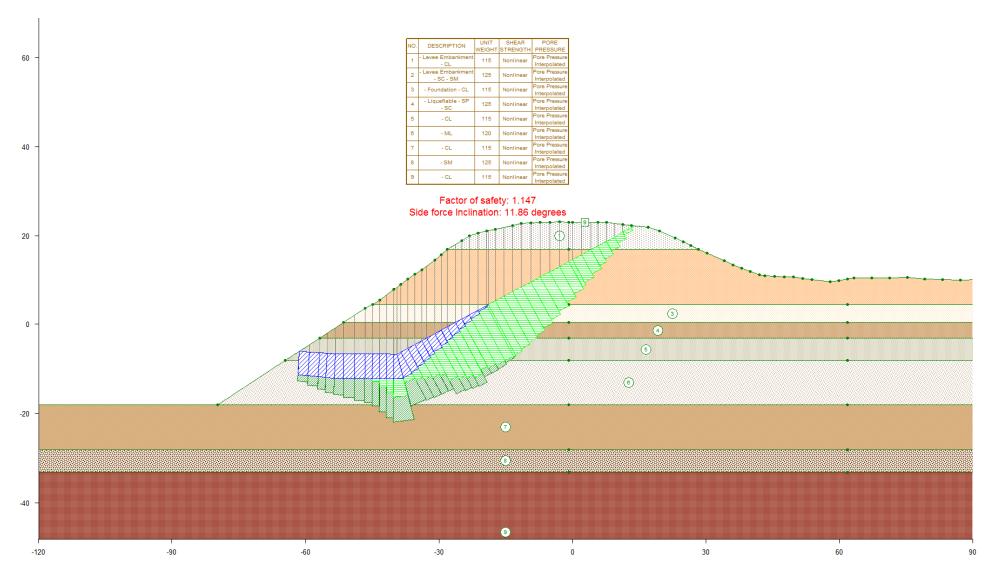


Fig F-10(b). RD 17 Station 1151+06 – Waterside – Option 2: Wedges (PHI = 5.2 in liquefiable material)

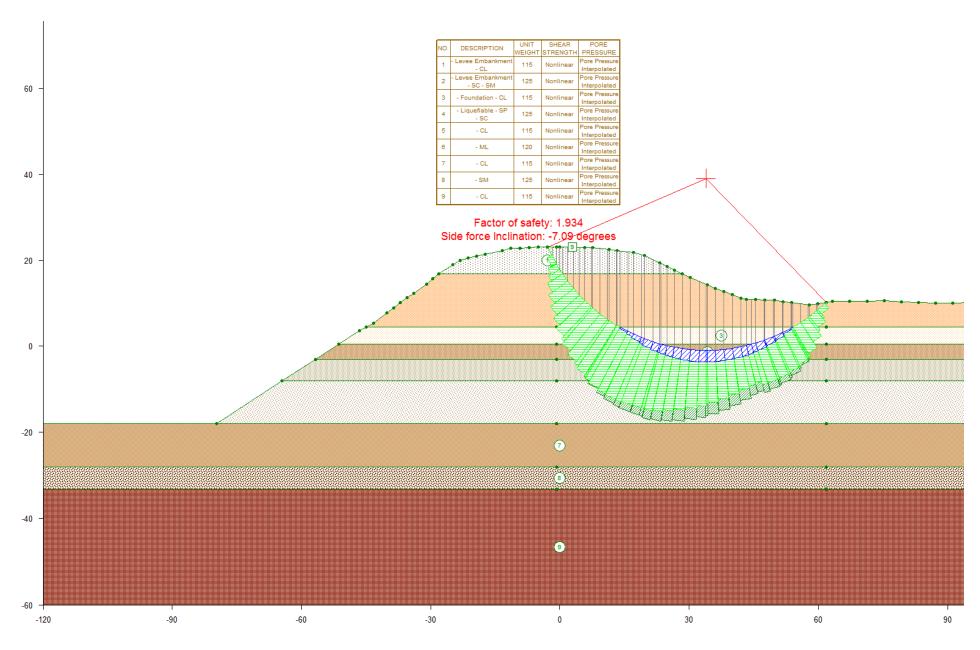


Fig F-11(a). RD 17 Northern, Station 1151+06– Landside – Option 3: Circular (Sr = 201 psf in liquefiable material)

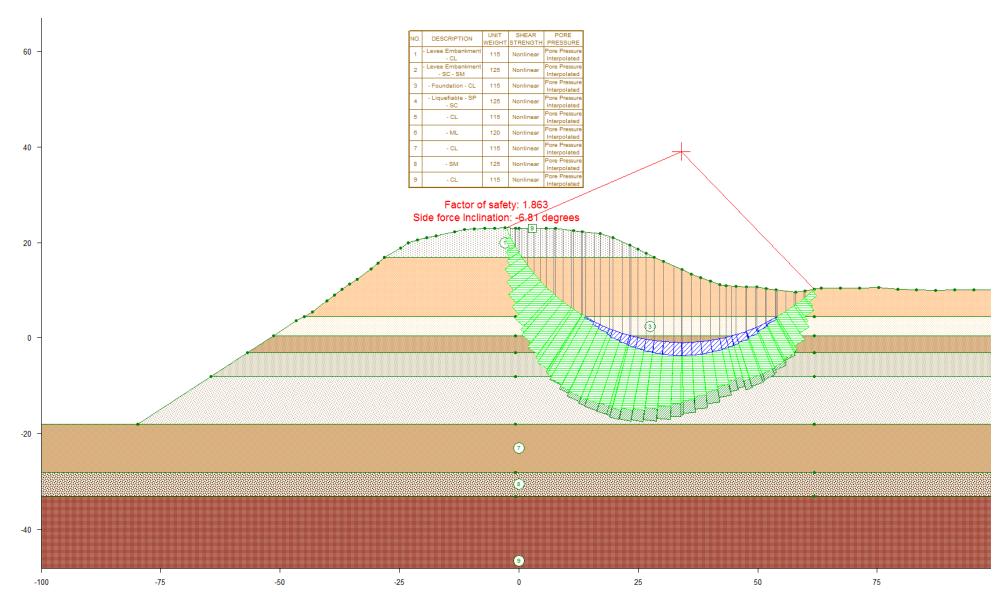


Fig F-11(b). RD 17 Station 1151+06 – Landside – Option 3: Circular (PHI = 5.2 in liquefiable material)

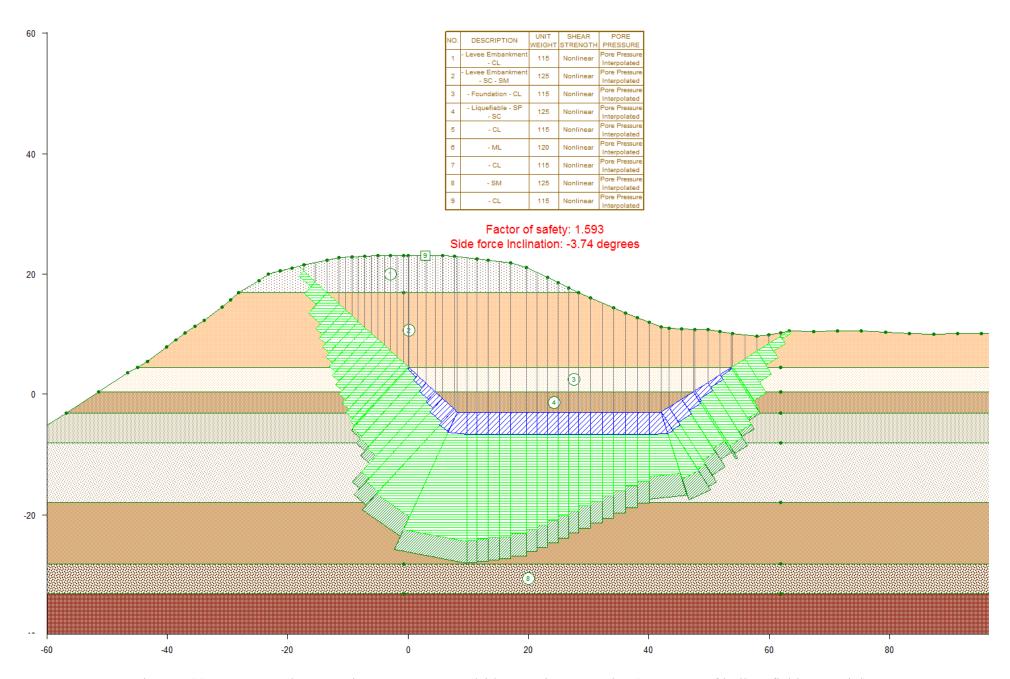


Fig F-12(a). RD 17 Northern, Station 1151+06– Landside – Option 4: Wedge (Sr = 201 psf in liquefiable material)

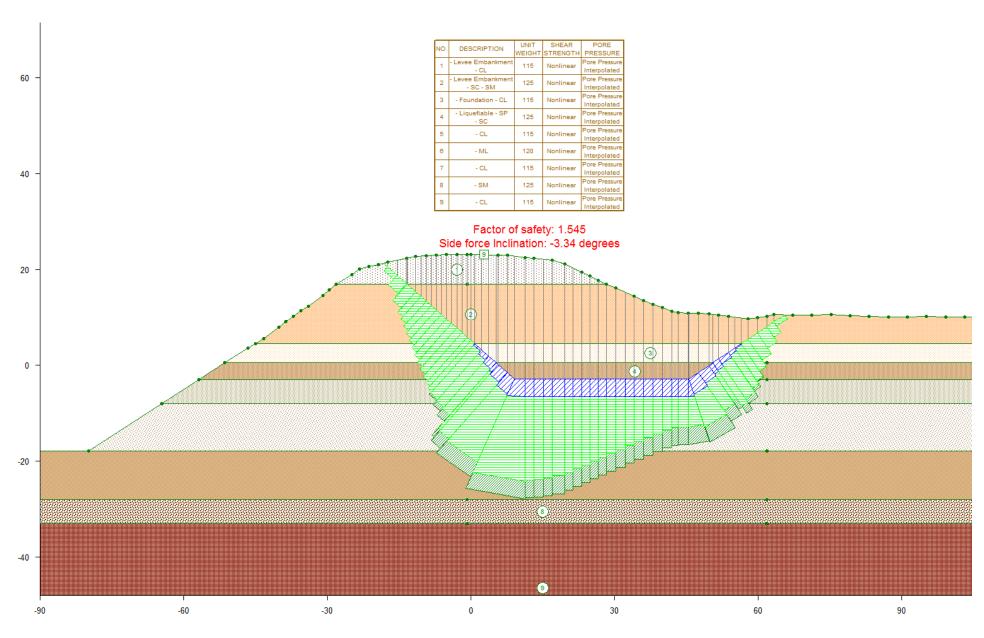


Fig F-12(b). RD 17 Northern, Station 1151+06– Landside – Option 4: Wedge (PHI = 5.2 in liquefiable material)

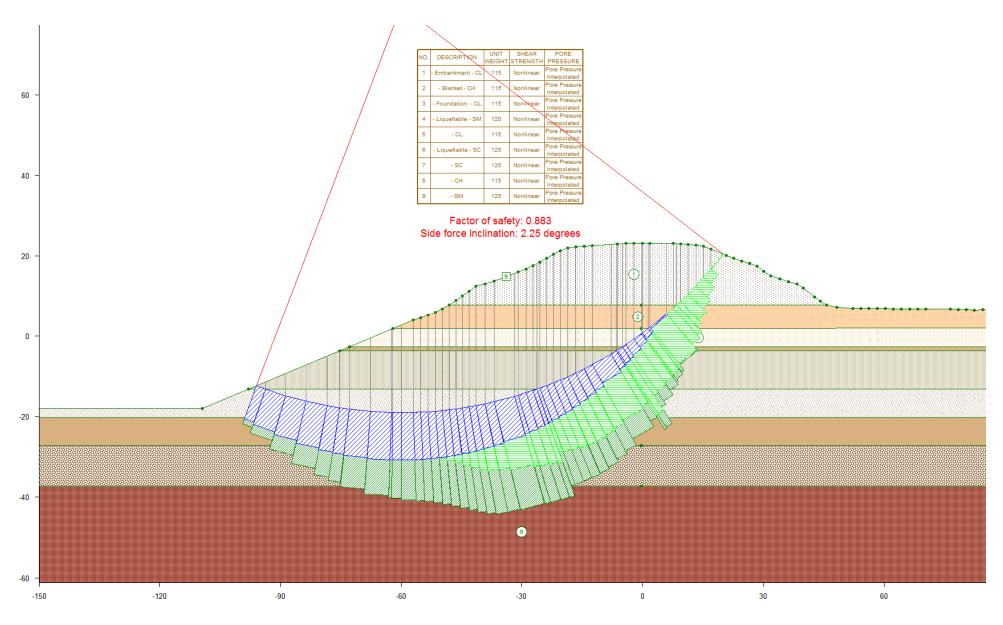


Fig F-13(a). RD 17 Northern, Station 1191+43 – Waterside – Option 1: Circular (Sr = 164 & 111 psf in liquefiable material)

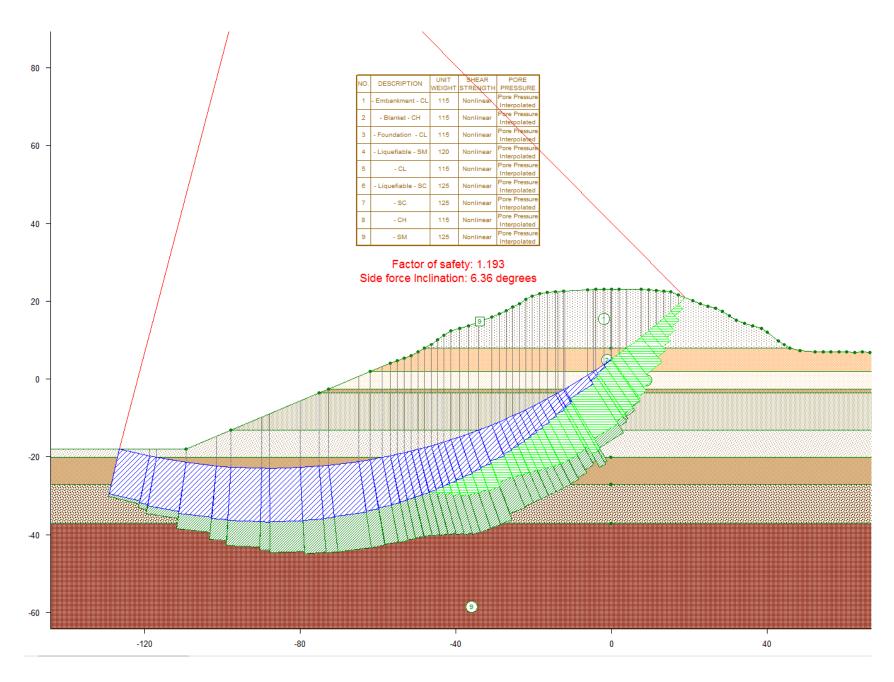


Fig F-13(b). RD 17 Station 1191+43 – Waterside – Option 1: Circular (PHI = 4.3 & 2.7 in liquefiable materials)

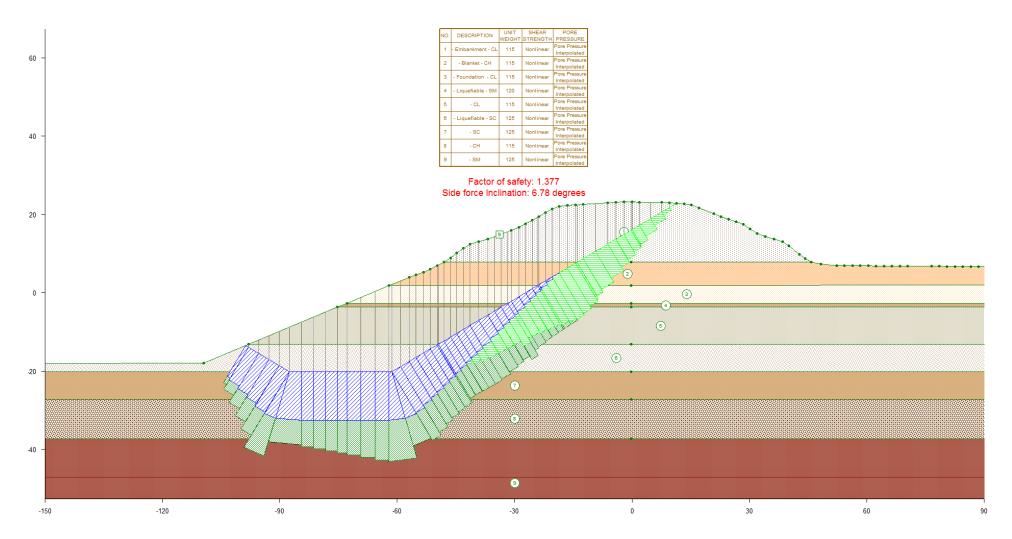


Fig F-14(a). RD 17 Northern, Station 1191+43– Waterside – Option 2: Wedges (Sr = 164 & 111 psf in liquefiable material)

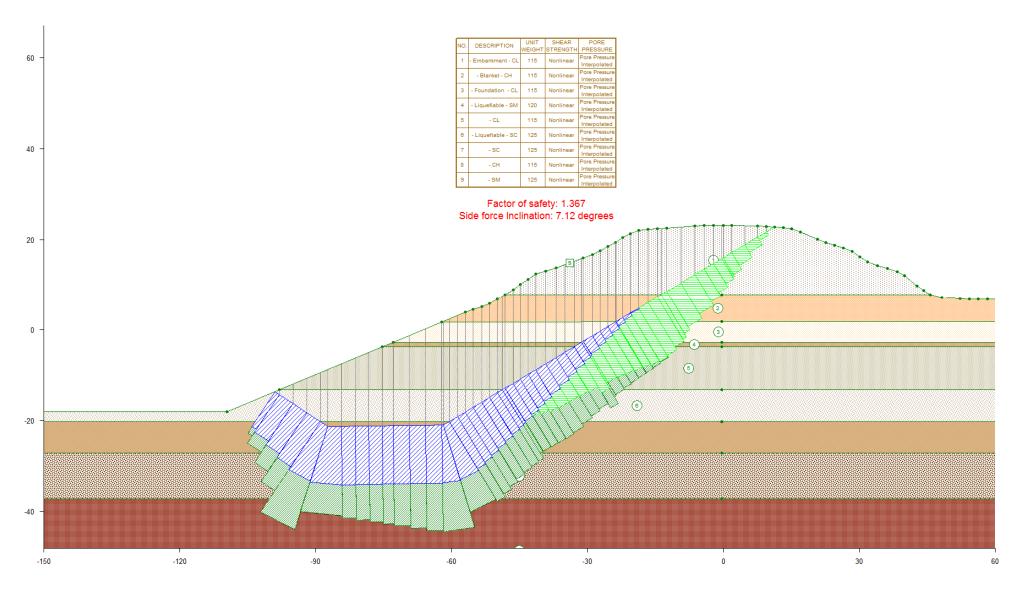


Fig F-14(b). RD 17 Station 1191+43– Waterside – Option 2: Wedges (PHI = 4.3 & 2.7 in liquefiable materials)

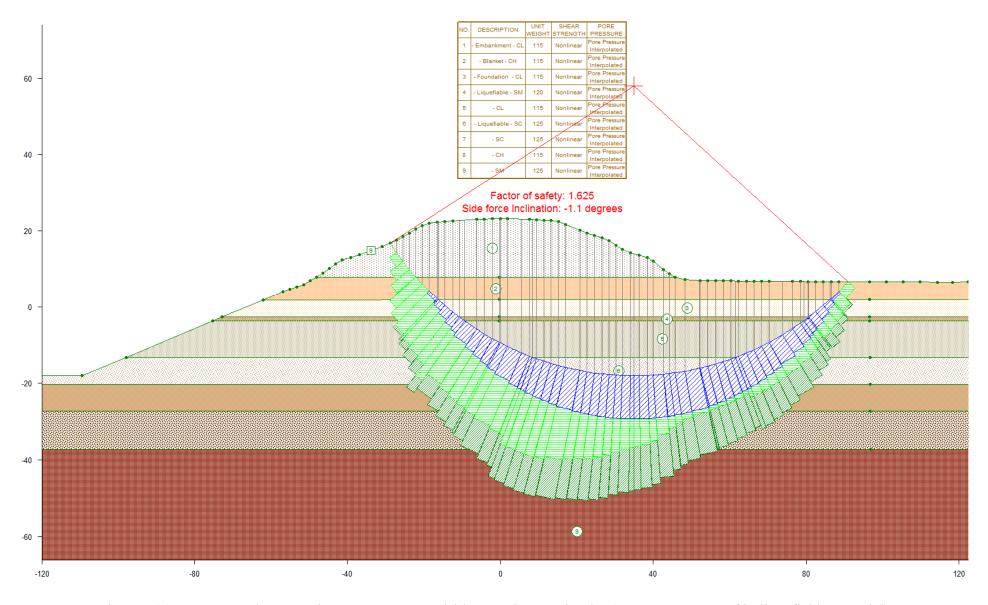


Fig F-15(a). RD 17 Northern, Station 1191+43 – Landside – Option 3: Circular (Sr = 164 & 111 psf in liquefiable material)

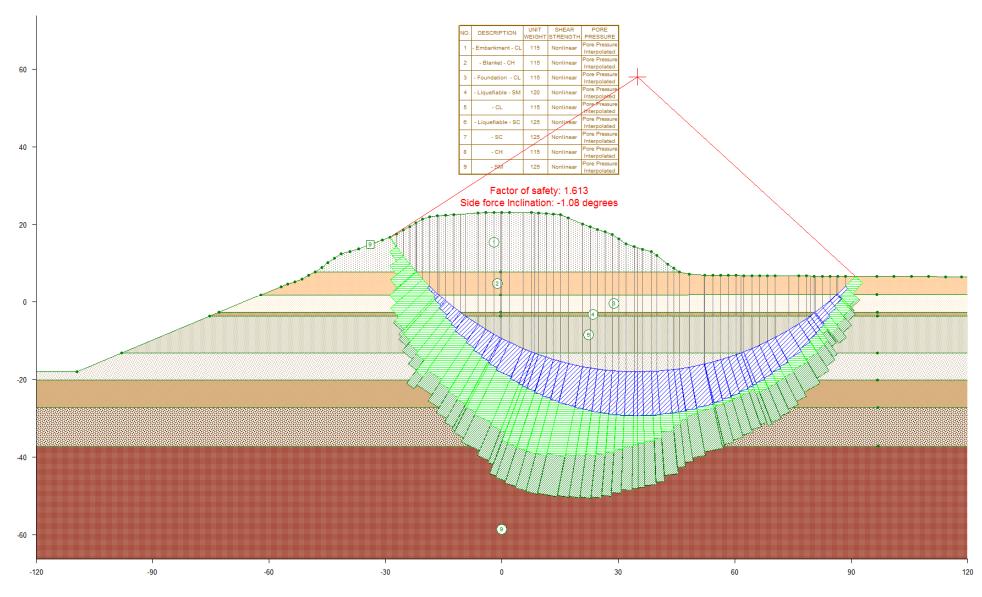


Fig F-15(b). RD 17 Station 1191+43 – Landside – Option 3: Circular (PHI = 4.3 & 2.7 in liquefiable materials)

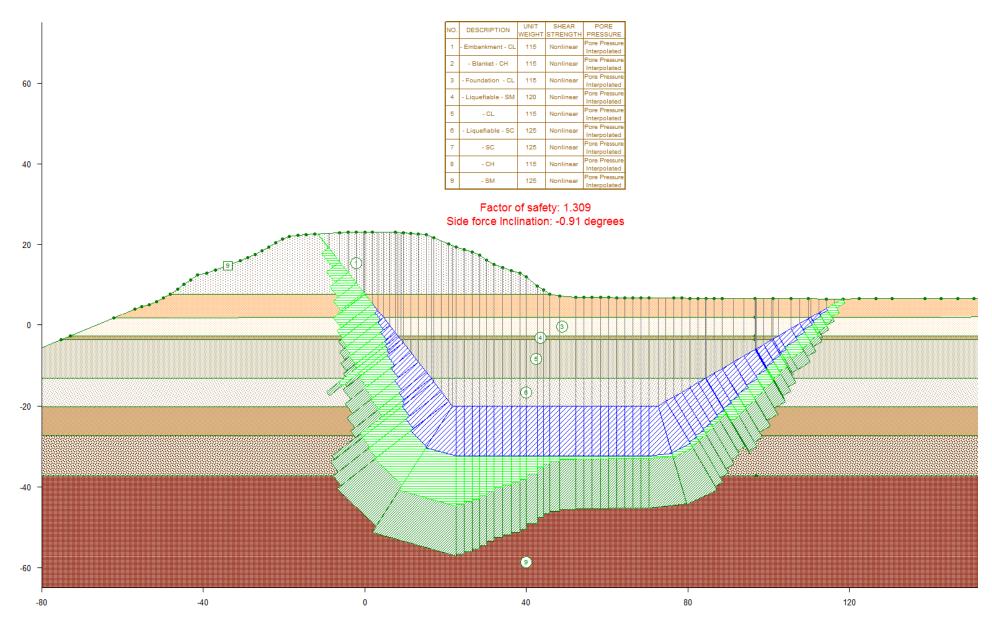


Fig F-16(a). RD 17 Northern, Station 1191+43 – Landside – Option 4: Wedge (Sr = 164 & 111 psf in liquefiable material)

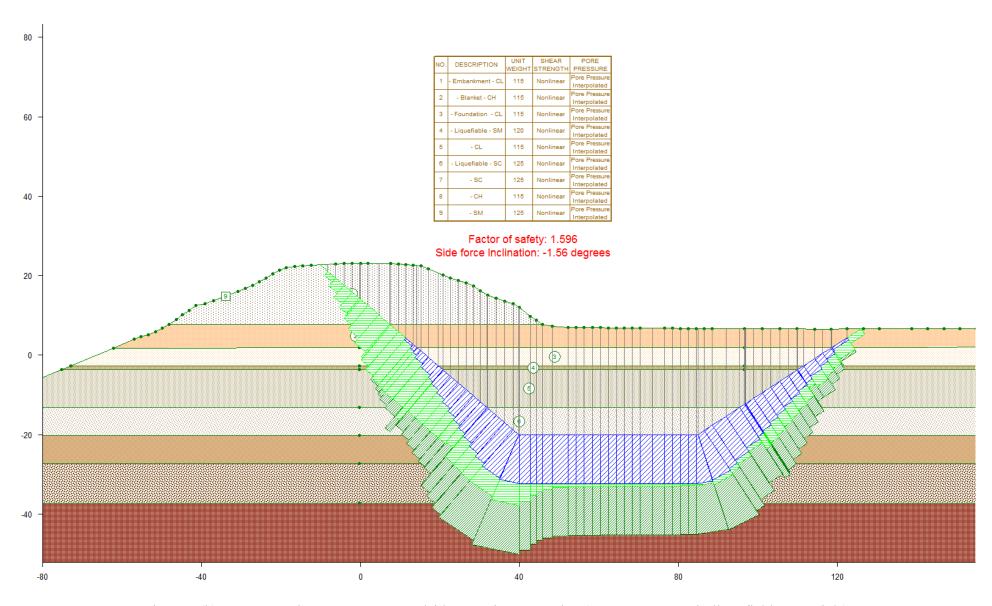


Fig F-16(b). RD 17 Station 1191+43 – Landside – Option 4: Wedge (PHI = 4.3 & 2.7 in liquefiable materials)

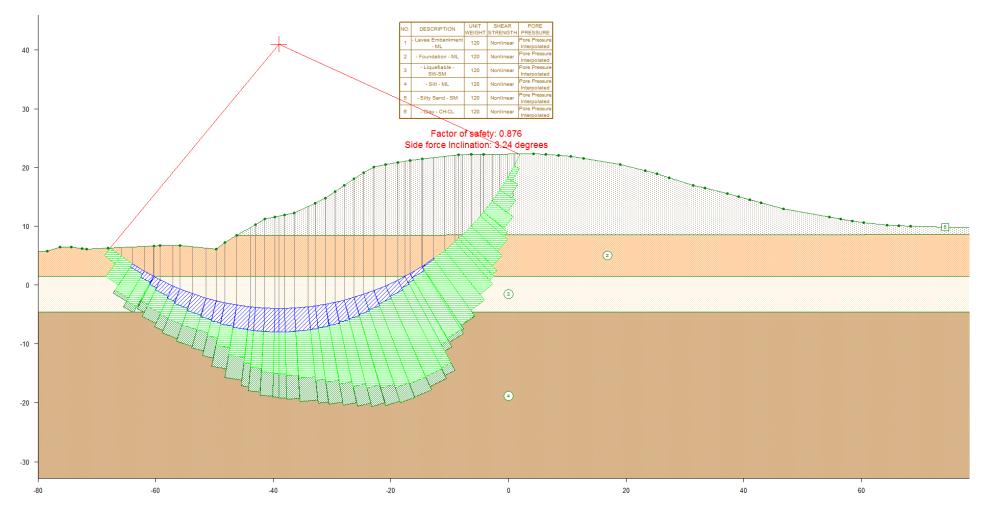


Fig F-17(a). RD 404 Station 1175+01 – Waterside – Option 1: Circular (Sr = 113 psf in liquefiable material)

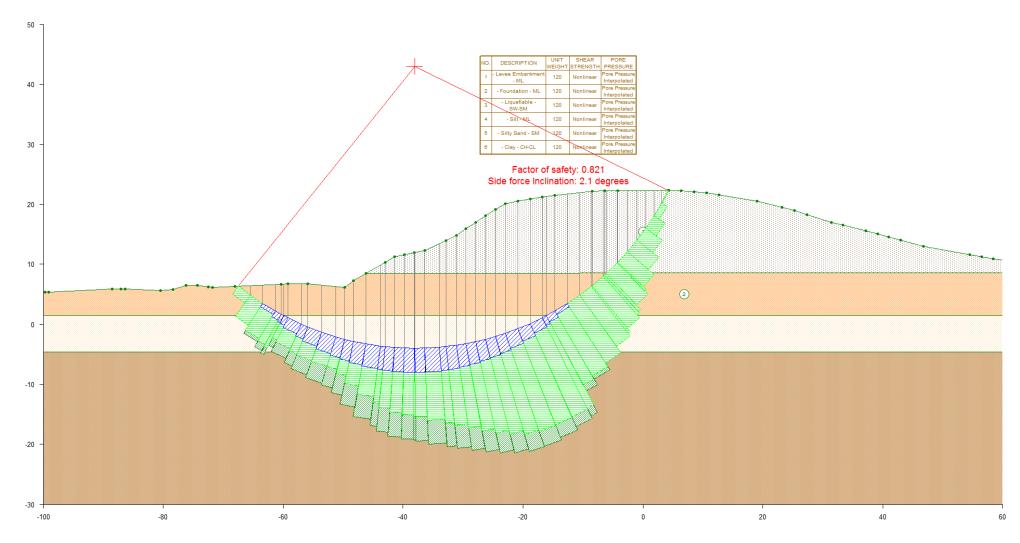


Fig F-17(b). RD 404 Station 1175+01 – Waterside – Option 1: Circular (PHI = 3.6 in liquefiable material)

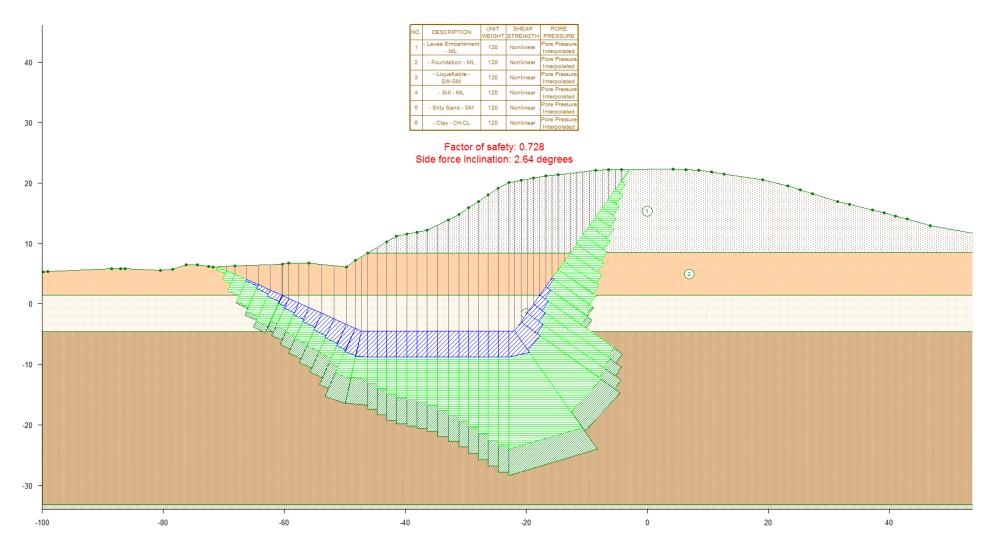


Fig F-18(a). RD 404 Station 1175+01 – Waterside – Option 2: Wedges (Sr = 113 psf in liquefiable material)

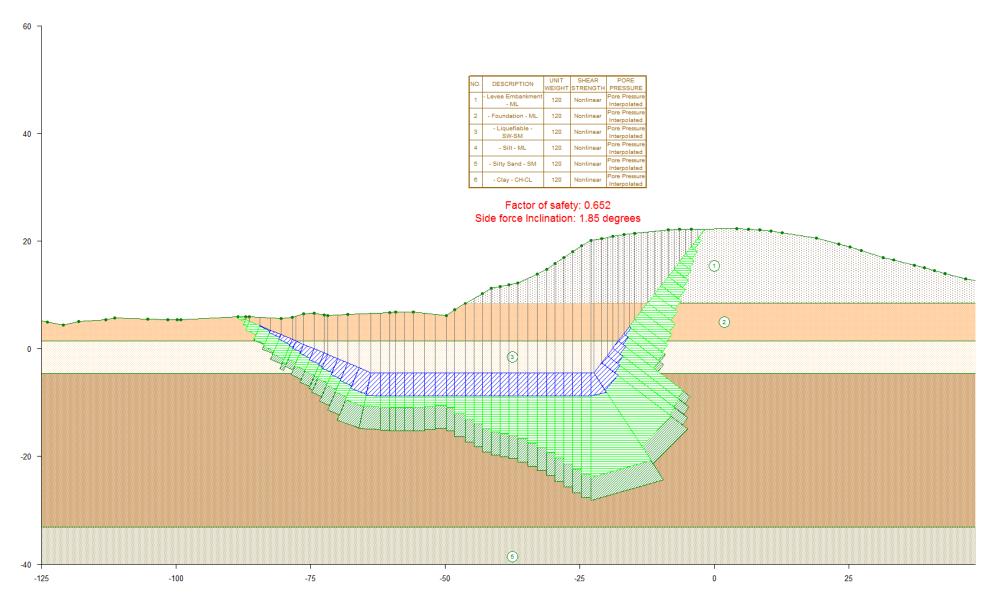
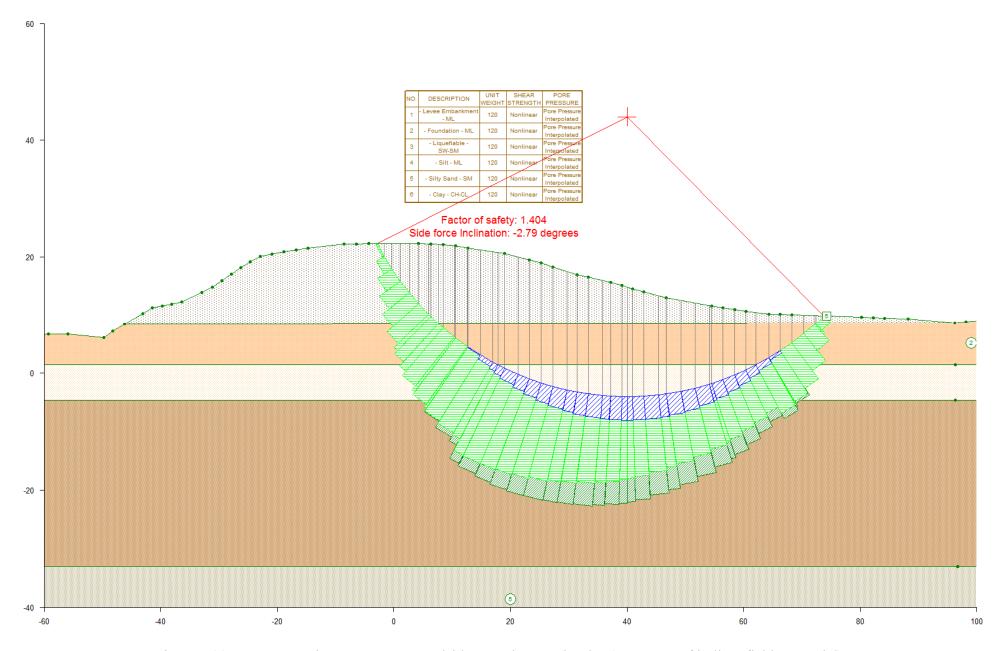



Fig F-18(b). RD 404 Station 1175+01 – Waterside – Option 2: Wedges (PHI = 3.6 in liquefiable material)

 $Fig \ F-19(a). \ RD \ 404 \ Station \ 1175+01 - Landside - Option \ 3: Circular \ (Sr=113 \ psf \ in \ lique fiable \ material)$

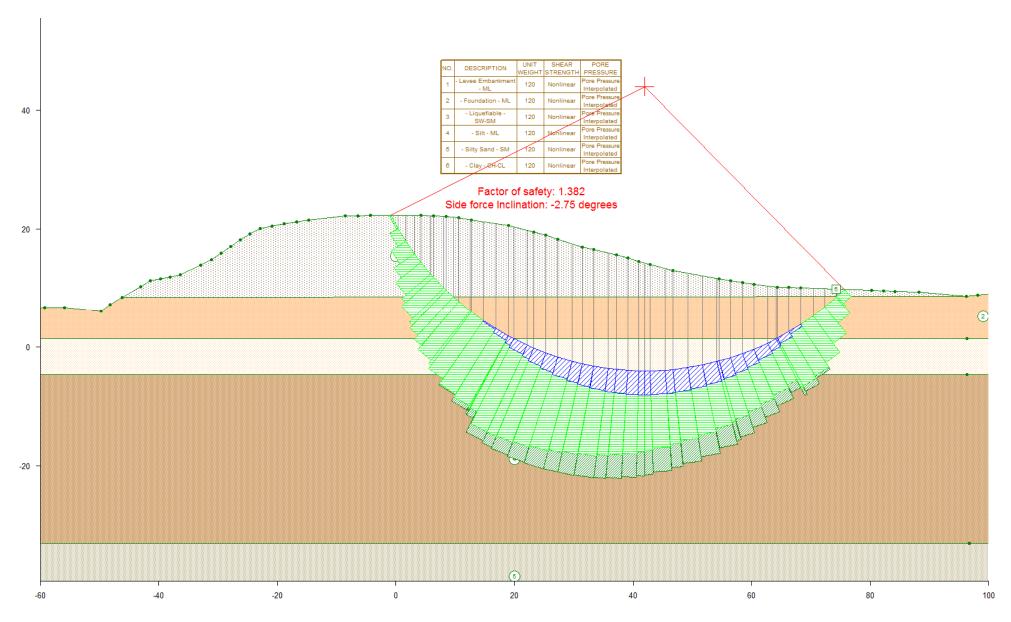


Fig F-19(b). RD 404 Station 1175+01 – Landside – Option 3: Circular (PHI = 3.6 in liquefiable material)

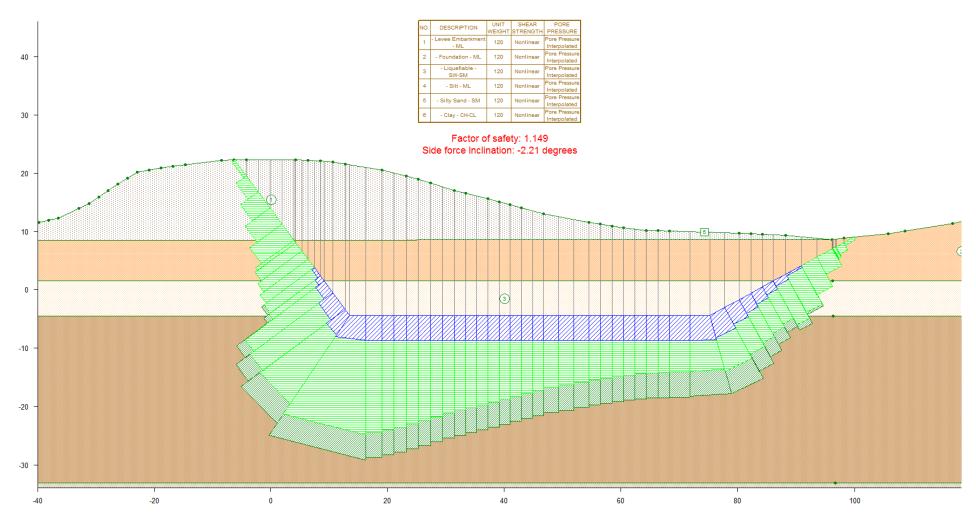


Fig F-20(a). RD 404 Station 1175+01 – Landside – Option 4: Wedge (Sr = 113 psf in liquefiable material)

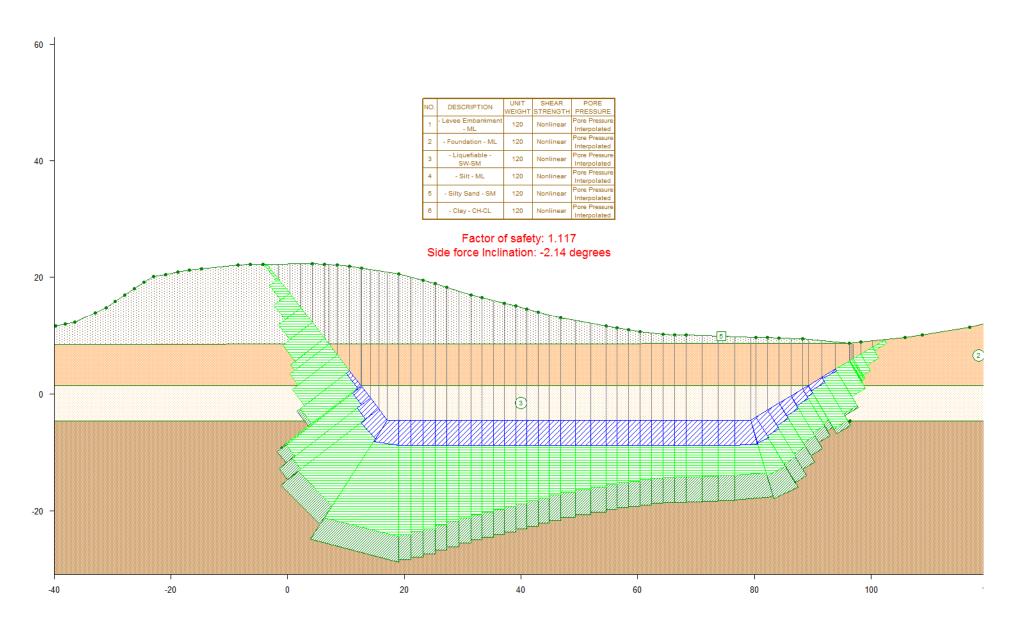


Fig F-20(b). RD 404 Station 1175+01 – Landside – Option 4: Wedge (PHI = 3.6 in liquefiable material)

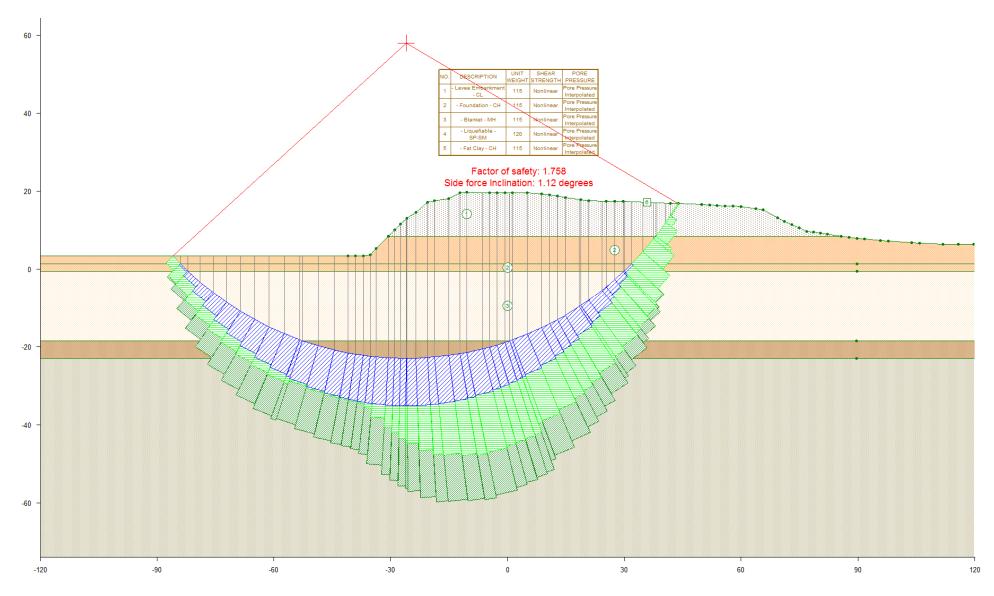


Fig F-21(a). Calaveras River Station 6565+02 – Waterside – Option 1: Circular (Sr = 77 psf in liquefiable material)

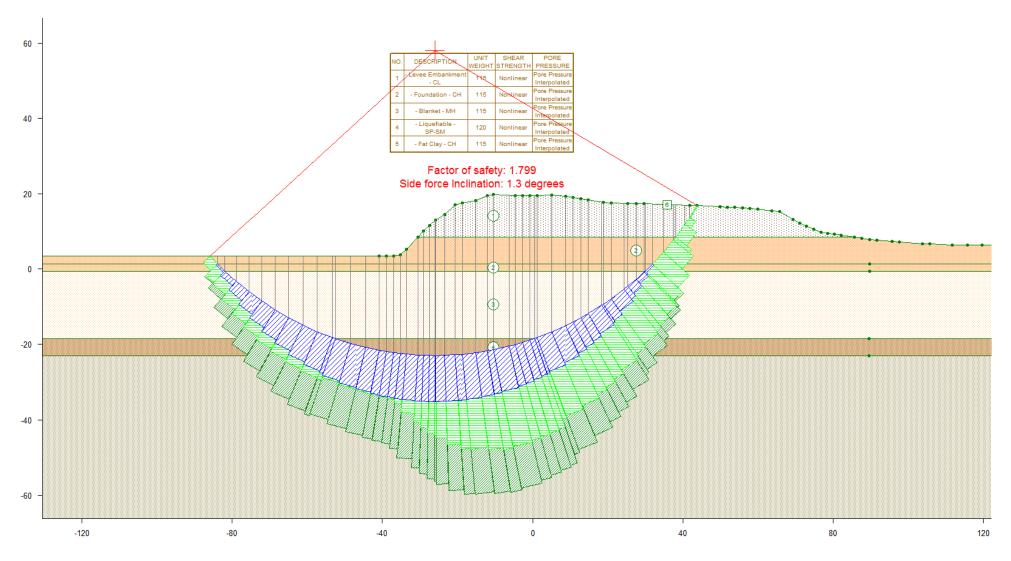


Fig 21(b). Calaveras River Station 6565+02 – Waterside – Option 1: Circular (PHI = 2.6 in liquefiable material)

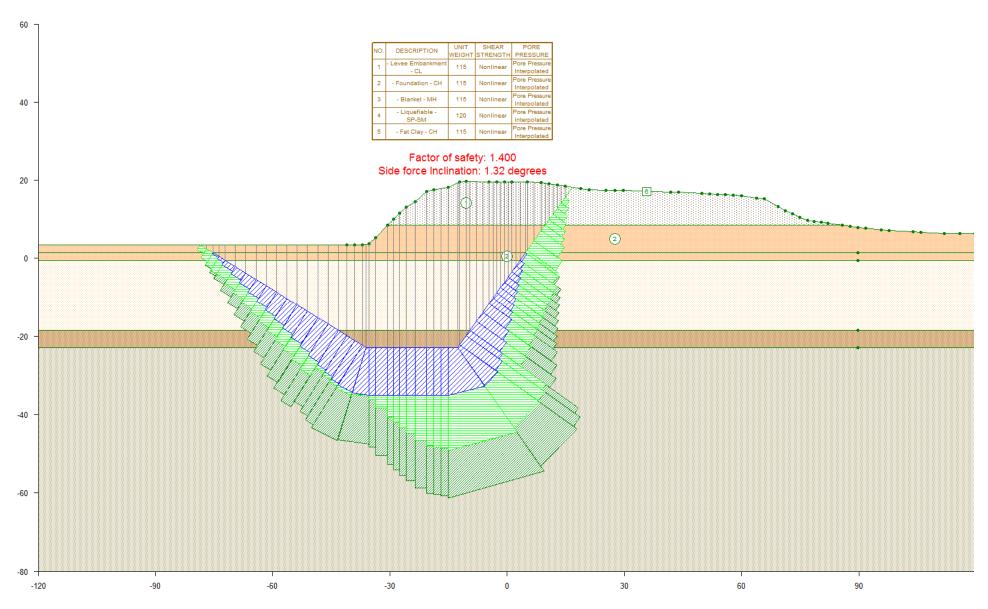


Fig F-22(a). Calaveras River Station 6565+02 – Waterside – Option 2: Wedges (Sr = 77 psf in liquefiable material)

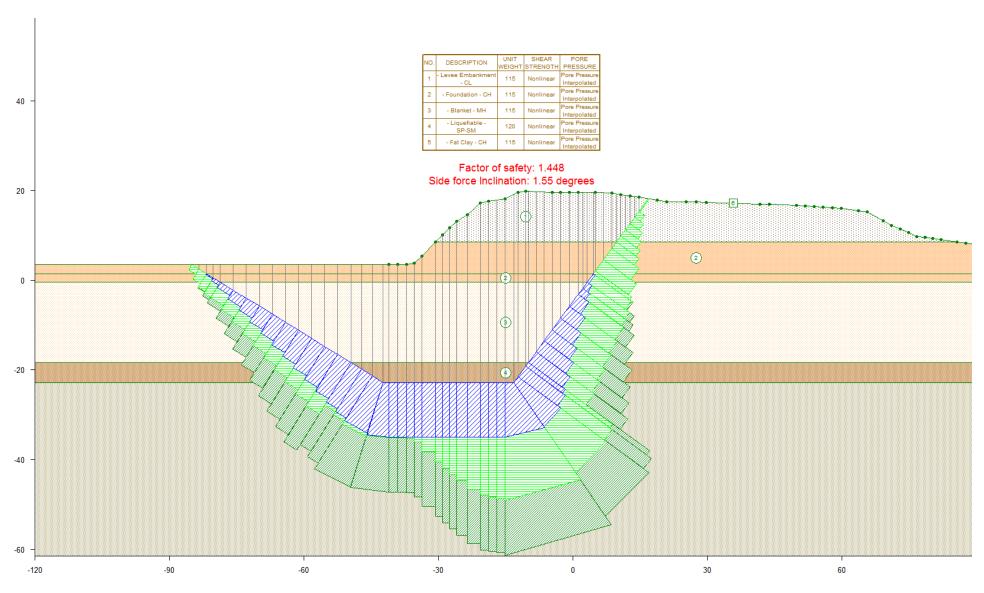


Fig 22(b). Calaveras River Station 6565+02 – Waterside – Option 2: Wedges (PHI = 2.6 in liquefiable material)

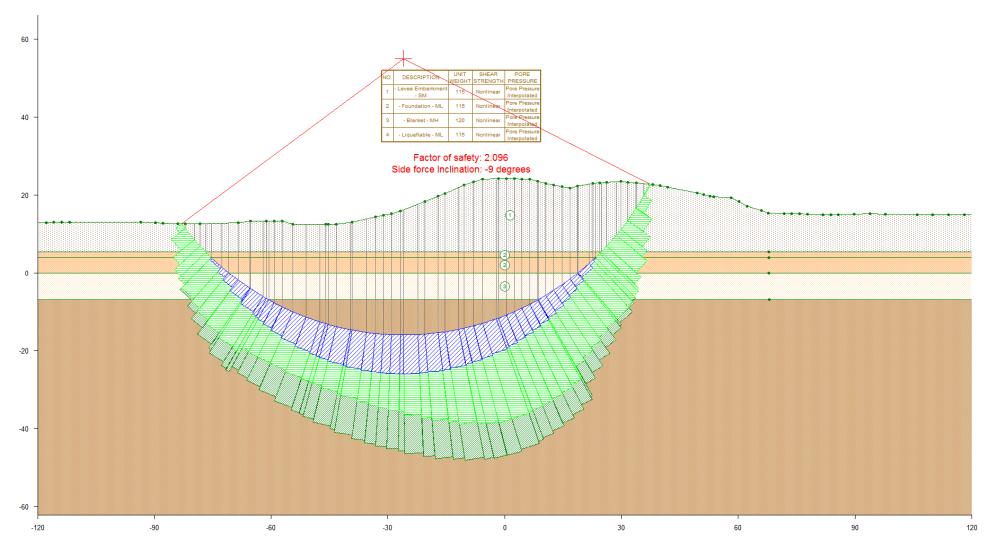


Fig F-23(a). Calaveras River Station 6669+40 – Waterside – Option 1: Circular (Sr = 98 psf in liquefiable material)

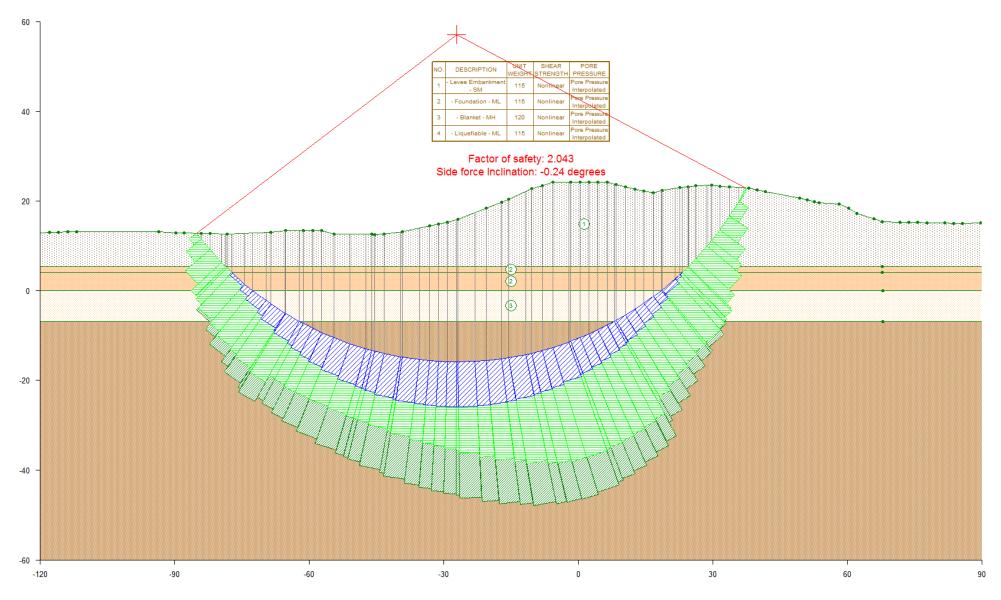


Fig 23(b). Calaveras River Station 6669+40 – Waterside – Option 1: Circular (PHI = 1.7 in liquefiable material)

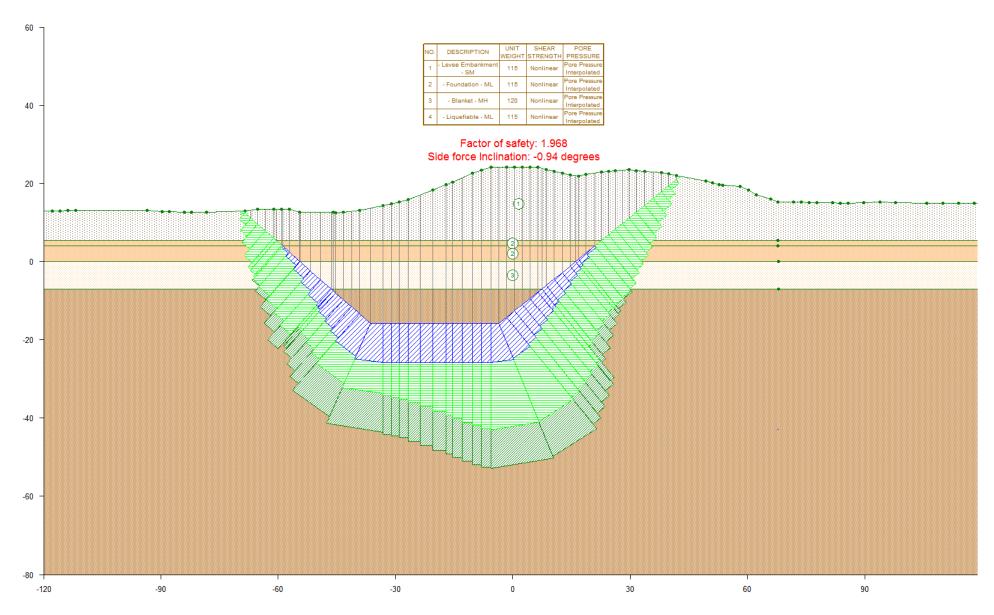


Fig F-24(a). Calaveras River Station 6669+40 – Waterside – Option 2: Wedges (Sr = 98 psf in liquefiable material)

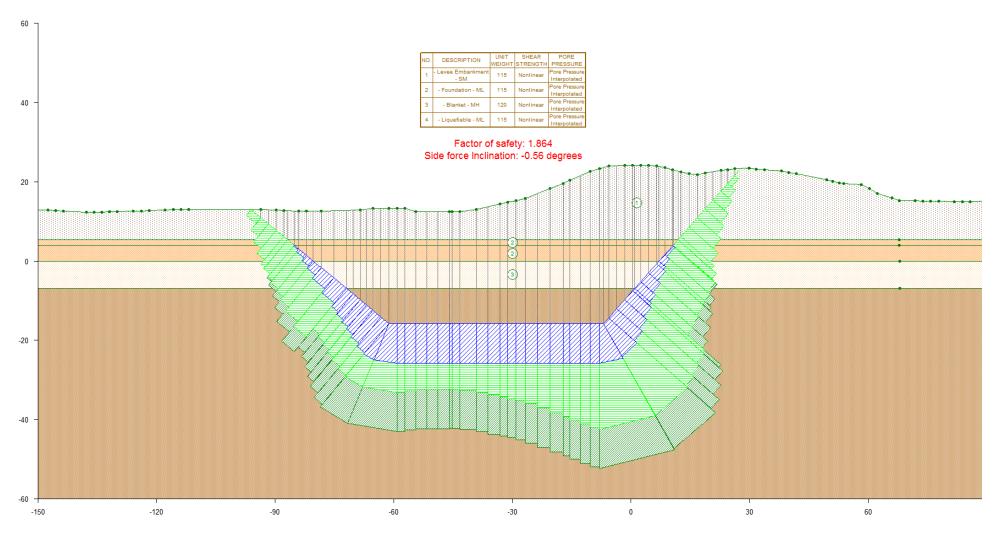


Fig 24(b). Calaveras River Station 6669+40 – Waterside – Option 2: Wedges (PHI = 1.7 in liquefiable material)

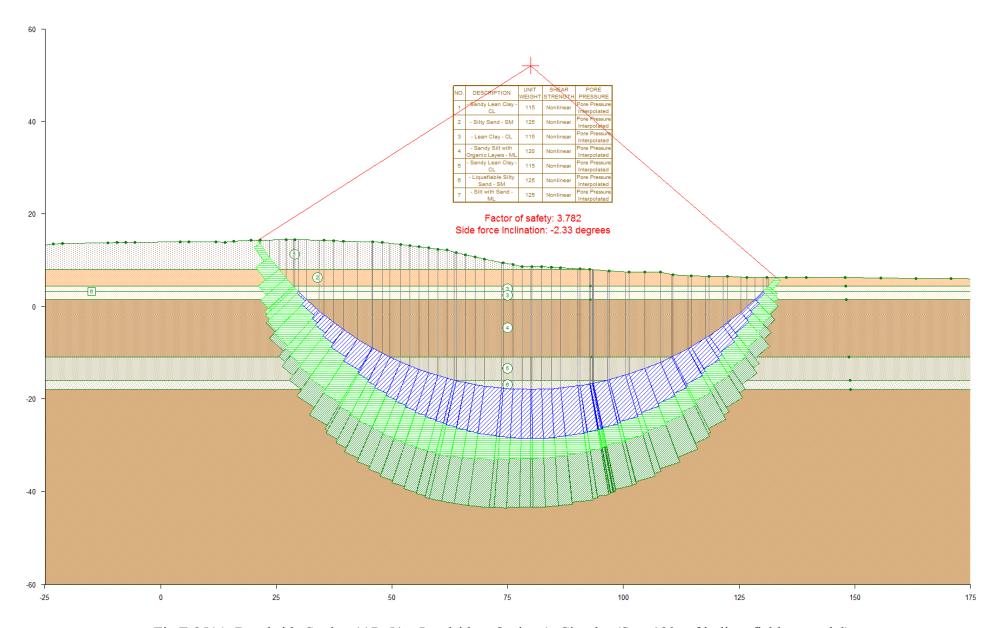


Fig F-25(a). Brookside Station 117+51 – Landside – Option 1: Circular (Sr = 189 psf in liquefiable material)

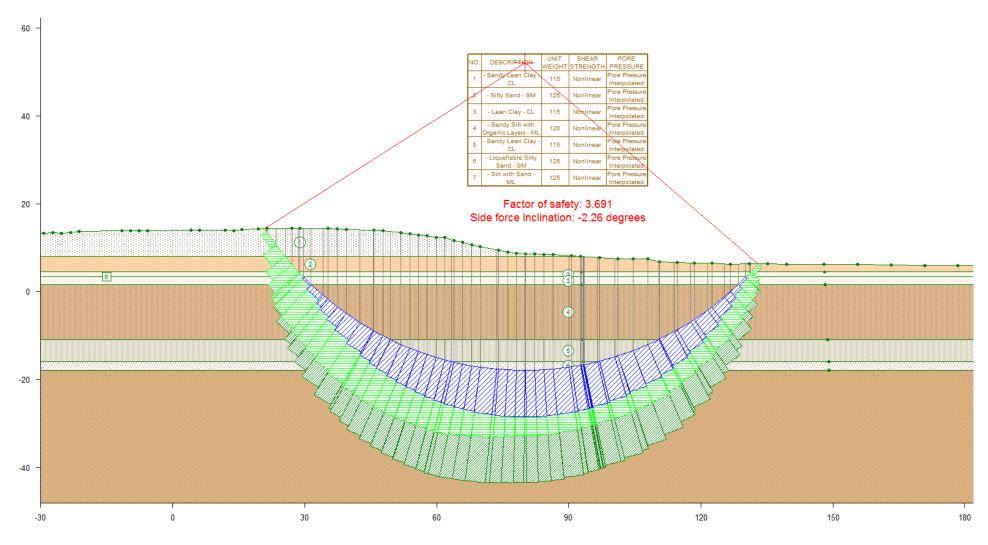


Fig 25(b). Brookside Station 117+51 – Landside – Option 1: Circular (PHI = 4.3 in liquefiable material)

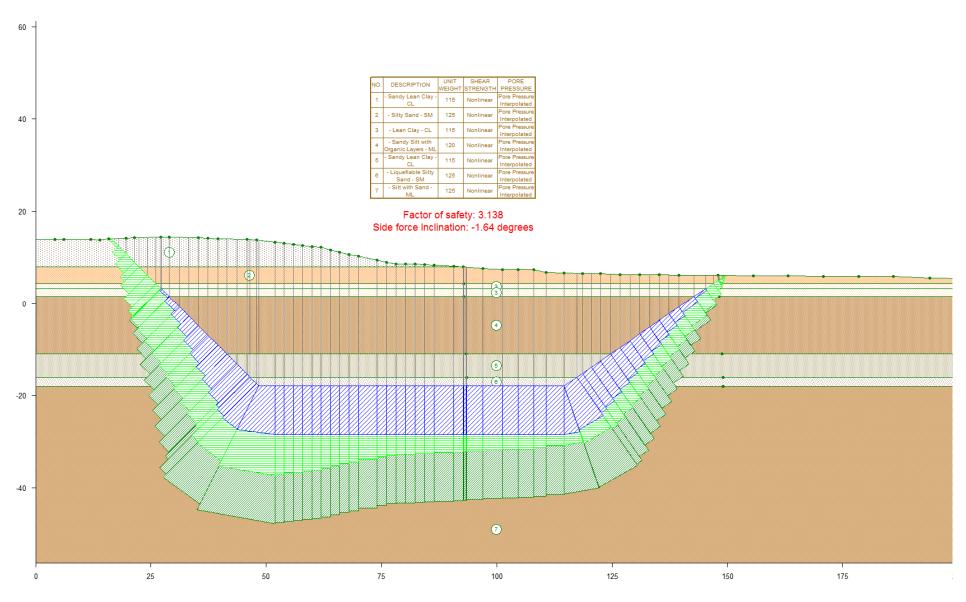


Fig F-26(a). Brookside Station 117+51 – Landside – Option 2: Wedges (Sr = 189 psf in liquefiable material)

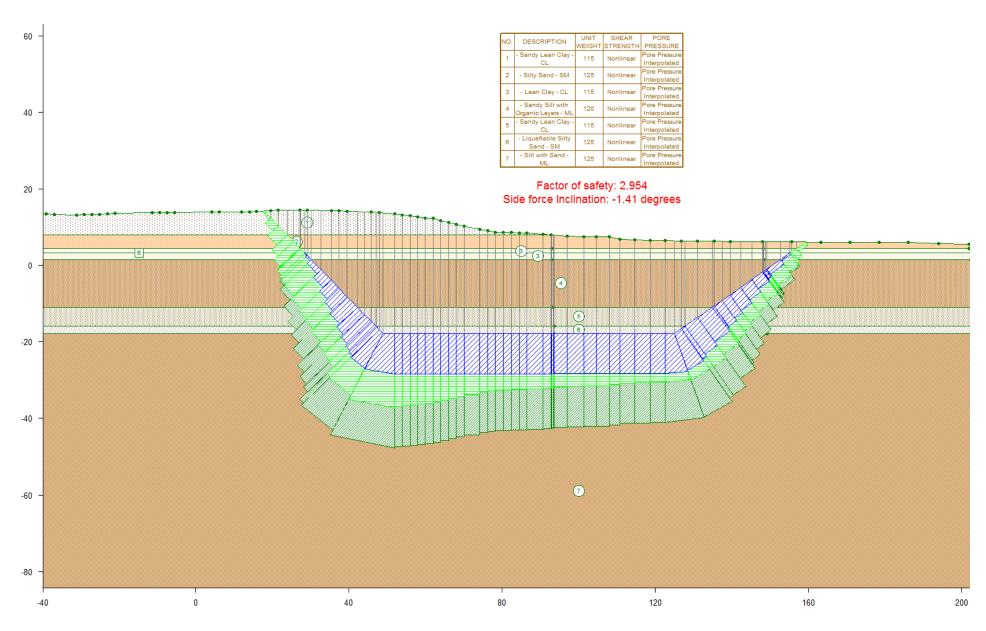


Fig 26(b). Brookside Station 117+51 – Landside – Option 2: Wedges (PHI = 4.3 in liquefiable material)

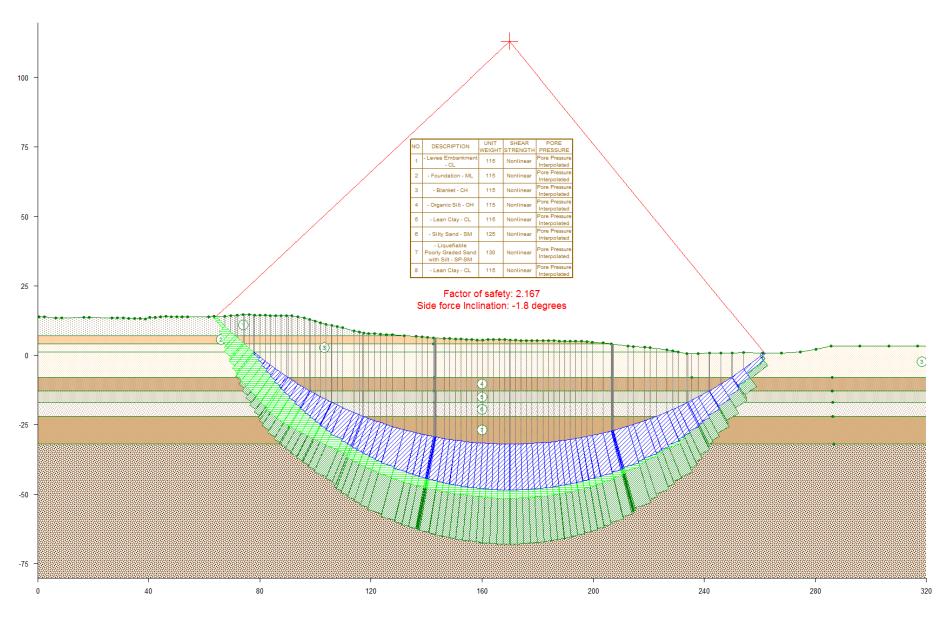


Fig F-27(a). Brookside Station 118+02 – Landside – Option 1: Circular (Sr = 151 psf in liquefiable material)

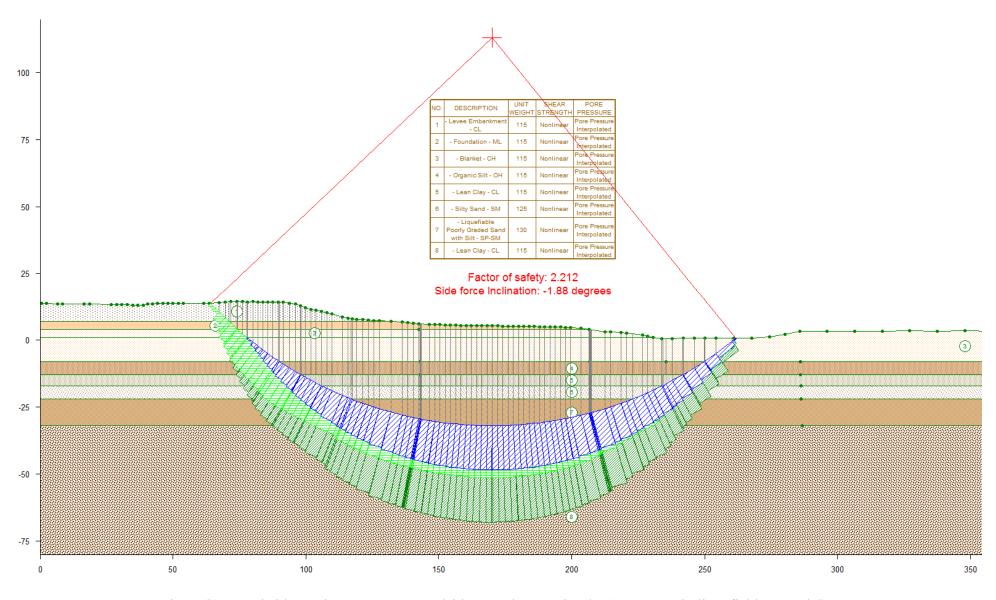
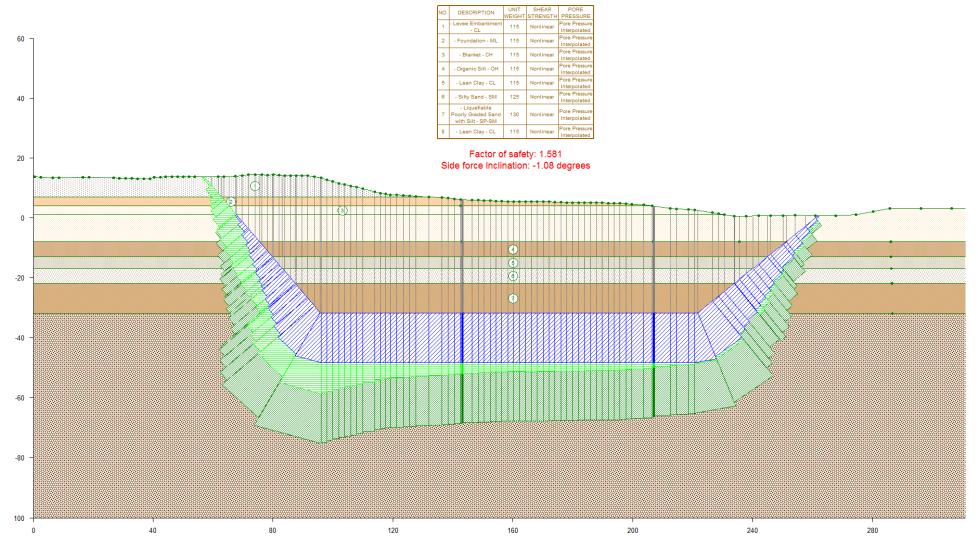



Fig 27(b). Brookside Station 118+02 – Landside – Option 1: Circular (PHI = 4.3 in liquefiable material)

 $Fig F-28(a). \ Brookside \ Station \ 118+02-Landside-Option \ 2: \ Wedges \ (Sr=151 \ psf \ in \ lique fiable \ material)$

Fig 28(b). Brookside Station 118+02 – Landside – Option 2: Wedges (PHI = 4.3 in liquefiable material)

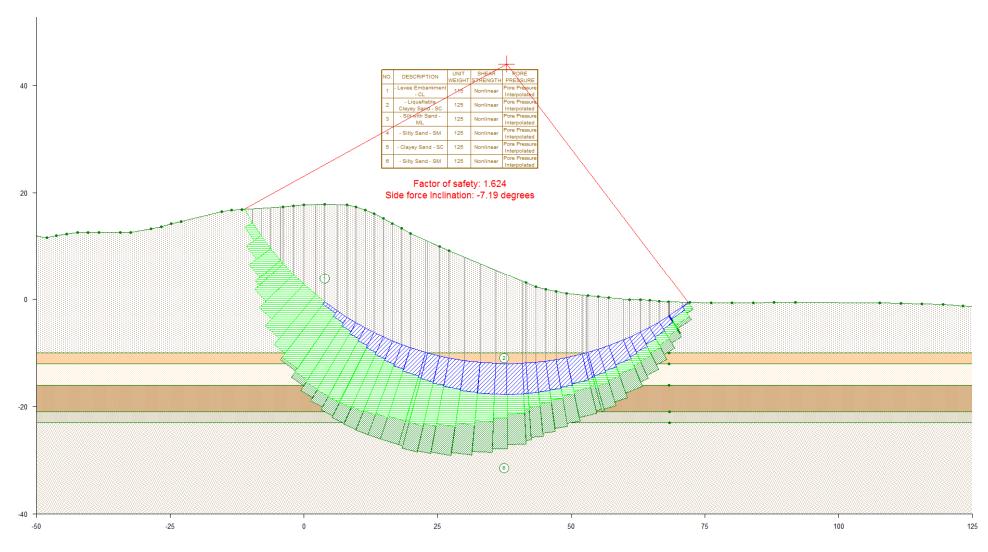


Fig F-29(a). Brookside Station 133+82 – Landside – Option 1: Circular (Sr = 242 psf in liquefiable material)

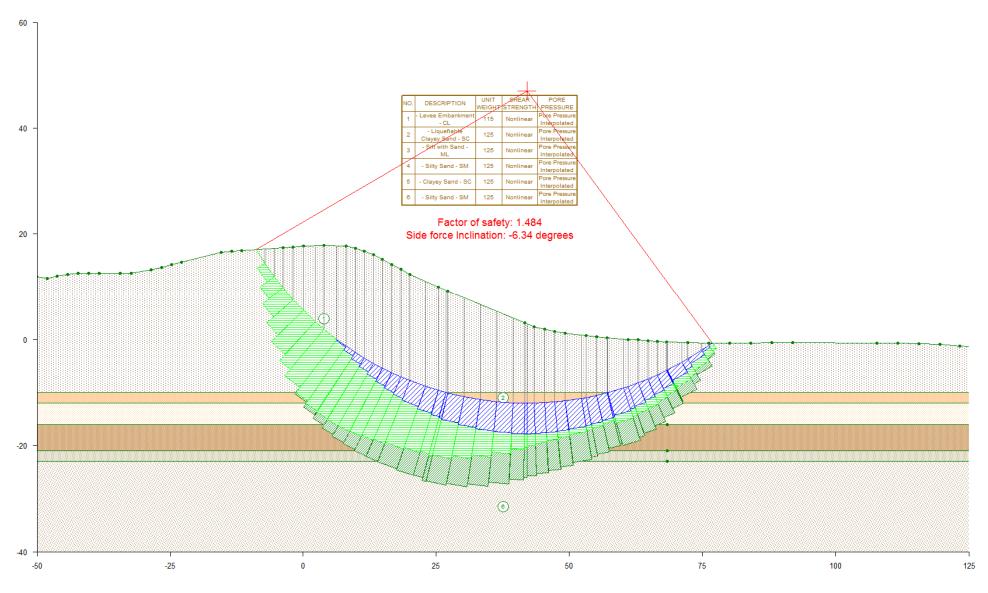


Fig 29(b). Brookside Station 133+82 – Landside – Option 1: Circular (PHI = 5.1 in liquefiable material)

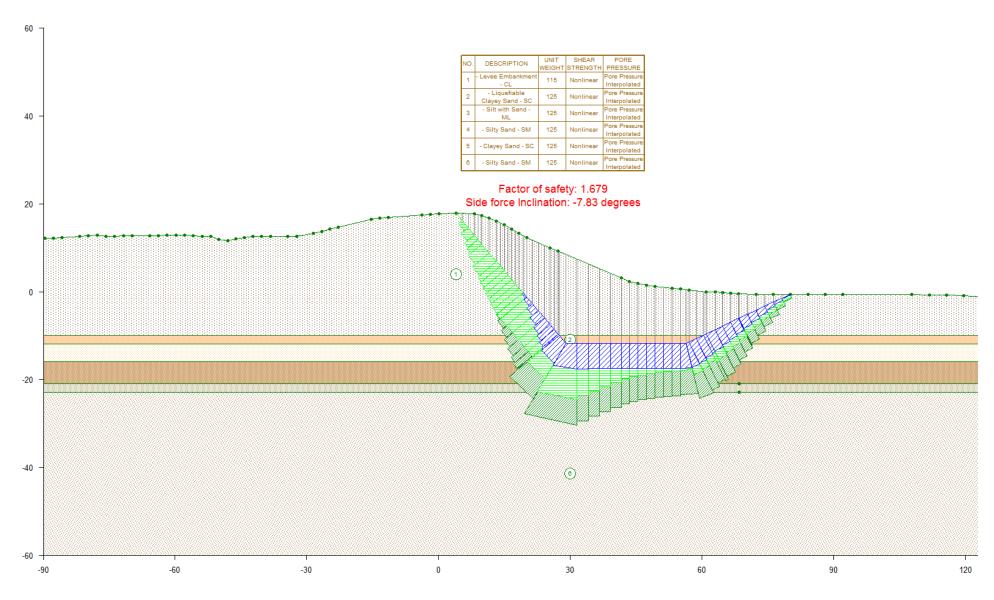


Fig F-30(a). Brookside Station 133+82 – Landside – Option 2: Wedges (Sr = 242 psf in liquefiable material)

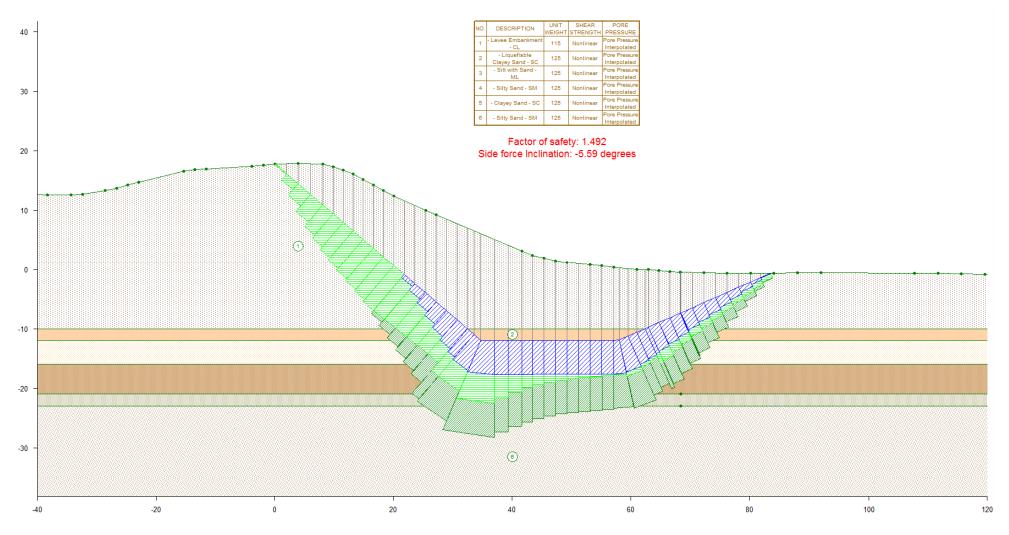


Fig 30(b). Brookside Station 133+82 – Landside – Option 2: Wedges (PHI = 5.1 in liquefiable material)

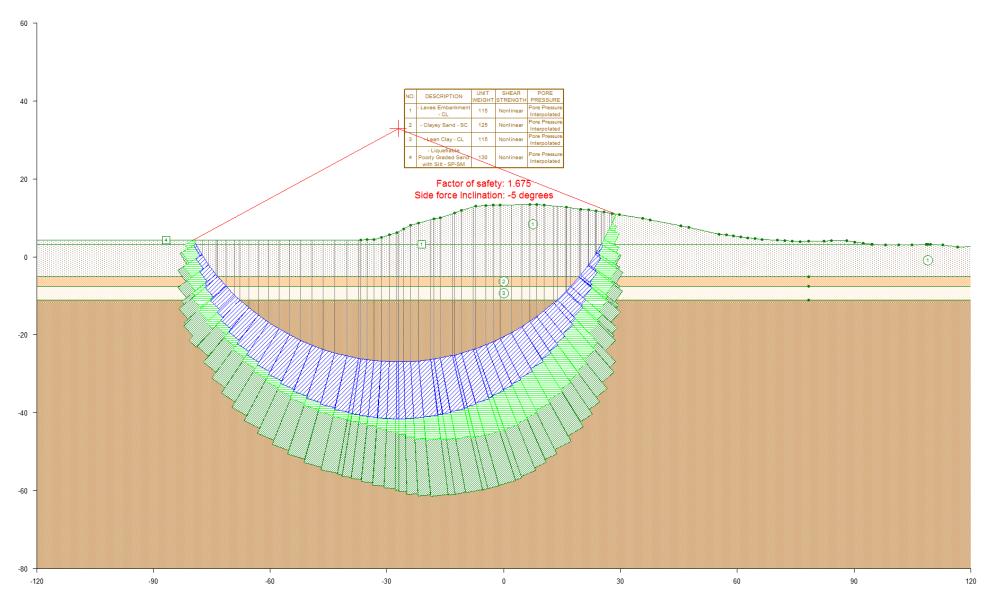


Fig F-31(a). Lincoln Village Station 43+57 – Waterside – Option 1: Circular (Sr = 201 psf in liquefiable material)

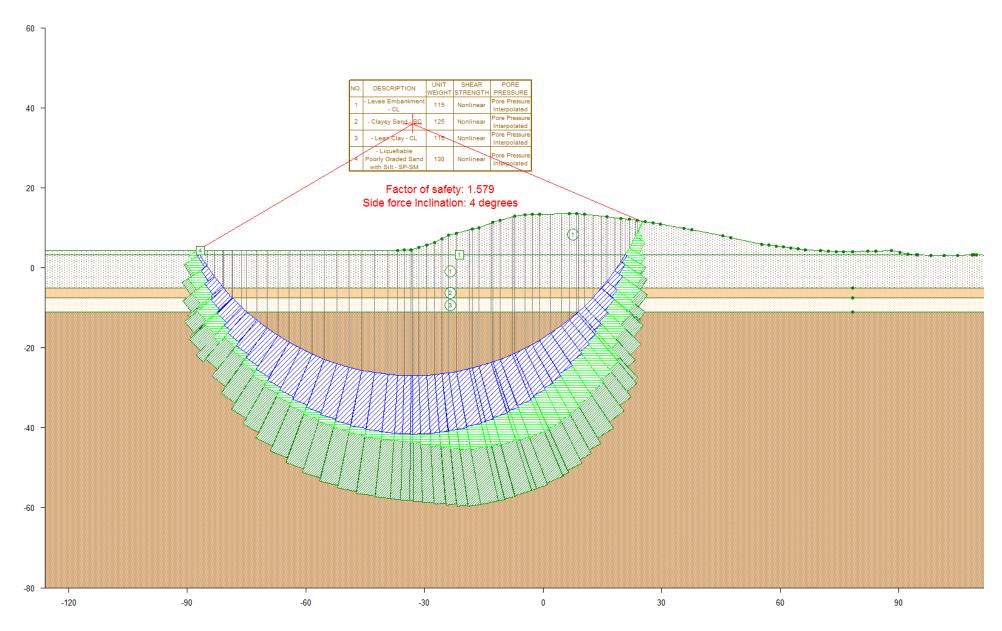


Fig 31(b). Lincoln Village Station 43+57 – Waterside – Option 1: Circular (PHI = 4.7 in liquefiable material)

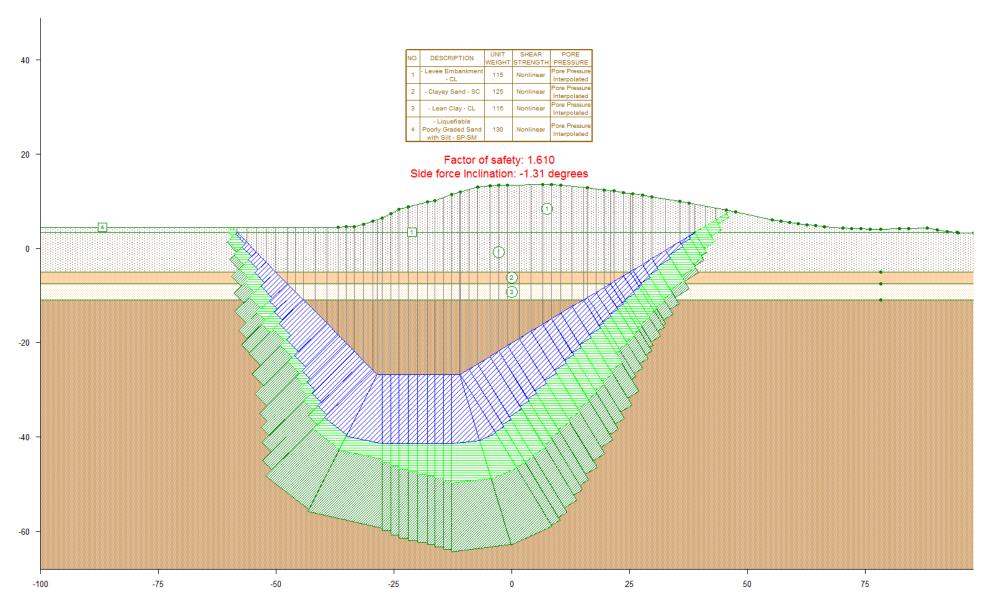


Fig F-32(a). Lincoln Village Station 43+57 – Waterside – Option 2: Wedge (Sr = 201 psf in liquefiable material)

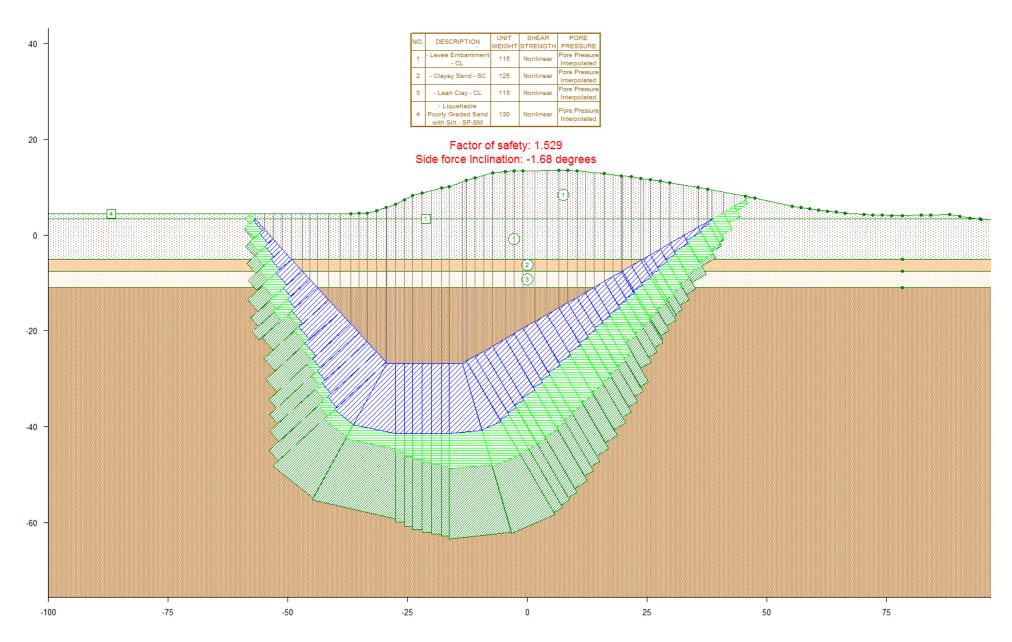


Fig 32(b). Lincoln Village Station 43+57 – Waterside – Option 2: Wedge (PHI = 4.7 in liquefiable material)

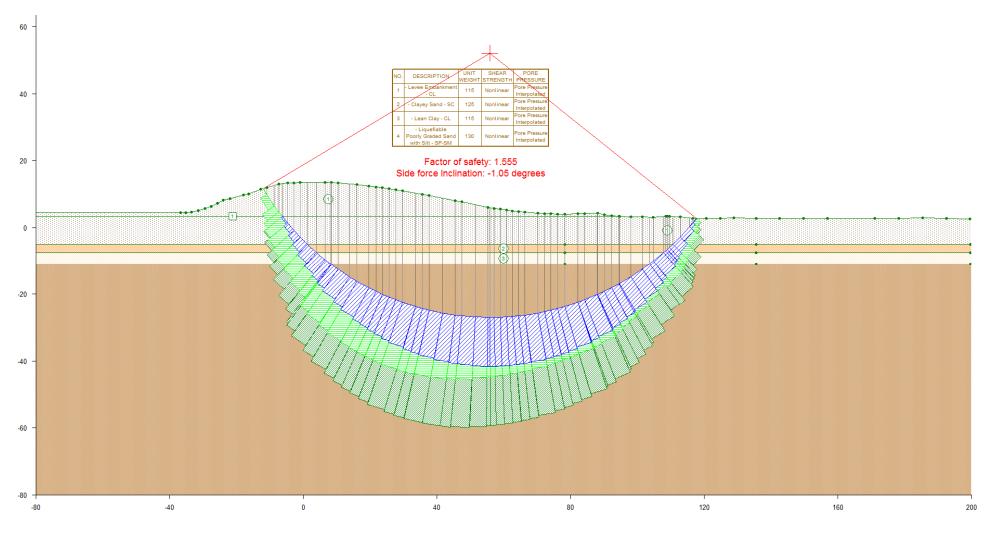


Fig F-33(a). Lincoln Village Station 43+57 – Landside – Option 3: Circular (Sr = 201 psf in liquefiable material)

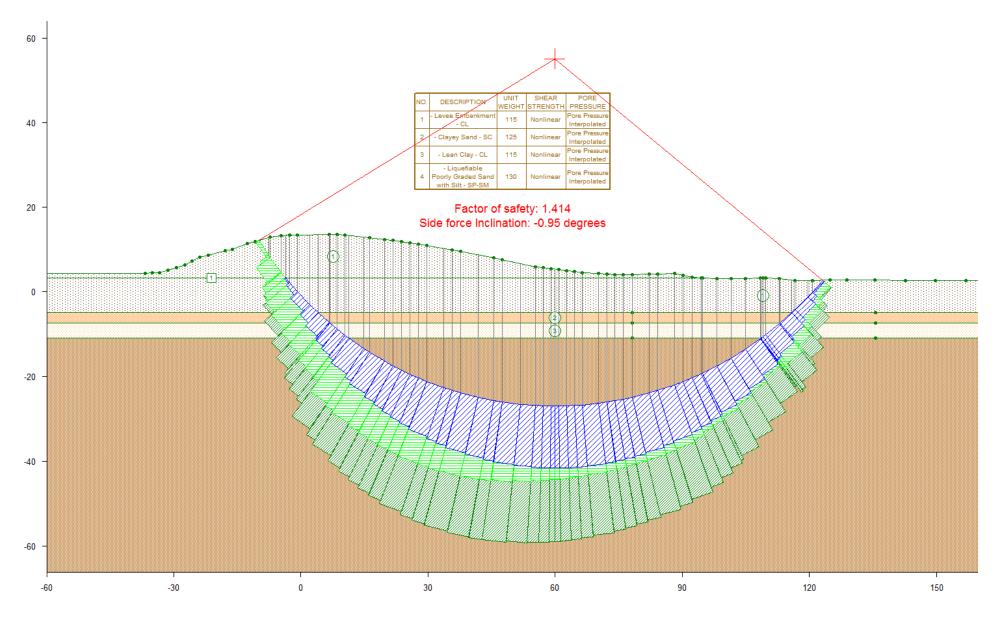


Fig 33(b). Lincoln Village Station 43+57 – Landside – Option 3: Circular (PHI = 4.7 in liquefiable material)

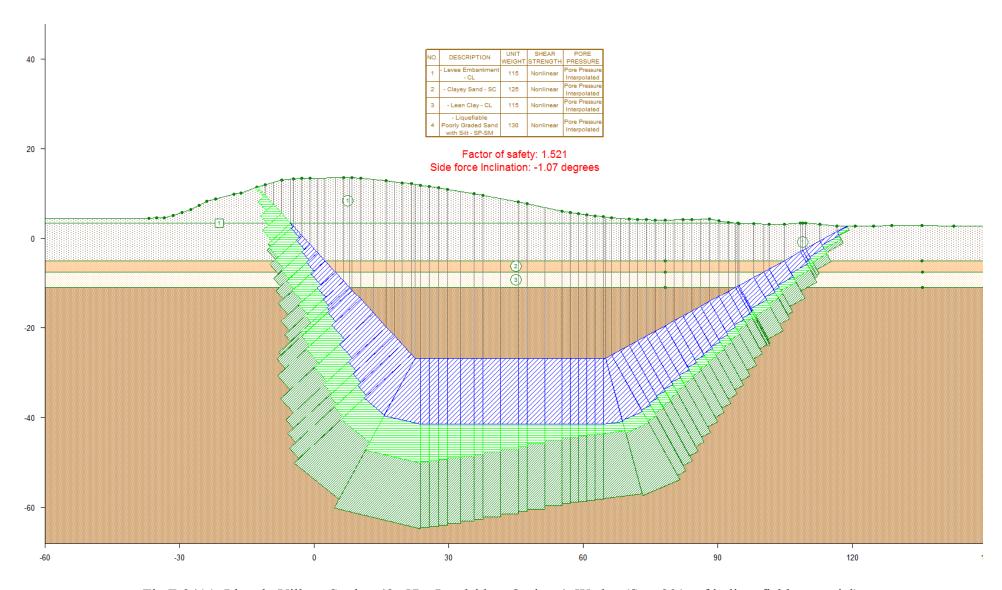


Fig F-34(a). Lincoln Village Station 43+57 – Landside – Option 4: Wedge (Sr = 201 psf in liquefiable material)

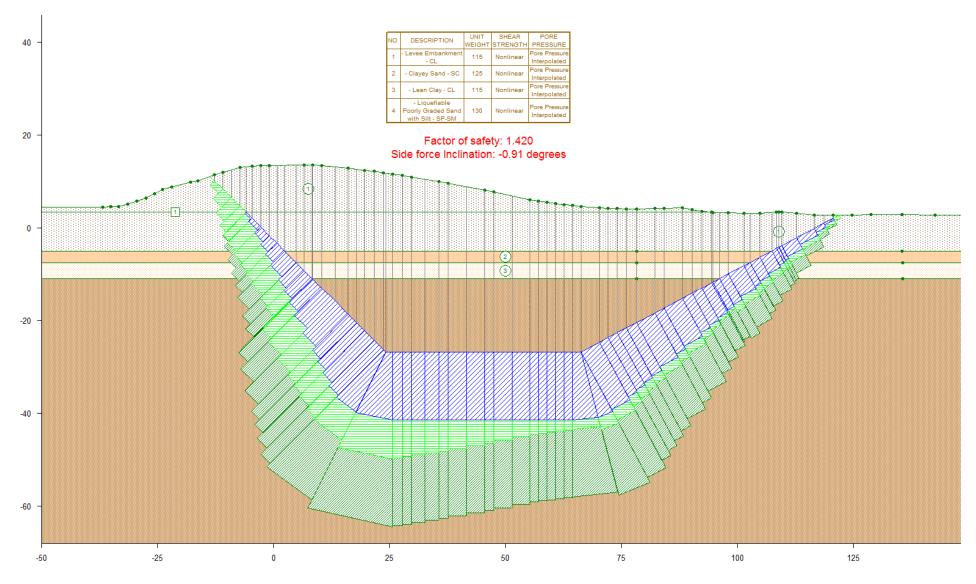


Fig 34(b). Lincoln Village Station 43+57 – Landside – Option 4: Wedge (PHI = 4.7 in liquefiable material)

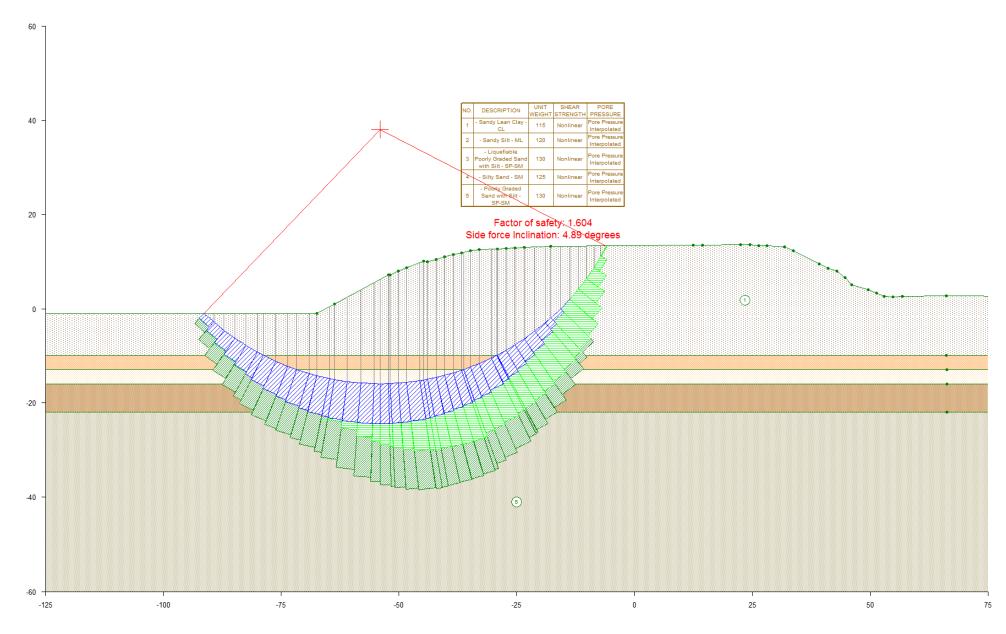


Fig F-35(a). Lincoln Village Station 109+90 – Waterside – Option 1: Circular (Sr = 282 psf in liquefiable material)

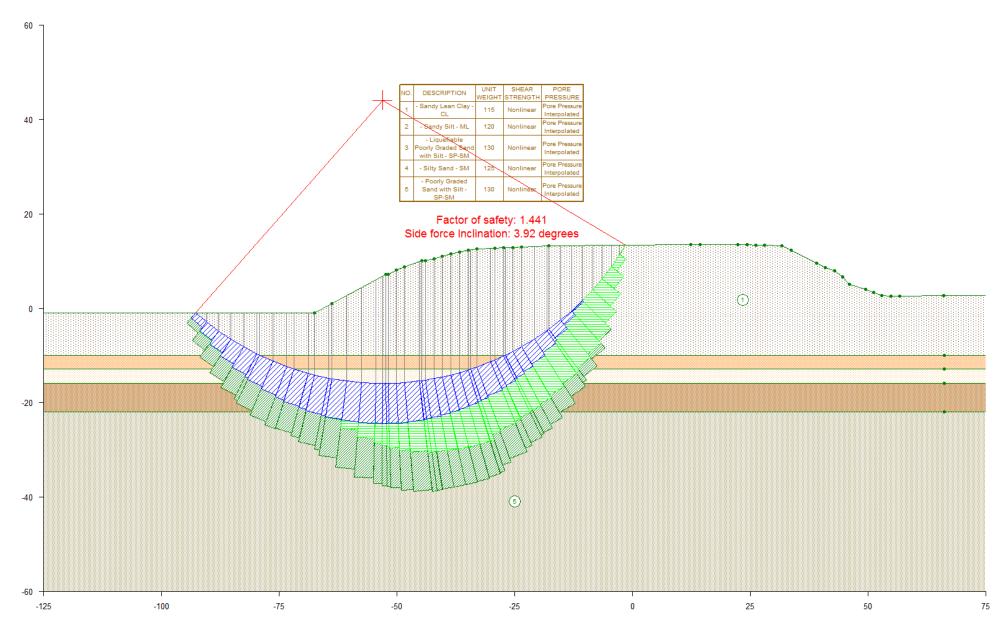


Fig 35(b). Lincoln Village Station 109+90 – Waterside – Option 1: Circular (PHI = 6.0 in liquefiable material)

Fig F-36(a). Lincoln Village Station 109+90 – Waterside – Option 2: Wedges (Sr = 282 psf in liquefiable material)

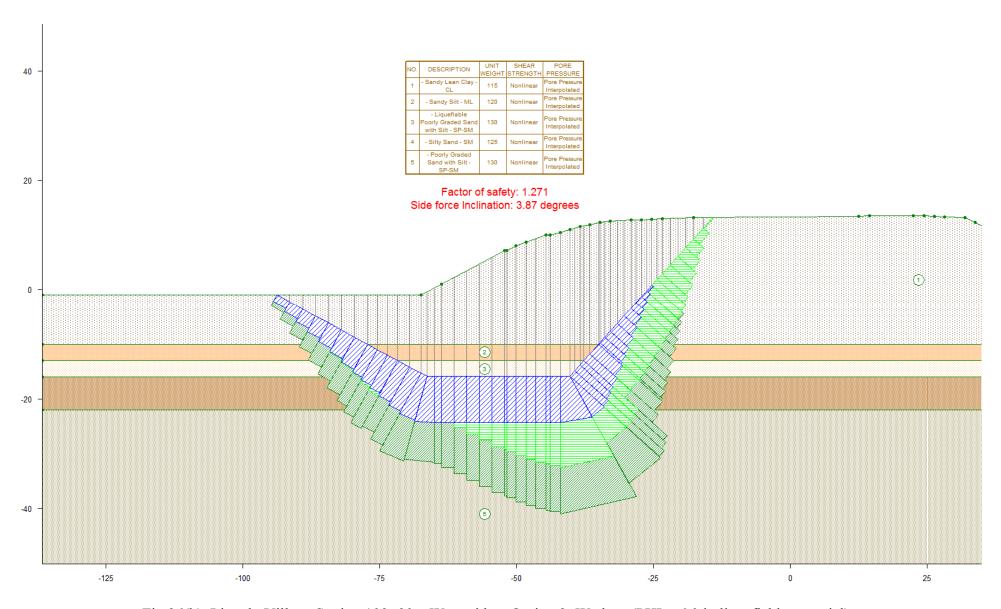


Fig 36(b). Lincoln Village Station 109+90 – Waterside – Option 2: Wedges (PHI = 6.0 in liquefiable material)

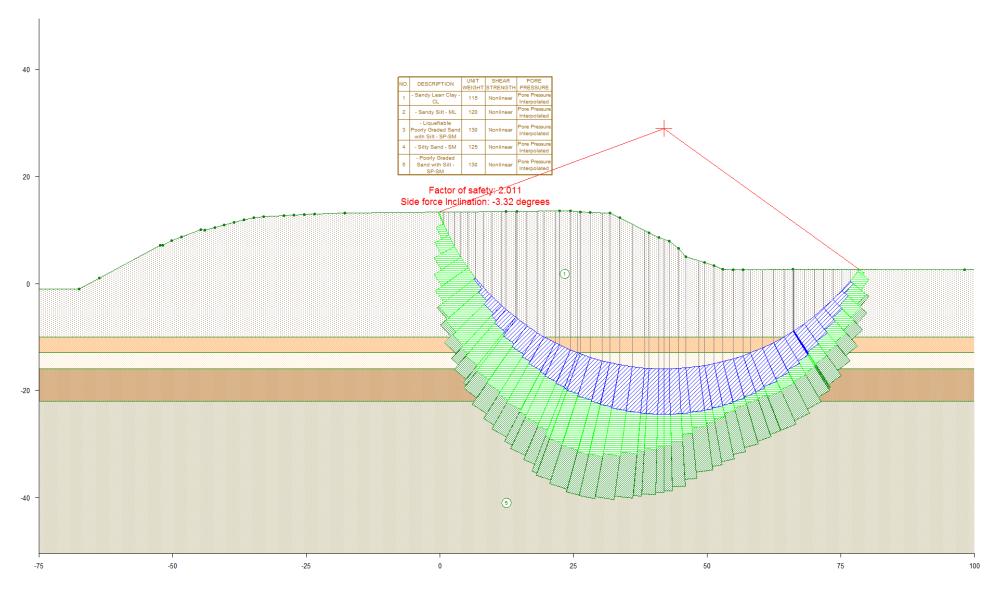


Fig F-37(a). Lincoln Village Station 109+90 – Landside – Option 3: Circular (Sr = 282 psf in liquefiable material)

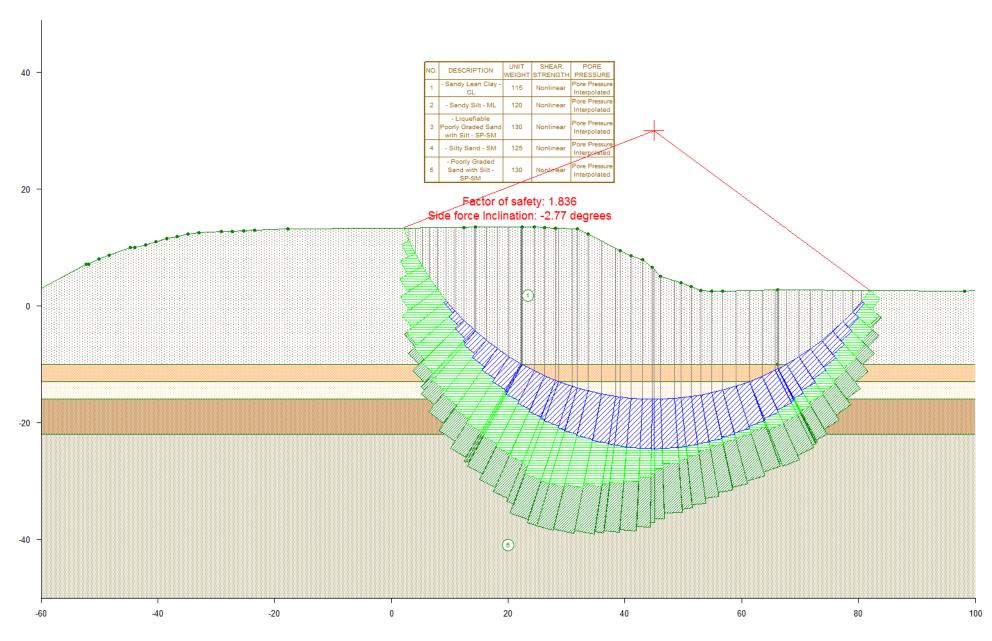


Fig 37(b). Lincoln Village Station 109+90 – Landside – Option 3: Circular (PHI = 6.0 in liquefiable material)

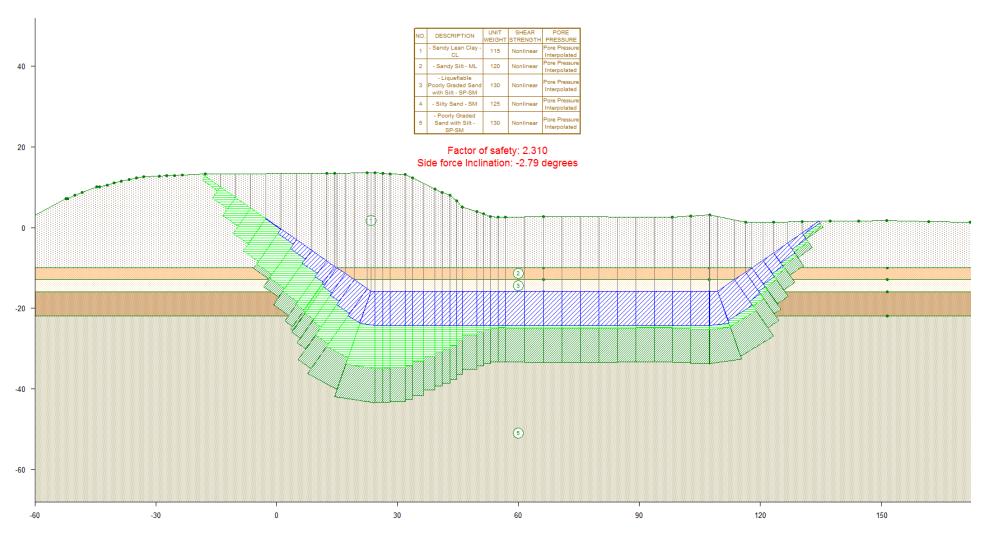


Fig F-38(a). Lincoln Village Station 109+90 – Landside – Option 4: Wedge (Sr = 282 psf in liquefiable material)

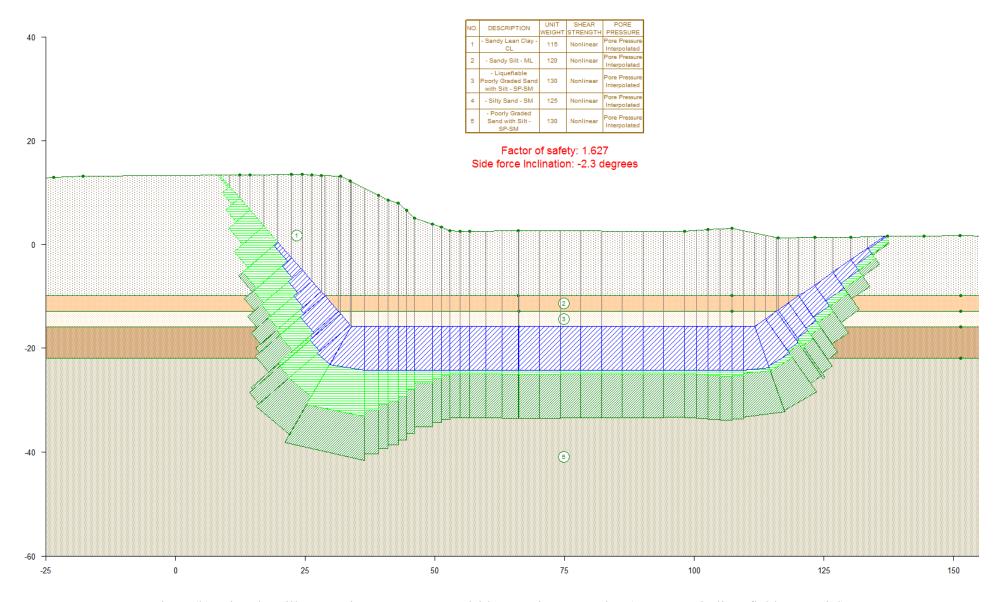


Fig 38(b). Lincoln Village Station 109+90 – Landside – Option 4: Wedge (PHI = 6.0 in liquefiable material)

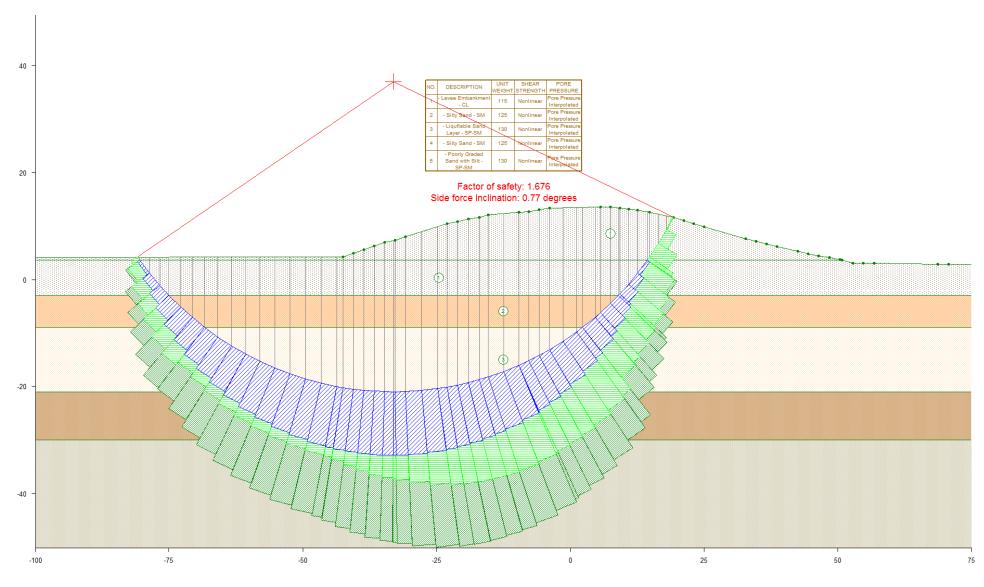


Fig F-39(a). Lincoln Village Station 159+48 – Waterside – Option 1: Circular (Sr = 207 psf in liquefiable material)

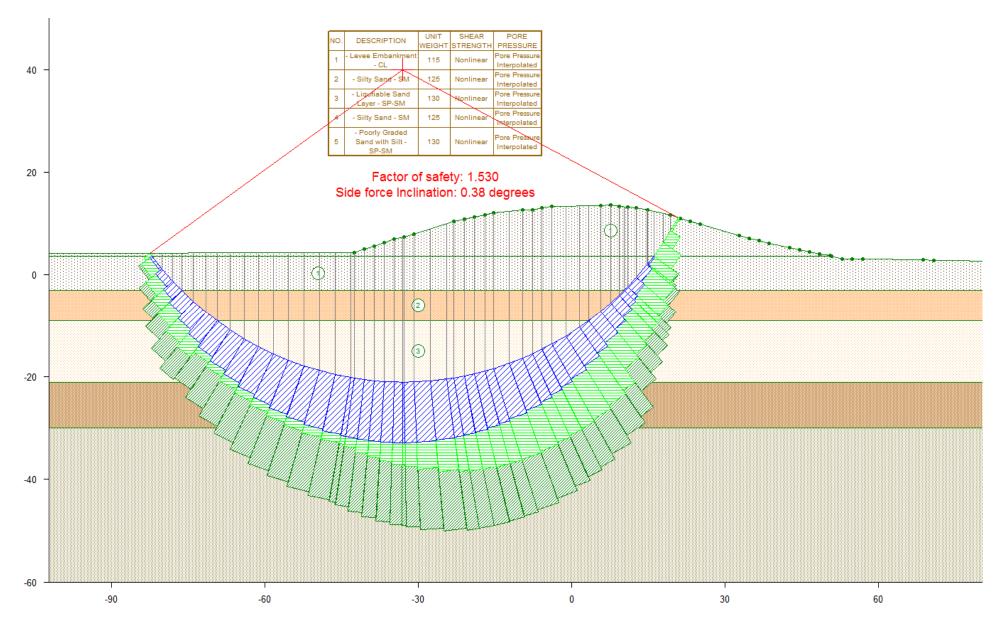


Fig 39b. Lincoln Village Station 159+48 – Waterside – Option 1: Circular (PHI = 5.1 in liquefiable material)

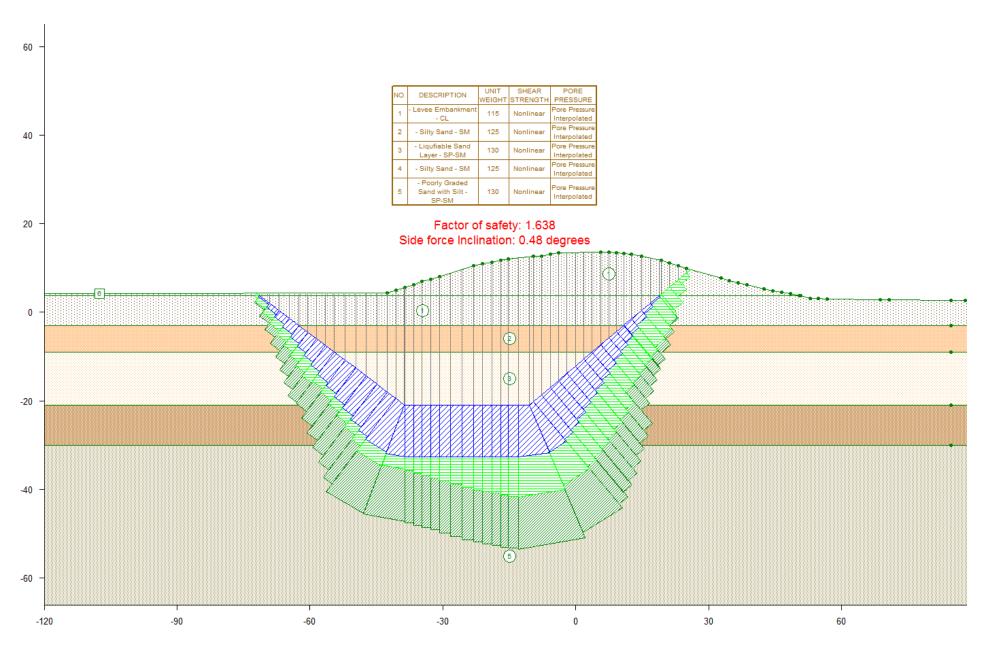


Fig F-40(a). Lincoln Village Station 159+48 – Waterside – Option 2: Wedges (Sr = 207 psf in liquefiable material)

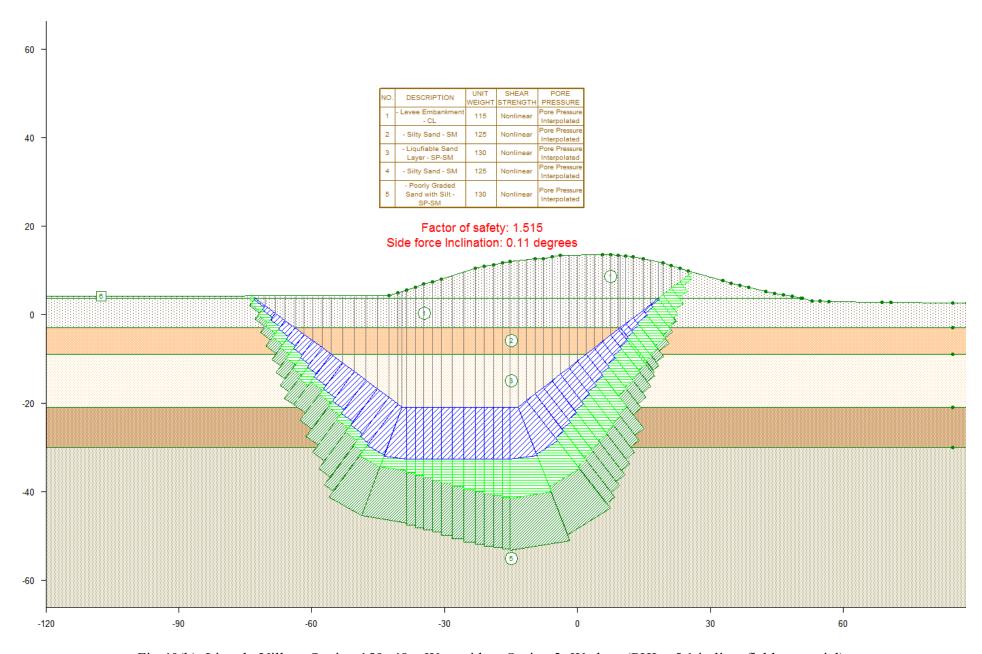
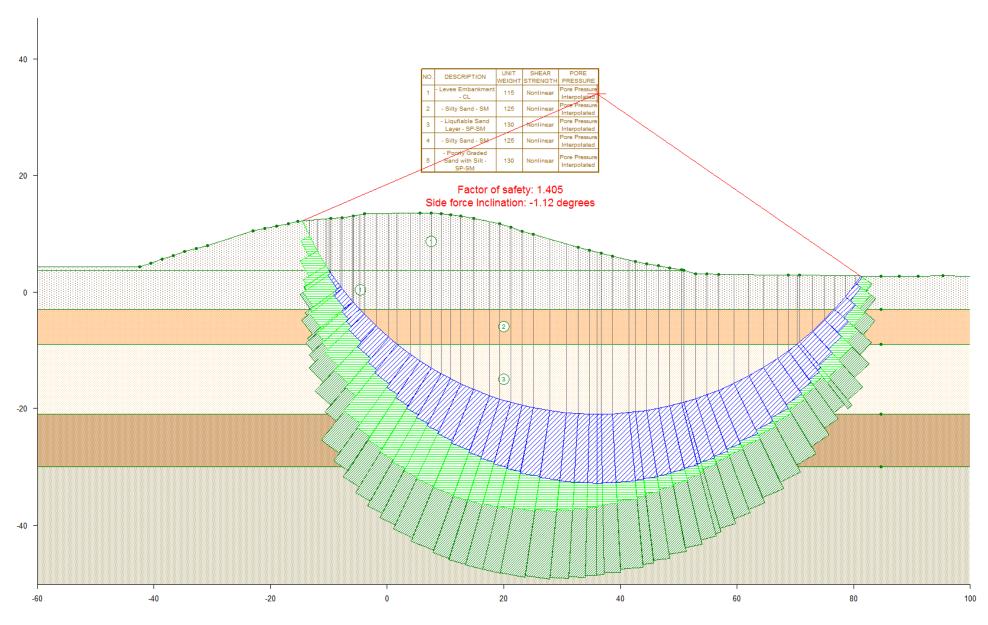



Fig 40(b). Lincoln Village Station 159+48 – Waterside – Option 2: Wedges (PHI = 5.1 in liquefiable material)

 $Fig F-41(a). \ Lincoln \ Village \ Station \ 159+48-Landside - Option \ 3: Circular \ (Sr=207 \ psf \ in \ lique fiable \ material)$

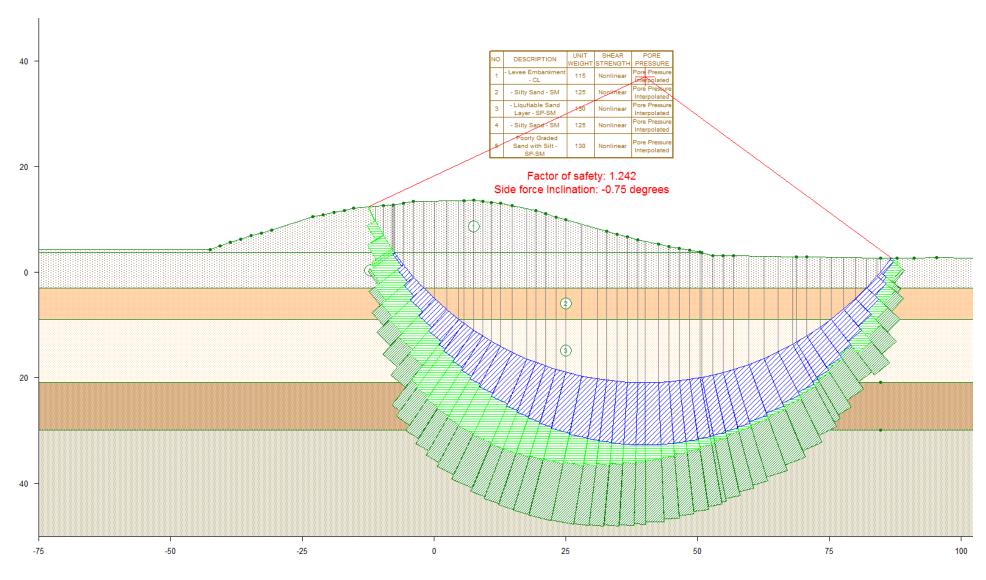


Fig 41(b). Lincoln Village Station 159+48– Landside – Option 3: Circular (PHI = 5.1 in liquefiable material)

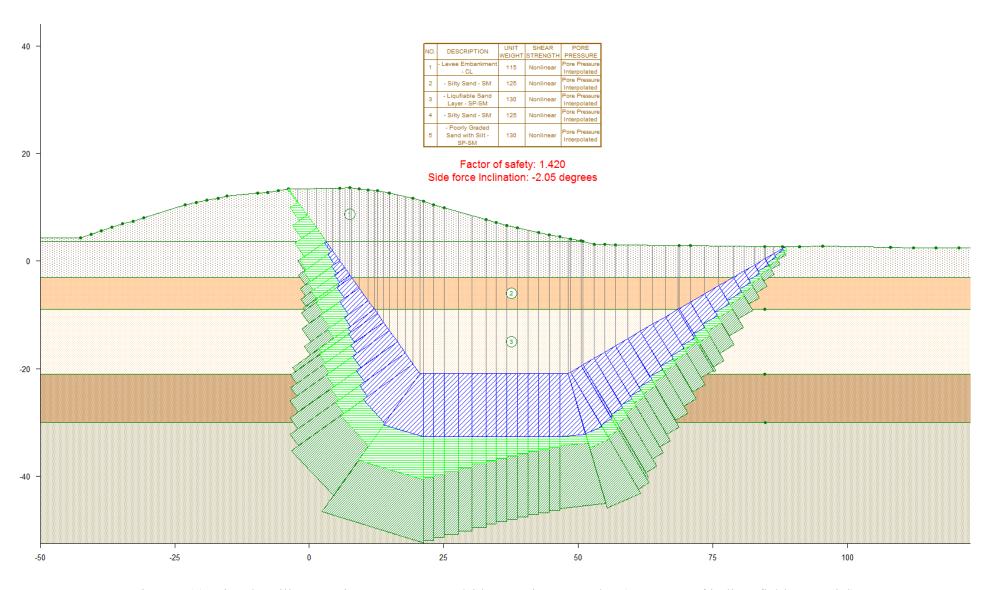


Fig F-42(a). Lincoln Village Station 159+48 – Landside – Option 4: Wedge (Sr = 207 psf in liquefiable material)

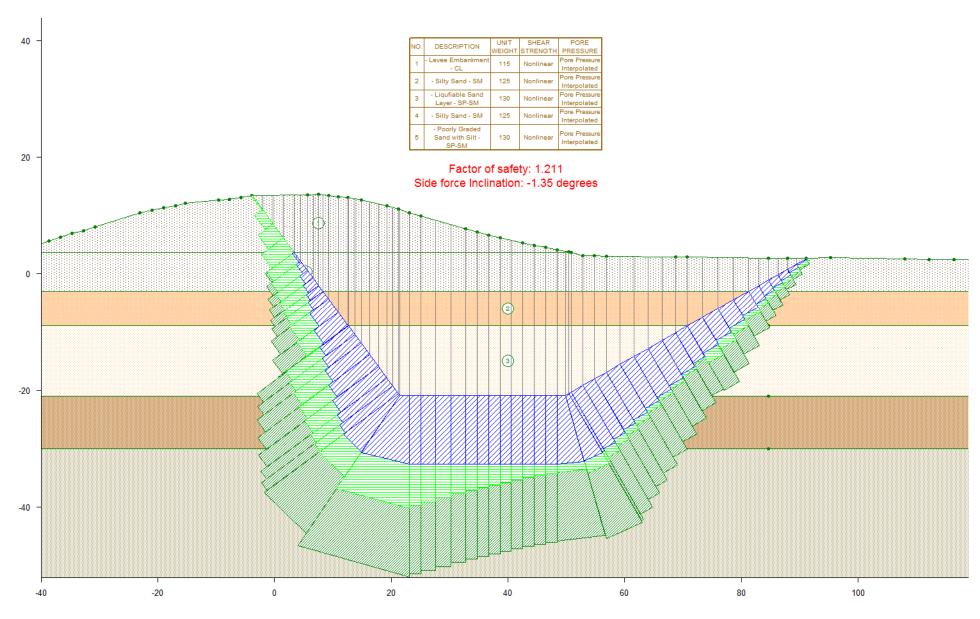


Fig 42(b). Lincoln Village Station 159+48 – Landside – Option 4: Wedge (PHI = 5.1 in liquefiable material)

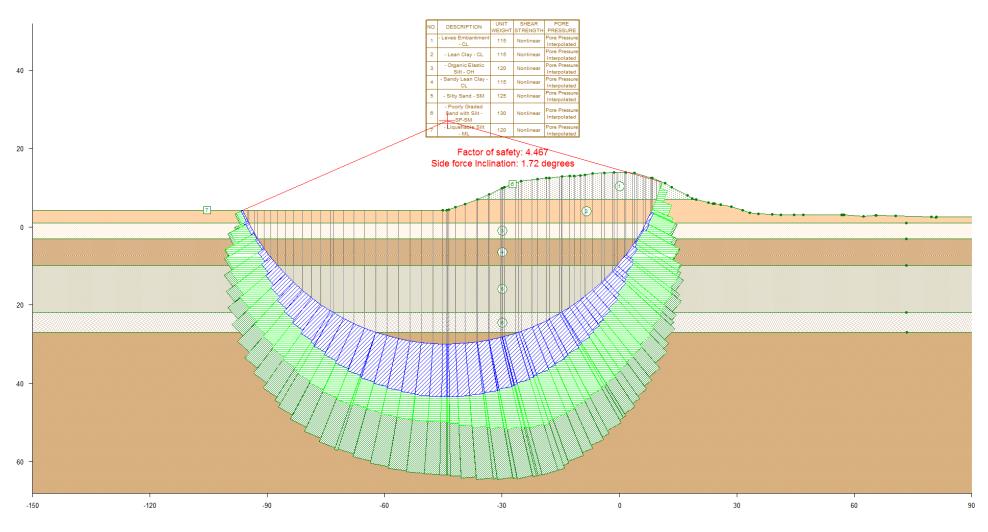


Fig F-43(a). Lincoln Village Station 164+99 – Waterside – Option 1: Circular (Sr = 224 psf in liquefiable material)

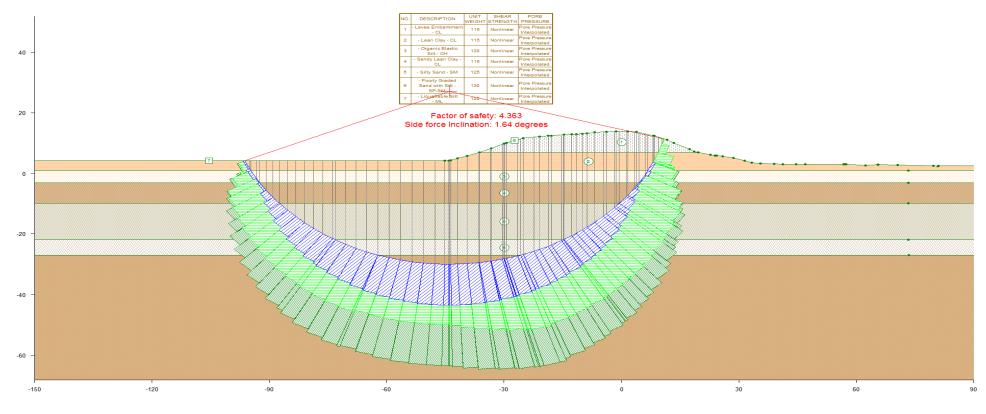


Fig 43(b). Lincoln Village Station 164+99 – Waterside – Option 1: Circular (PHI = 3.4 in liquefiable material)

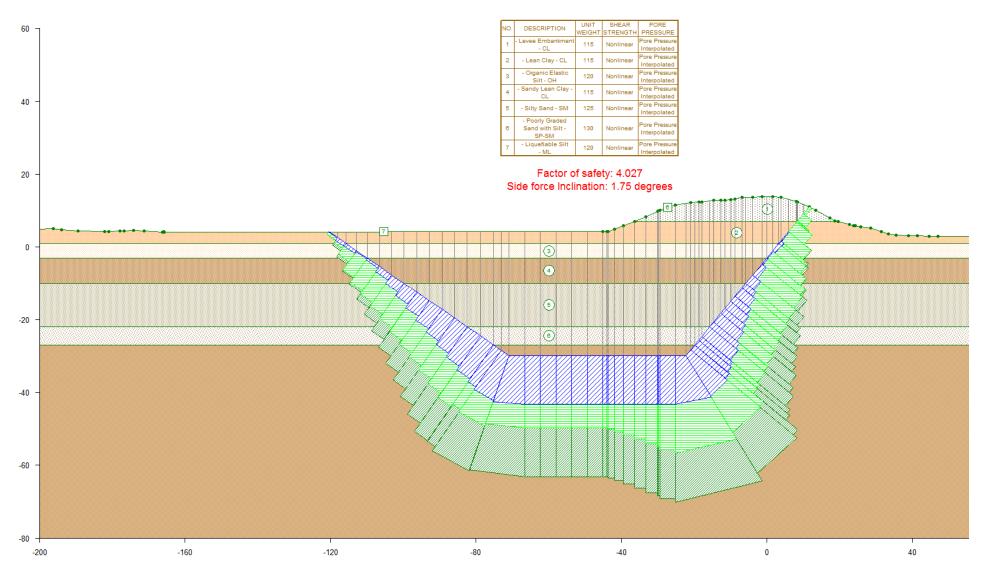


Fig F-44(a). Lincoln Village Station 164+99 – Waterside – Option 2: Wedges (Sr = 224 psf in liquefiable material)

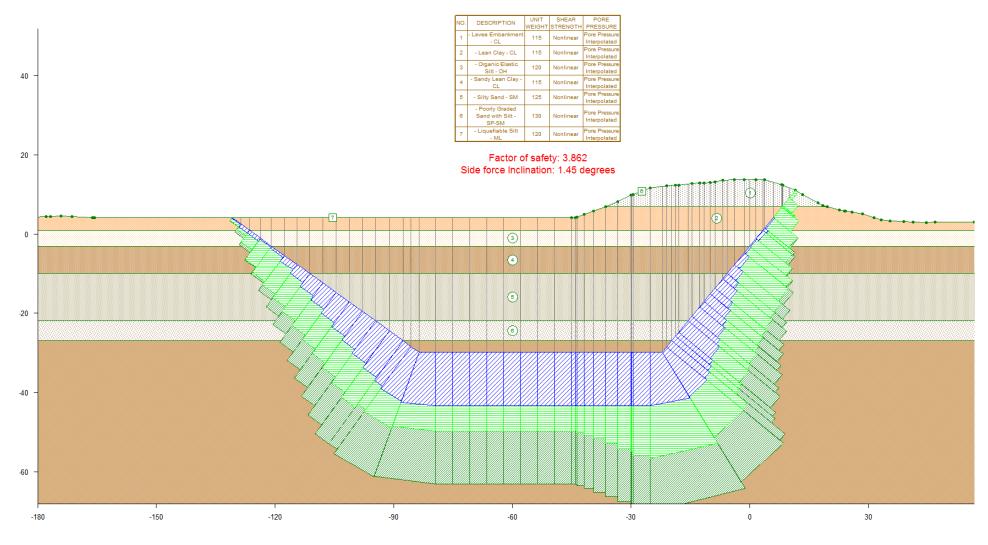


Fig 44(b). Lincoln Village Station 164+99 – Waterside – Option 2: Wedges (PHI = 3.4 in liquefiable material)

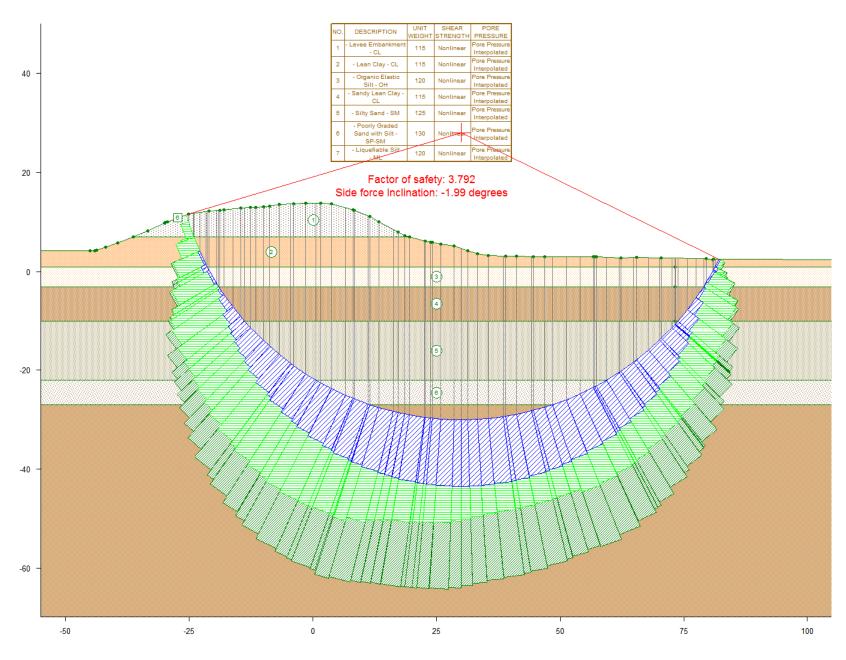


Fig F-45(a). Lincoln Village Station 164+99– Landside – Option 3: Circular (Sr = 224 psf in liquefiable material)

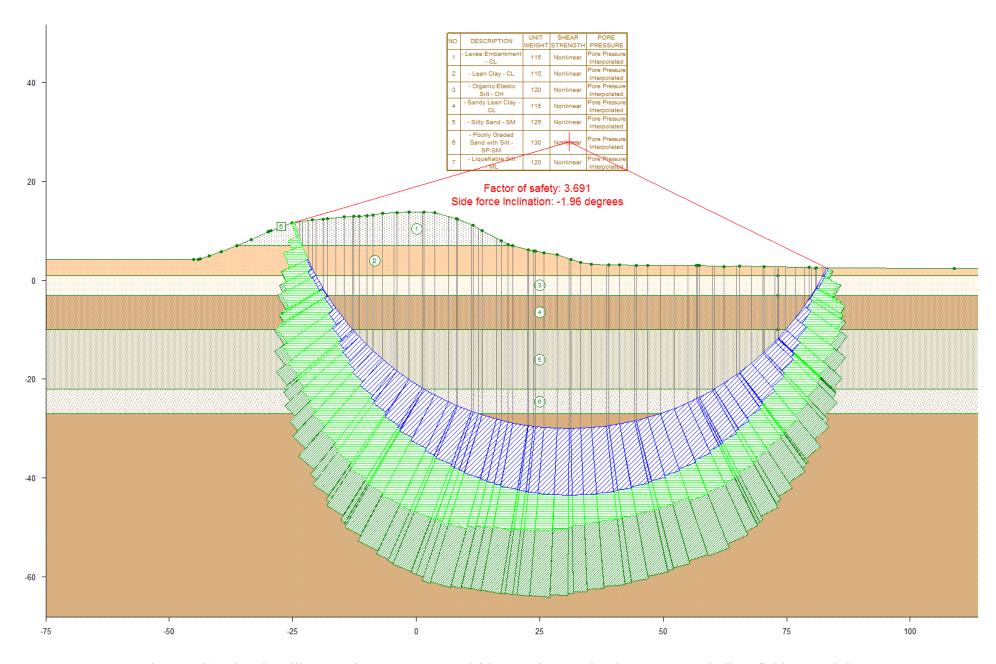


Fig F-45(b). Lincoln Village Station 164+99—Landside – Option 3: Circular (PHI = 3.4 in liquefiable material)

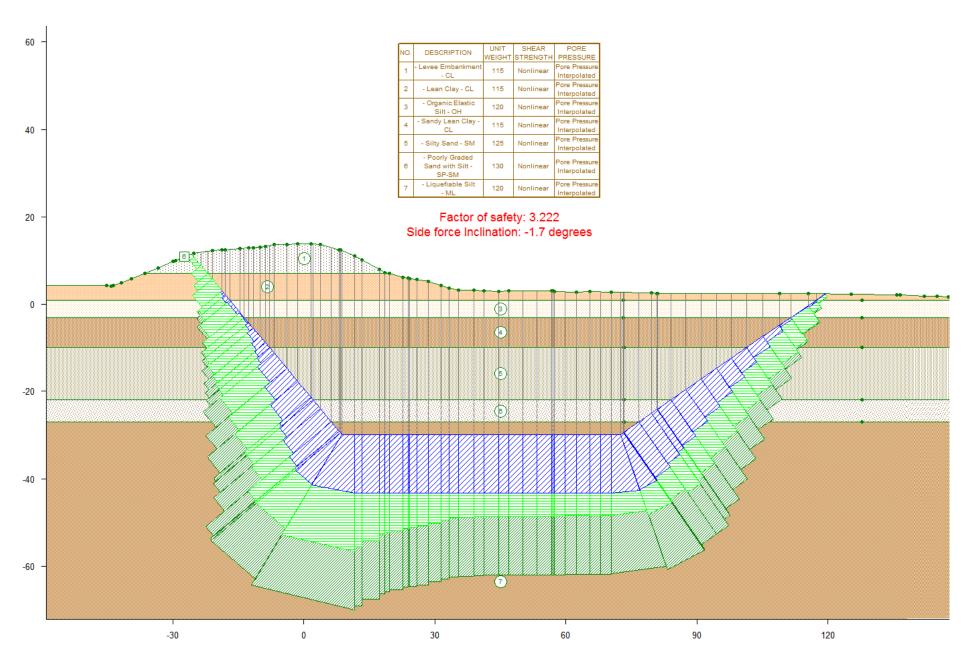


Fig F-46(a). Lincoln Village Station 164+99 – Landside – Option 4: Wedge (Sr = 224 psf in liquefiable material)

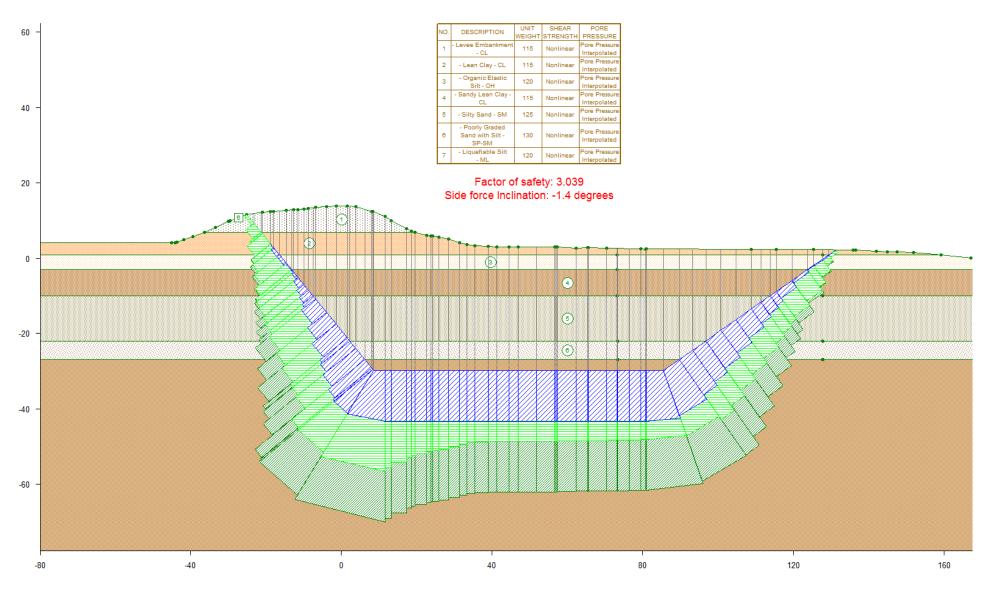


Fig 46(b). Lincoln Village Station 164+99 – Landside – Option 4: Wedge (PHI = 3.4 in liquefiable material)

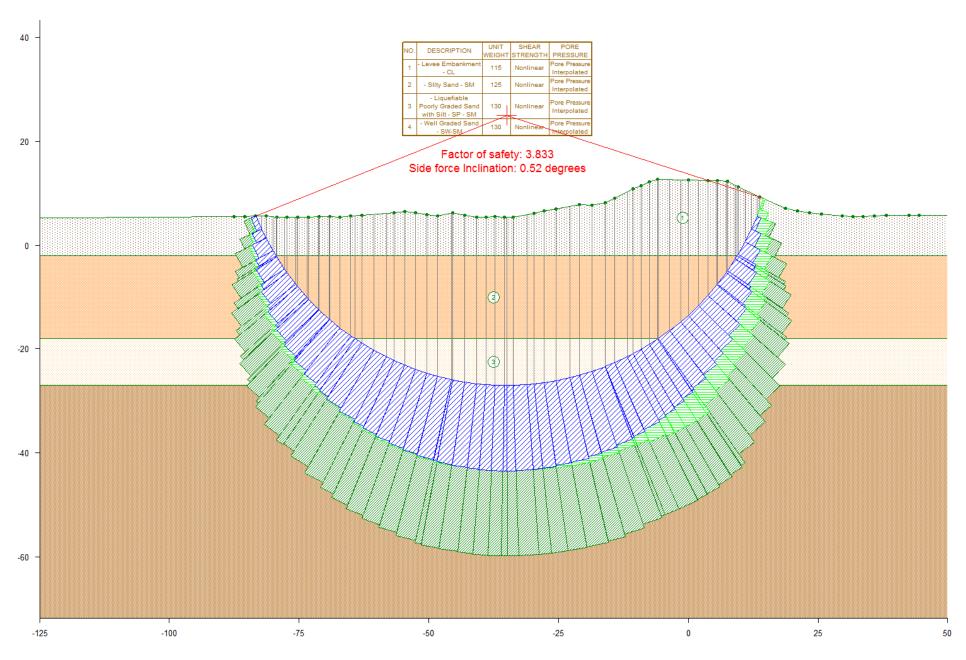


Fig F-47(a). Lincoln Village Station 201+51– Waterside – Option 1: Circular (Sr = 201 psf in liquefiable material)

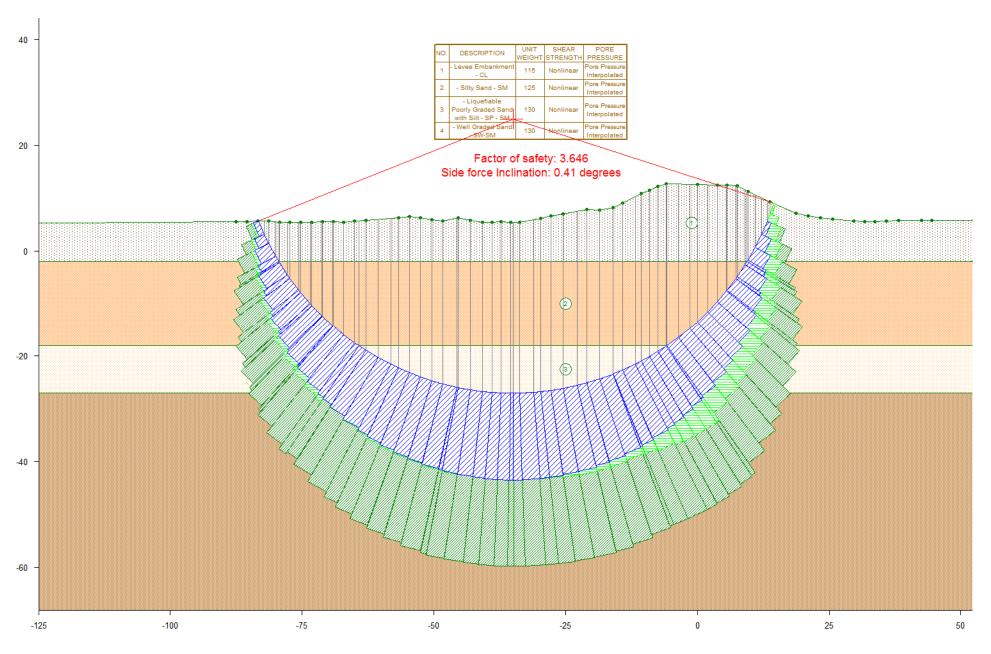


Fig 47(b). Lincoln Village Station 201+51– Waterside – Option 1: Circular (PHI = 4.7 in liquefiable material)

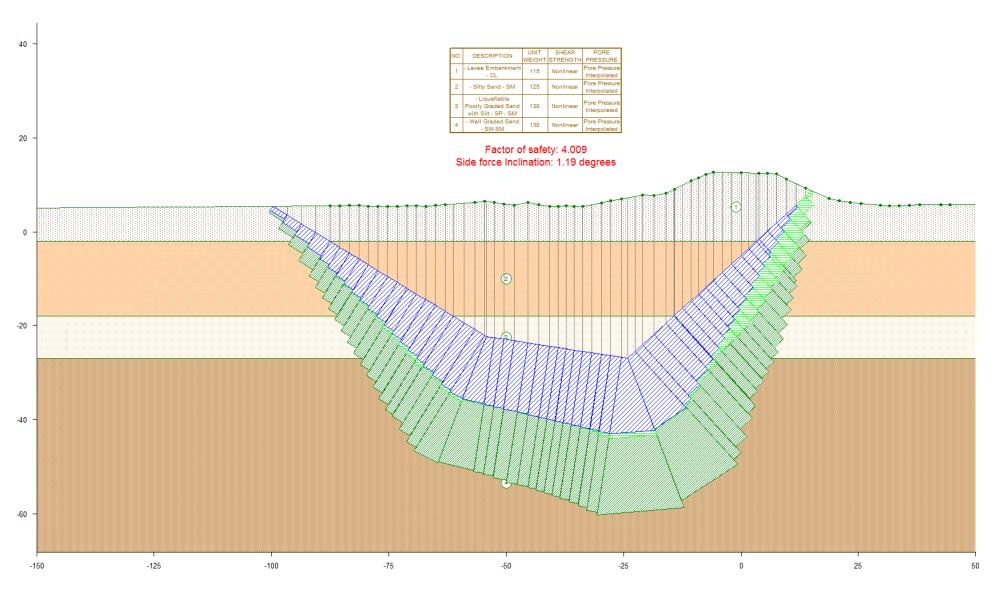


Fig F-48(a). Lincoln Village Station 201+51 – Waterside – Option 2: Wedges (Sr = 201 psf in liquefiable material)

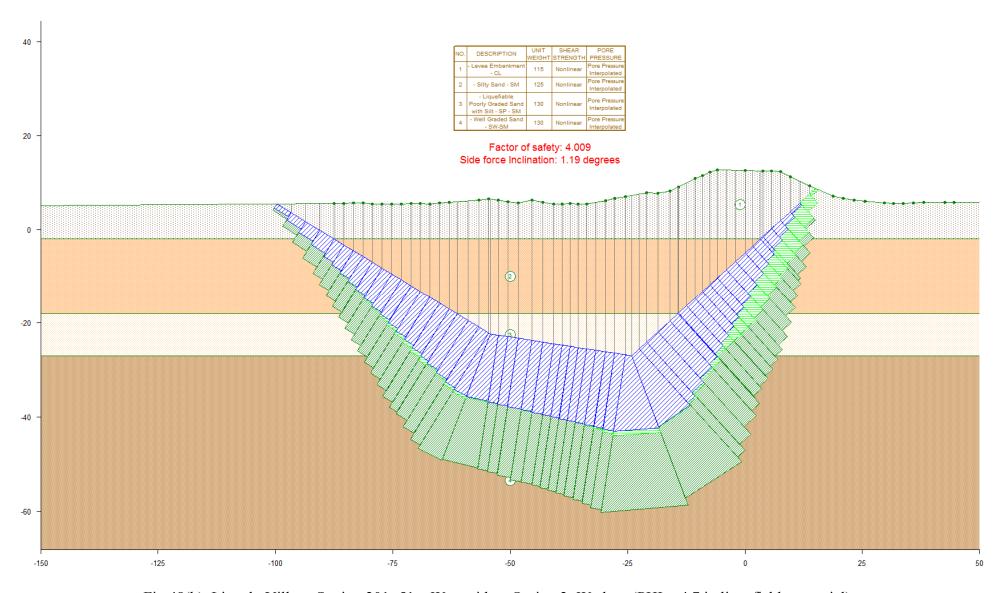


Fig 48(b). Lincoln Village Station 201+51 – Waterside – Option 2: Wedges (PHI = 4.7 in liquefiable material)

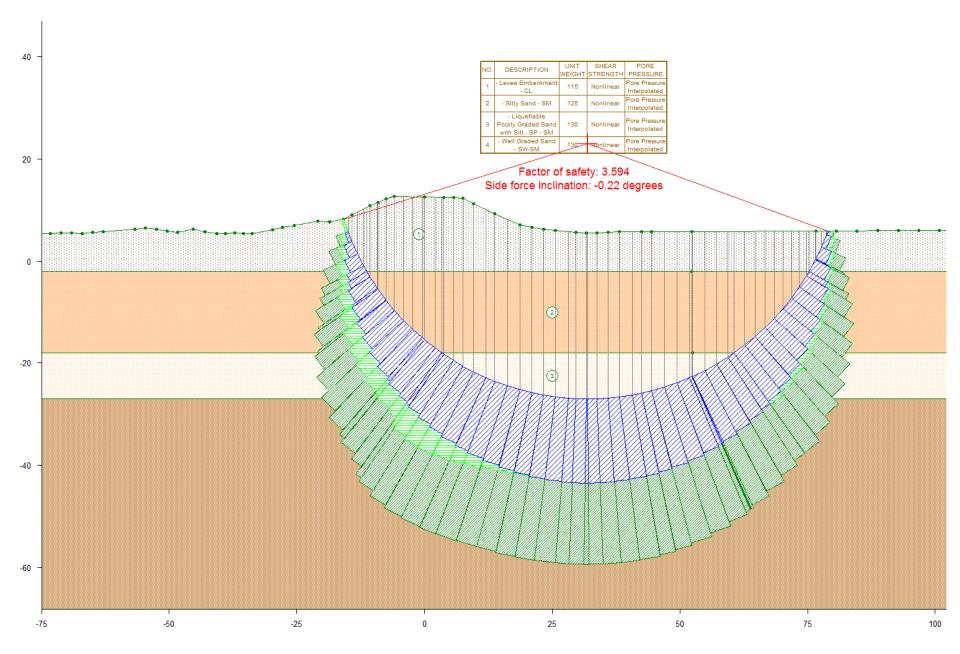


Fig F-49(a). Lincoln Village Station 201+51 – Landside – Option 3: Circular (Sr = 201 psf in liquefiable material)

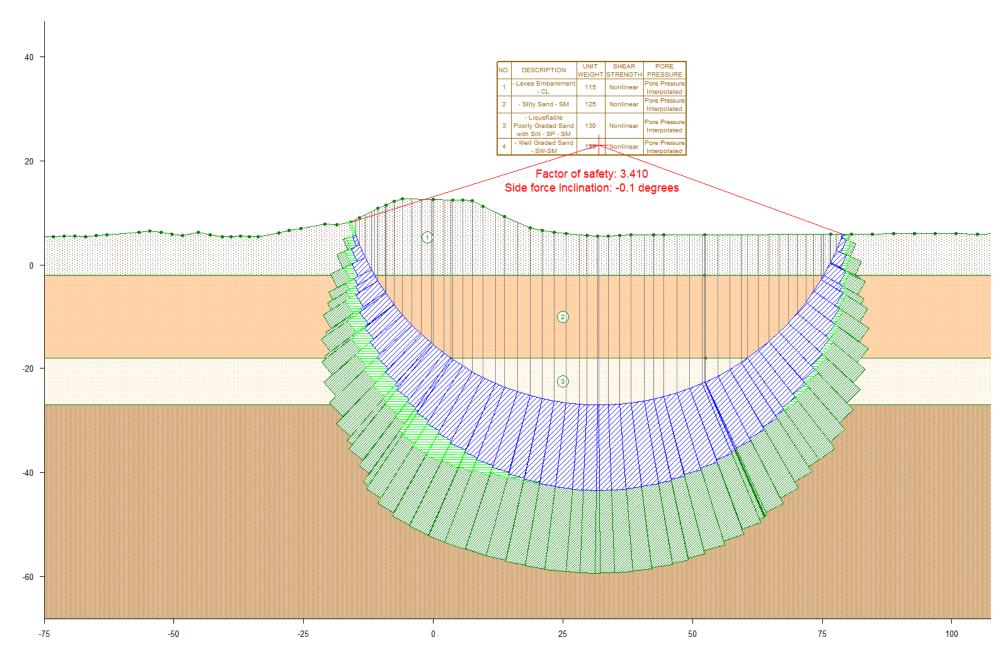
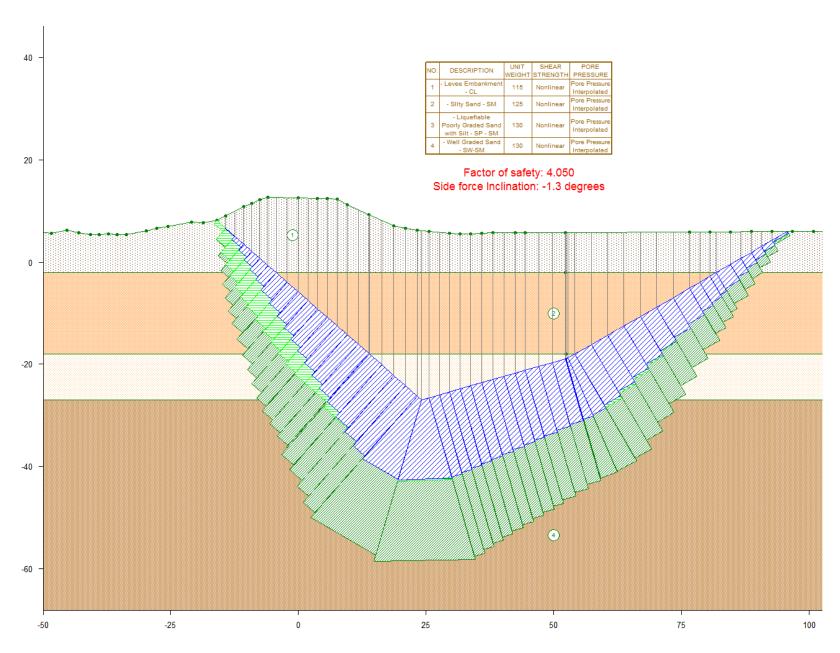
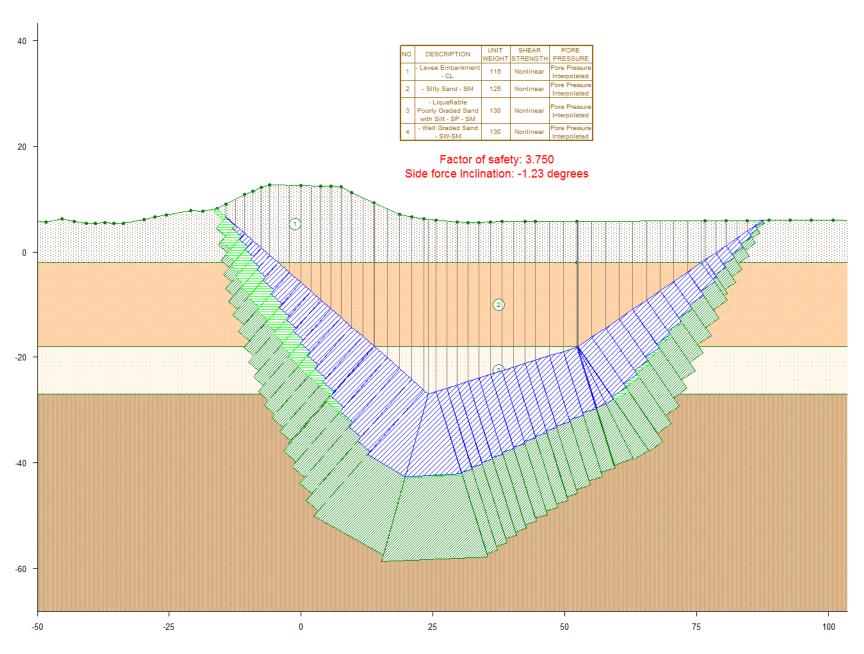
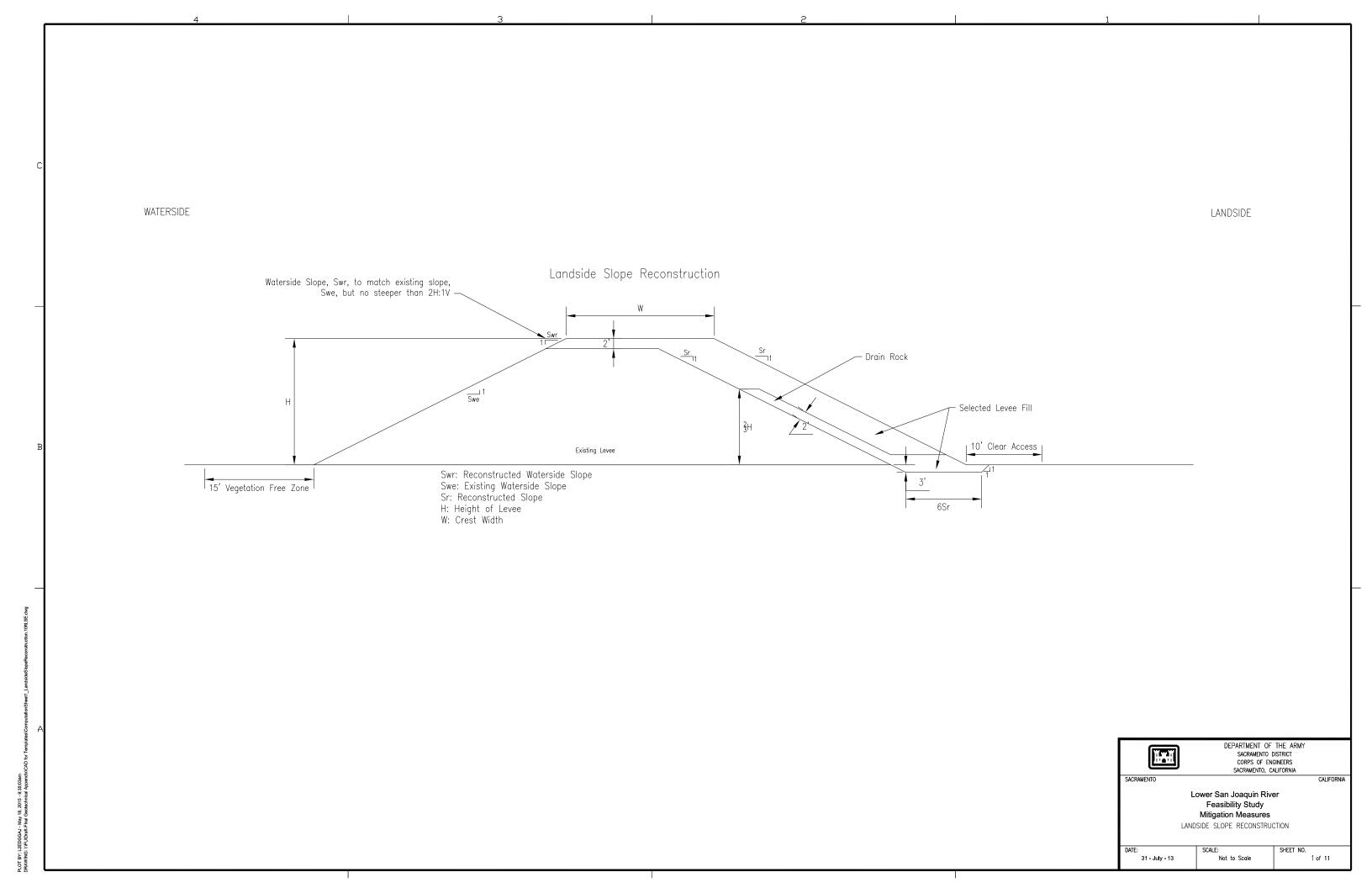
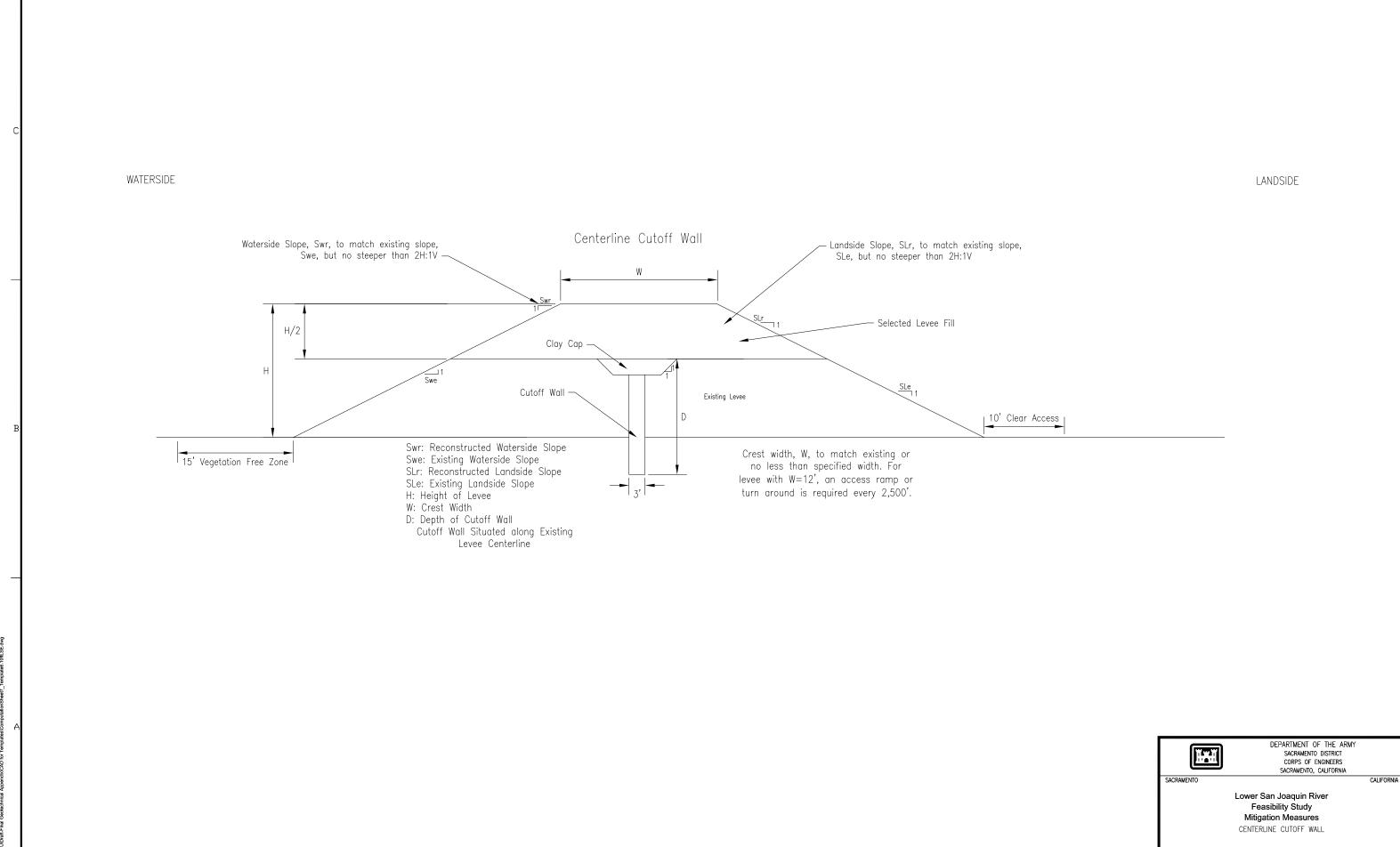



Fig 49(b). Lincoln Village Station 201+51 – Landside – Option 3: Circular (PHI = 4.7 in liquefiable material)

 $Fig F-50(a). \ Lincoln \ Village \ Station \ 201+51-Landside-Option \ 4: \ Wedge \ (Sr=201 \ psf \ in \ lique fiable \ material)$

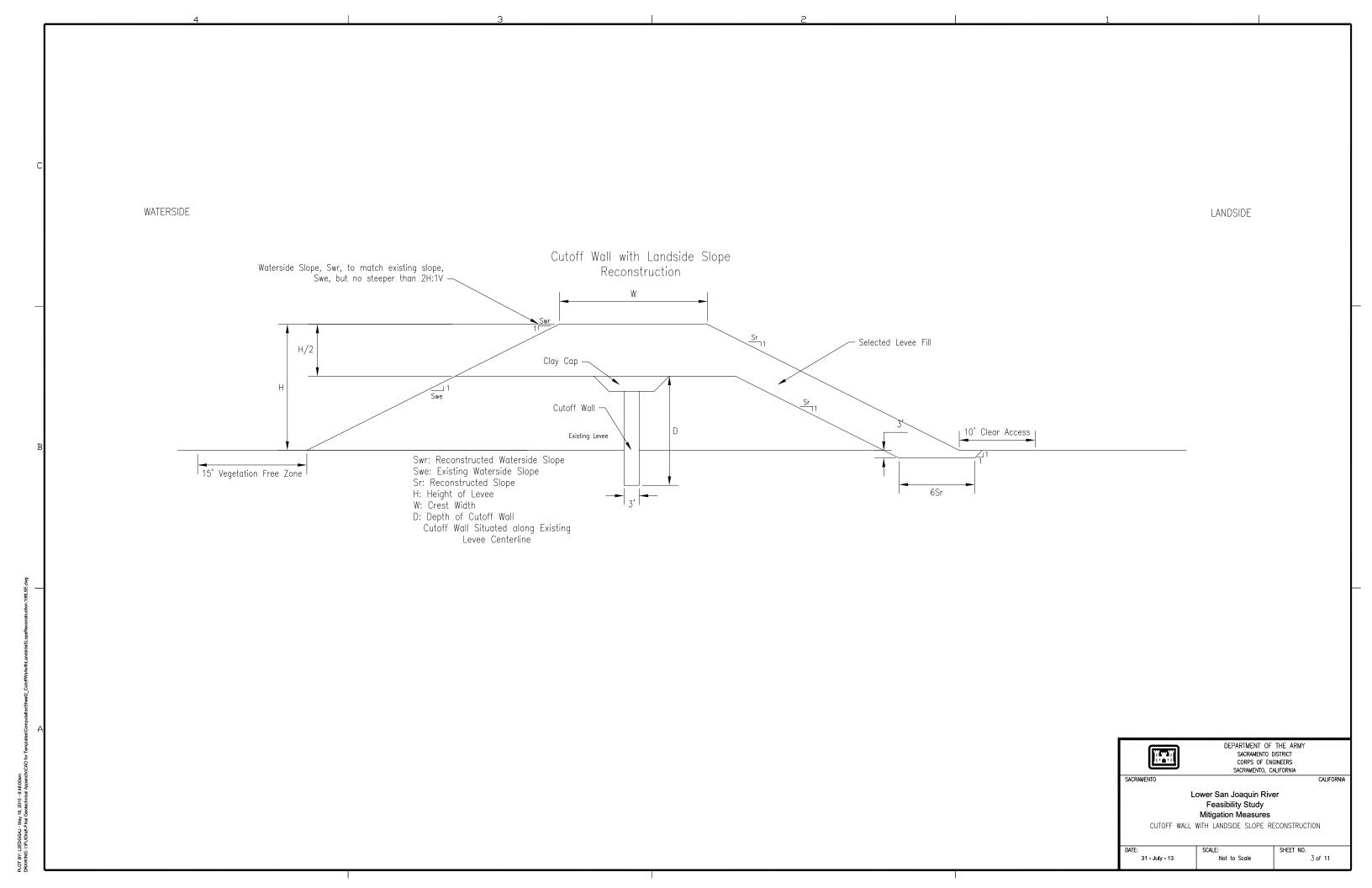



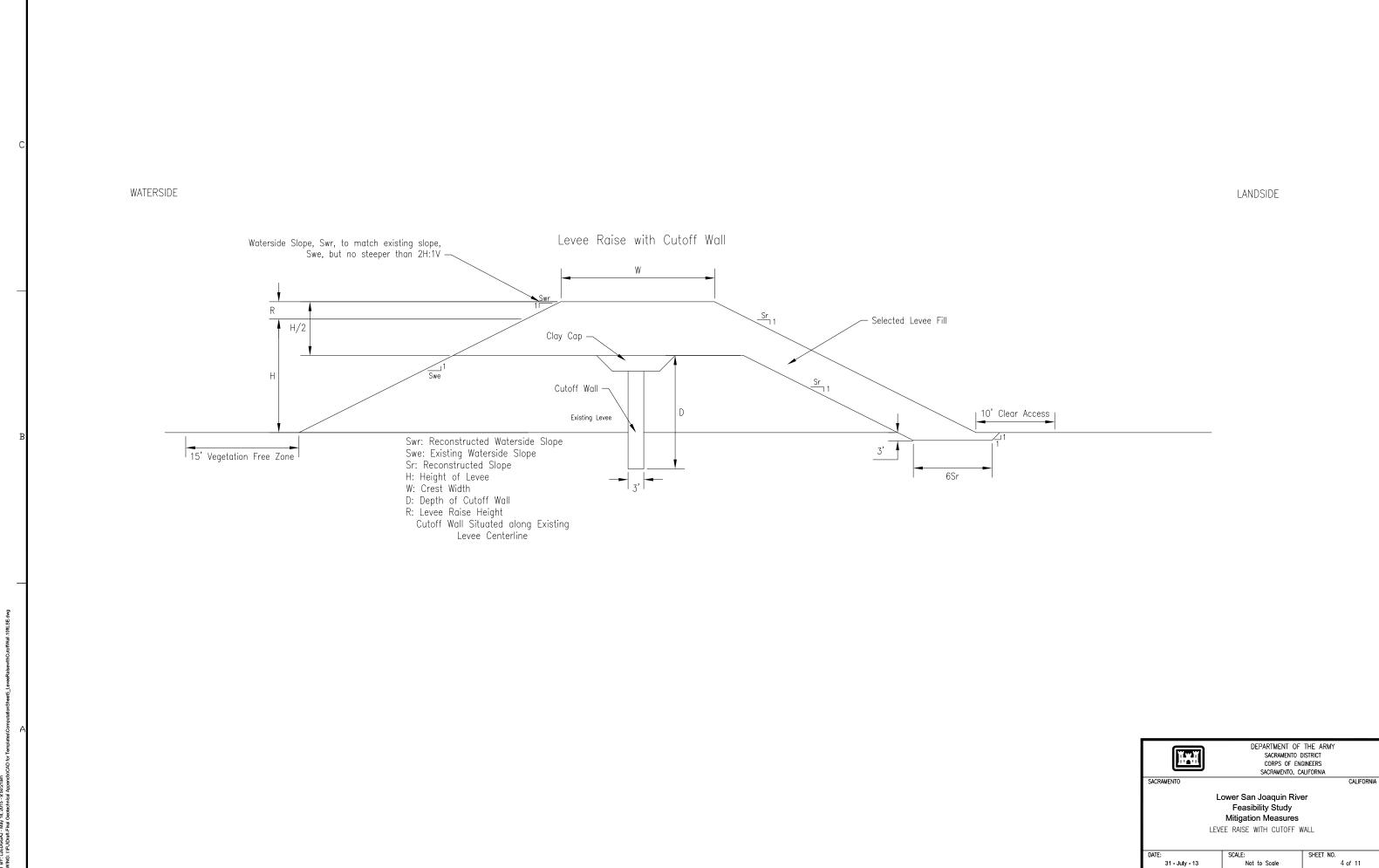

Fig 50(b). Lincoln Village Station 201+51 – Landside – Option 4: Wedge (PHI = 4.7 in liquefiable material)

LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY

GEOTECHNICAL REPORT

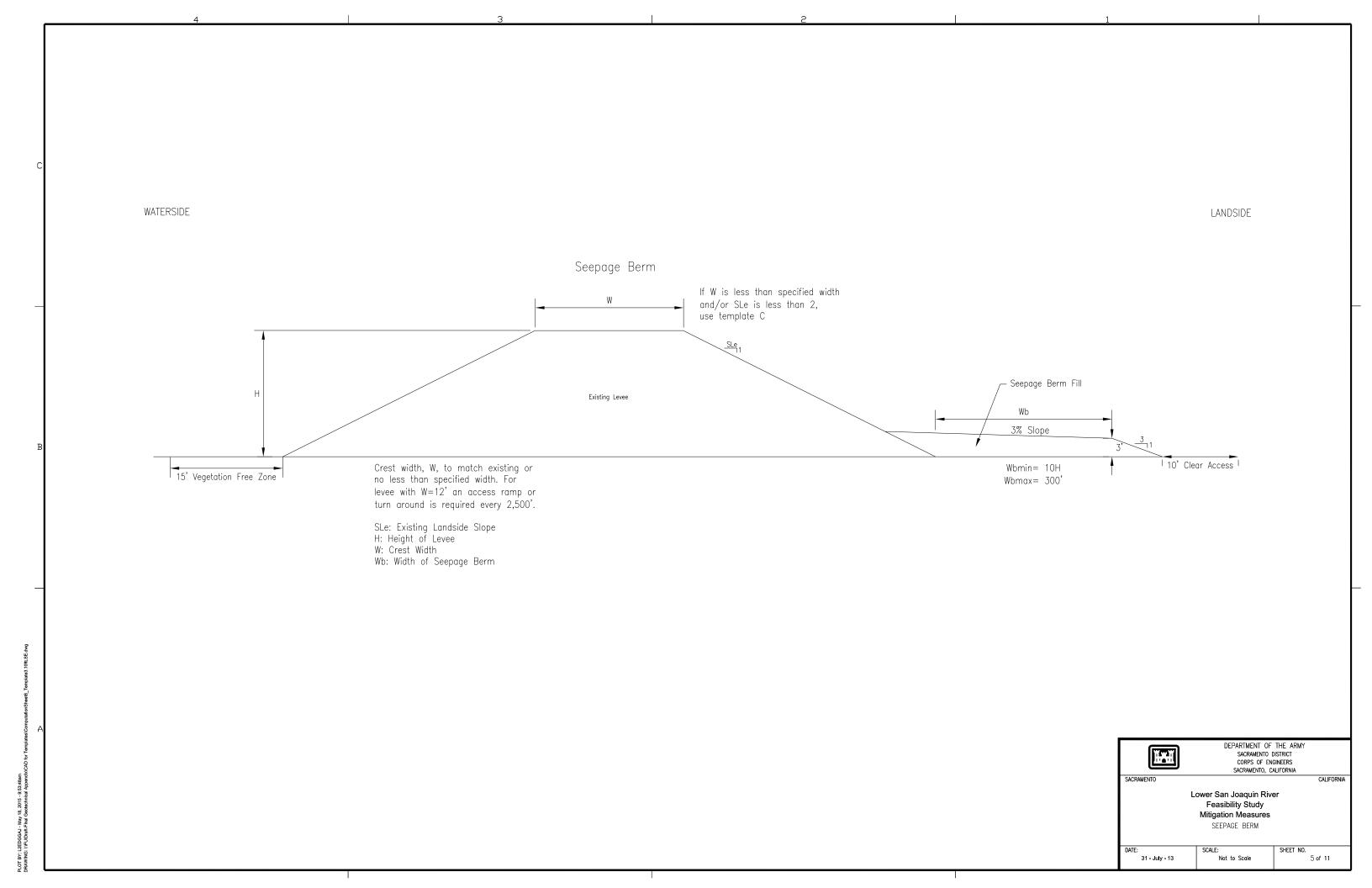
ENCLOSURE E5 TEMPLATE OPTIONS FOR ASSIGNED MITIGATION MEASURES

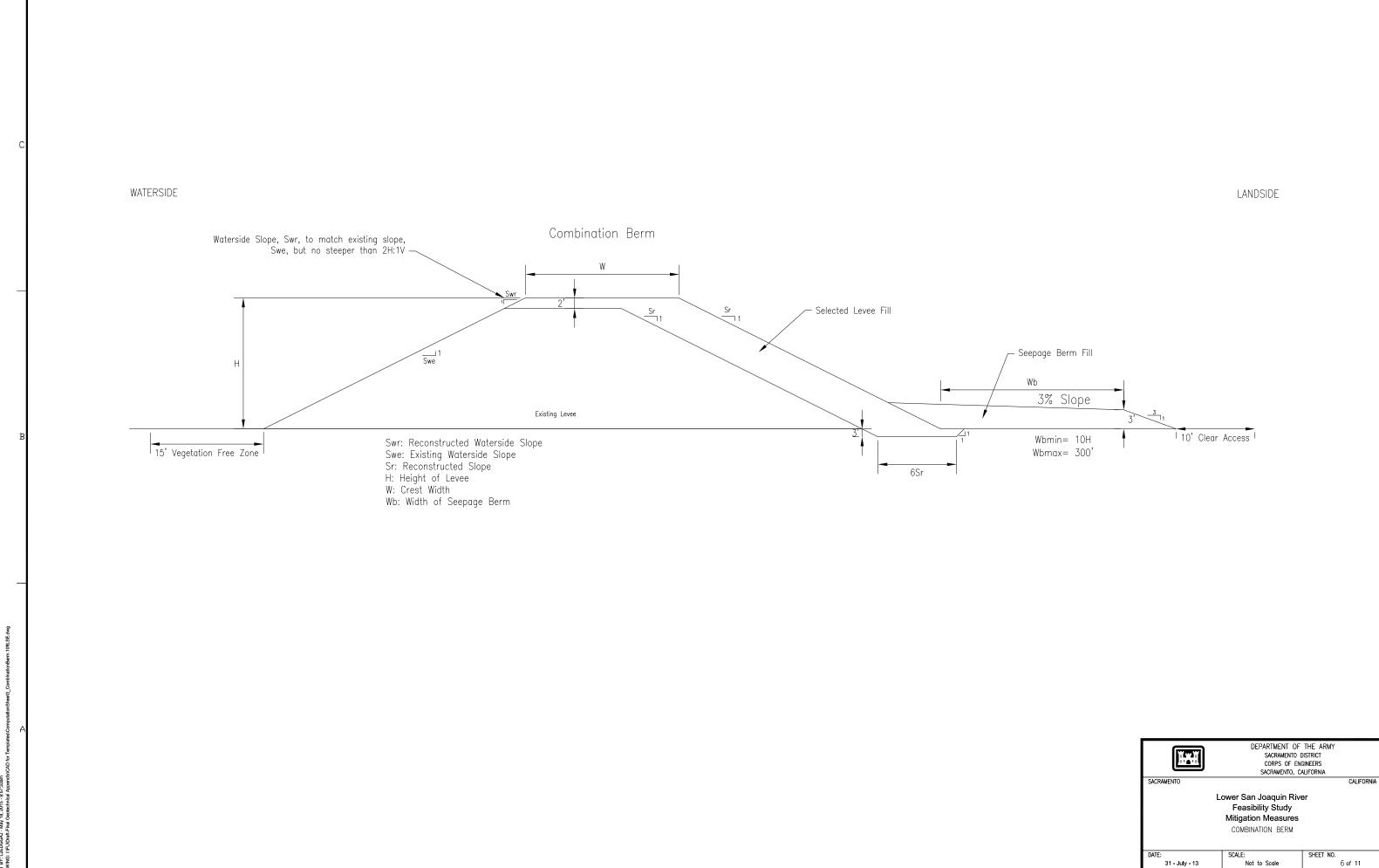


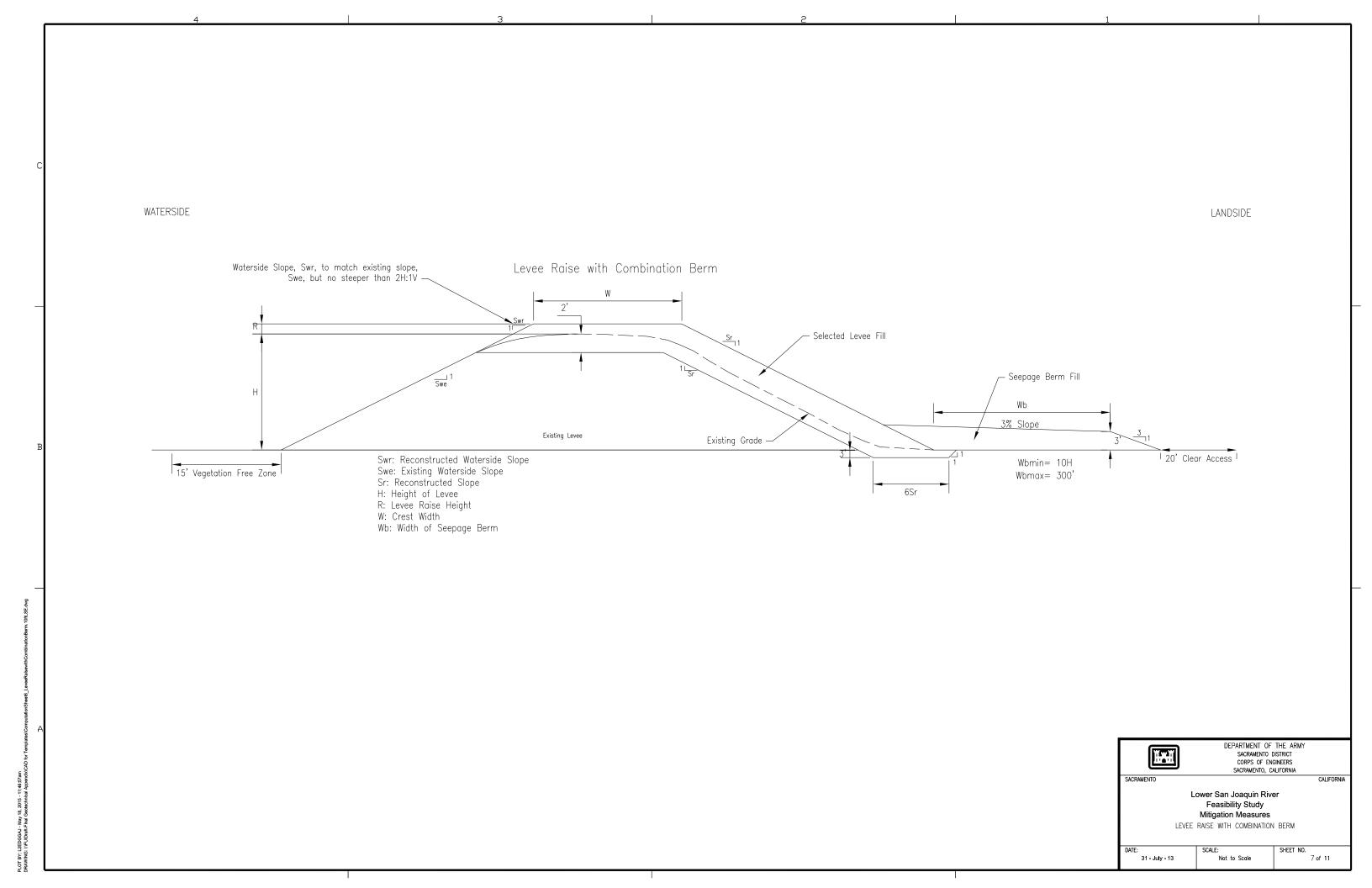

31 - July - 13

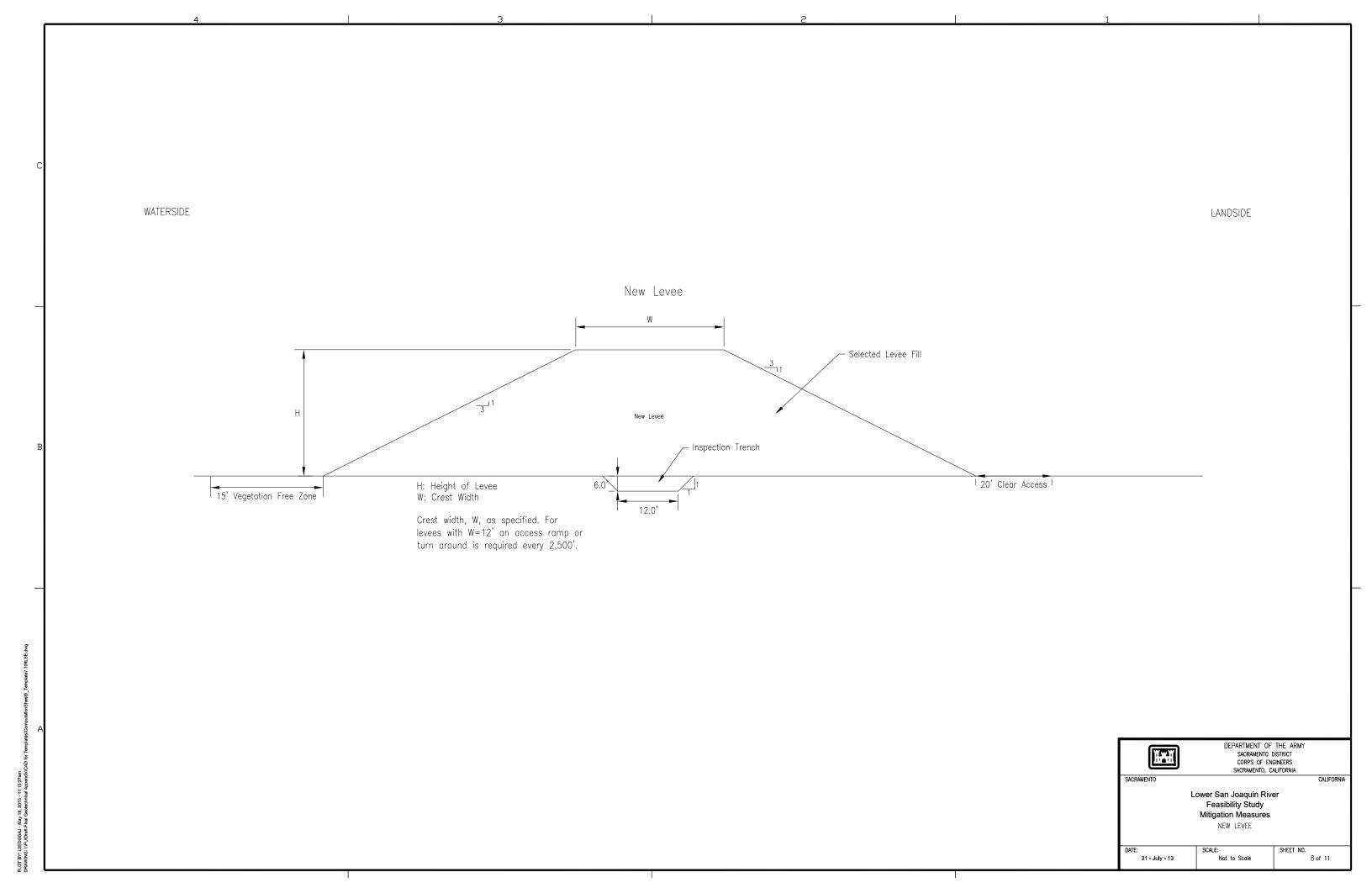
Not to Scale

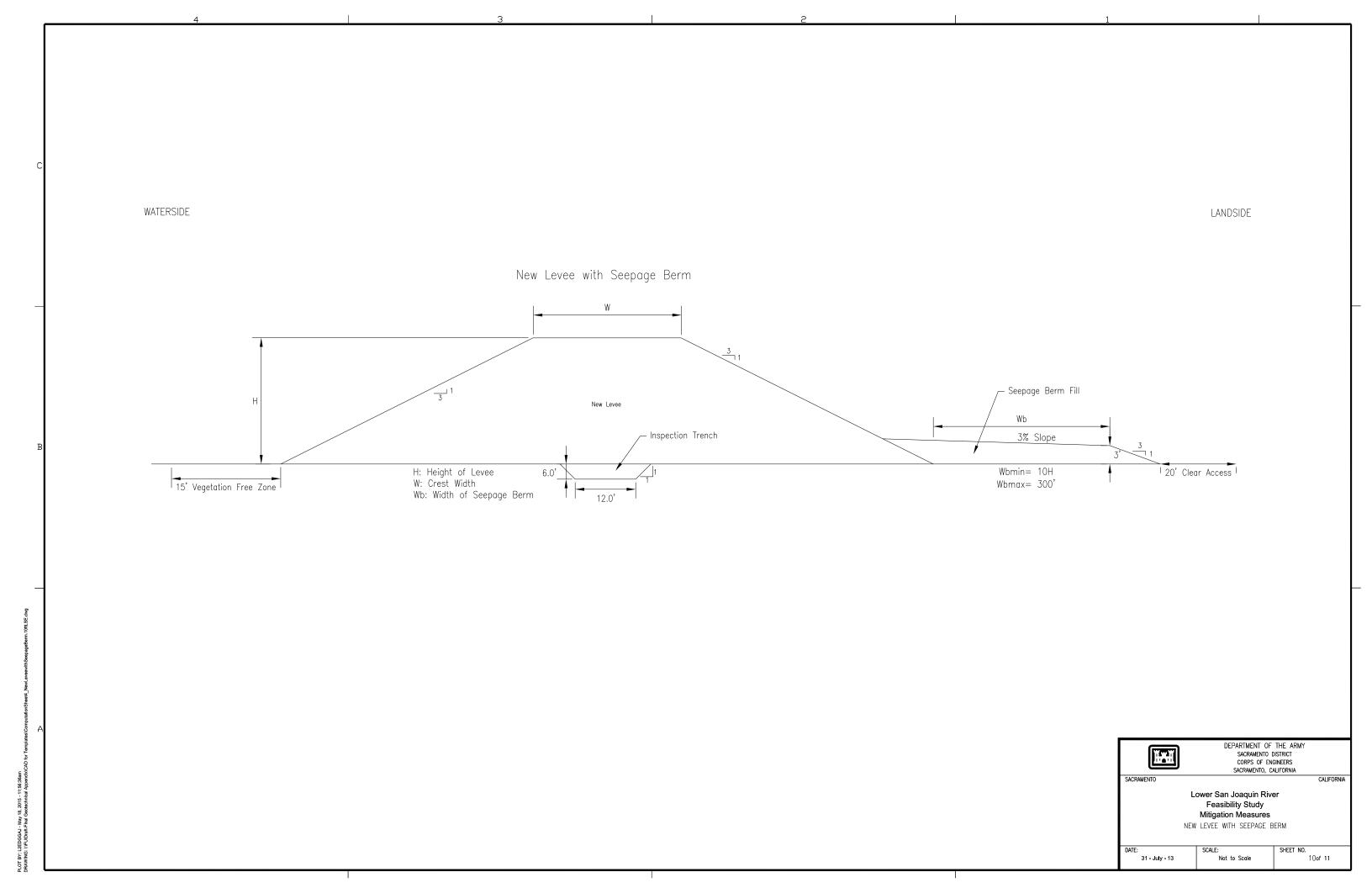
2 of 11


PLOT BY: L2EDGGAJ - May 18, 2015 - 9:46:03am




31 - July - 13


Not to Scale




31 - July - 13

LOWER SAN JOAQUIN RIVER FEASIBILITY STUDY

GEOTECHNICAL REPORT

ENCLOSURE E6

MEETING MINUTES FOR

EXPERT ELICITATION

DAY 1

Project: American River Common Features GRR

Date: Wednesday, June 17th, 2009

8:00 am to 5:00 pm

USACE - Sacramento District,

Room 1424

Facilitator: Michael Ramsbotham (MDR), USACE

Meeting

Called By: Mary Perlea (MPP), USACE, Project Geotechnical Engineer

ATTENDEES

See Attendance Record (to be attached at end of finalized meeting minutes)

MEETING MINUTES

Call to order at 8:15 am

The meeting was called to order at approximately 8:15 am by the Facilitator, Michael Ramsbotham (MDR).

Introductions and Sign-In

A few minutes was spent on introductions and attendees signing the attendance list.

Identify EOE Team / Affiliation and Observers / Participants

The following attendees were recognized as Panel Members, meaning they would be voting on various items during this 2-day meeting:

- Paul Devereux, RD1000
- Les Harder, HDR, Inc.
- Mike Inamine (Mike I.), DWR
- Ed Ketchum, US Army Corps of Engineers
- Steve Mahnke, DWR
- Henri Mulder, US Army Corps of Engineers
- Mike Nolan (Mike N.), Consultant to City of Sacramento Utilities Department
- Tom Smith, Ayres Associates
- Mohsen Tovana, US Army Corps of Engineers

The following observers participated at the meeting

- Peter Ghelfi, SAFCA
- Jesse Hogan, US Army Corps of Engineers
- Dan Tibbitts, US Army Corps of Engineers
- Kevin Knuuti, US Army Corps of Engineers
- Jeff Taylor, US Army Corps of Engineers
- Joe Sciadrone, US Army Corps of Engineers

Introductory Comments by Attendees

Mary Perlea opened the meeting by requesting introductory comments from the audience.

Kevin Knutti thanked everyone for their time in being there. He stated he realized everyone's schedules are busy and really appreciates them making time for this meeting. Dan Tibbitts concurred with Kevin's comments and advised he hopes this meeting will bring about resolution on various tasks in which there is currently little-to none criteria in setting up judgment of the levee performance curves.

Pete Ghelfi commented that he is attending the meeting as an observer and will try to play that role. He feels it is important to be able to see within the black box a little bit and welcomes the opportunity to work together.

Kevin added that the Corps' Sacramento District is taking the lead for the Corps on a couple of items. It is recognized that this is one area where the Corps' policy has problems. While this issue is recognized by some, it

will allow further discussion with others within the Corps to begin refining the Corps' policy.

Ed Ketchum concurred with Kevin's comment. He included the statement that this is very important work and the values that come out of this meeting will affect the national economic plan. This has a huge influence on Benefit/Cost ratio and everything else.

This part of the meeting concluded with Steve Mahnke noting that there is a partnering of many of the attendees, so it is very important to see this issue from the Corps' perspective.

Introductory Comments by Facilitator

MDR led the group in an informal discussion regarding the different meeting elements. Those discussion points included:

The Purpose/Expected Outcome of the 2-Day meeting:

- The purpose is to assist the Corps in development of the geotechnical judgment curves for the American River Common Features GRR (ARCF-GRR) project
- MDR added the judgment curves impact Economics and inquired as to the expected outcome. It was noted that Melanie Garland will provide meeting minutes of the 2-day discussion and Mary will provide a report that captures the summary, conclusions and recommendations. In addition, Mary will include revised judgment and fragility curves for the ARCF-GRR. The outcome of these discussions may lead to policy change, new Corps' guidance and/or a revised ETL.

Rules of Engagement

- Directions to accommodations was provided
- If a break is needed, the group was encouraged to suggest it
- MDR stated the discussions should be informal as he wanted everyone to be engaged and provide frank input freely
- MDR added that he hoped to see general information to final analysis and specific circumstances with the American River
- Side bar conversations were to be minimal
- Avoidance of "group" think and independent voice of opinions was supported

Review of Agenda / Scope

A brief review of the agenda and scope of discussion was held

Questions and Answers

MDR led the attendees in an overall questions and answers period to familiarize themselves more on the general topic at hand. This was done to gain a better understanding of the role they were asked to play. The following discussion took place:

Seepage and stability was brought up. Mary clarified they are only discussing judgment curves here as the seepage and stability components were straightforward. Mary added that the intent was to discuss poor performance first and then see if we can come to conclusion on chances of failure. Ed feels the seepage and stability will need to be discussed as well. Mary responded that they will not be left out; however, they will not be judged in this forum. She iterated that the final will include all of them, but the geotechnical analysis is already known and is not based on subjective discussion. Mary's scope is to decide on judgment curves first.

Les Harder commented that he assumed "failure" would be clarified. Mary responded by saying that "failure" equals poor performance or breach. MDR added that this may continue to be refined during the meeting. If we are coming up with judgment curves on vegetation, encroachment, etc., it will depend on how robust the levees are. They may have a different set of curves for the levee based on this and seepage/stability. Mary stated information will be provided. Judgment (erosion, penetration, vegetation, encroachment) is what Mary needed the full panel for. The others have already been decided. Then, there is likelihood of failure being discussed.

In the geotechnical analysis that includes stability, seepage and judgment, Mike Nolan inquired if judgment is weighted the same as seepage and stability, or if its weighting can be reduced in the risk-based / FDA model. MDR responded that the hope is to get into this

more in depth as they look into poor performance after taking a look from the judgment perspective. It was noted that FDA uses the total combined curve. Ed stated weighting will likely be based on folks' past experience. Pete added that in this forum, the group was hoping to make a judgment on judgment.

Mary discussed some of the work that had already been done by URS in regards to Erosion Analysis. She conveyed that she did not believe the Corps provided URS with the information needed for the evaluation, so erosion analysis will likely need to be revised. URS identified the highly erodible area which was considered by Mary on the initial judgment curves.

Ed asked if recommendations could be made to Headquarters (HQ) based on this meeting. Mary answered by stating this is the first time this has been done. The conclusion will be included in the CF GRR study that will be provided to the Headquarters, but the scope is not to provide recommendation to the Headquarter policies.

Paul Devereaux questioned whether the current procedure was over predicting or under predicting failure? Mary advised she provided all preliminary curves already. The curves will be revised based on the panel recommendation.

Henri Mulder asked about the current guidance ETL. Dan responded by advising him yes, the current guidance ETL 1110-2-556 was being used, however, it is only one paragraph regarding the judgment fragility curves and not much guidance provided. It is expected the guidance ETL will be revised, but in the meantime, that was part of the purpose for the 2-day meeting.

- At this point, MDR noted the discussion had gotten off track and reminded the group, that while flood fighting had been a huge discussion, the purpose was to resolve the judgment curve issue. This effort that includes erosion, vegetation, penetration and encroachment was a difference that he had seen in previous efforts. As far as he could tell, it had never been done consistently. In his opinion, whoever analyzes the "without project" conditions needs to be the same person to analyze it for "with project".

Mike Inamine questioned why the group wasn't just looking at failure and what in the FDA model came close to this. Ed responded it has a national impact so the benefits from this project will be for others as well. Mary added that poor performance is indicative of a weaker levee for future events and may lead to levee failure. While it may not be a "failure", it has the propensity for failure and damages. Mike I. countered that they are looking at a fuzzy area that would result in a breach or such poor performance that it would result to what?

Les added to combine them equally as the curves should be scaled the same. Mike I. commented that looking at poor performance as definition while Mike N. advised performance to him is no inundation if that is what is being used for economic analysis in the Corps' FDA model.

Mary asserted that for now we are looking at existing conditions of the levee as performance, however, Henri and Mike N. both felt the group should be looking at both.

Pete suggested displaying a probability curve with seepage and stability to reflect how judgment affects it by applying those components. In regards to economic analysis, he queried as to whether or not it needed to be limited. Les agreed, however, added that they should be applied under the same criteria or at least comparable in terms to what "failure" means

MDR responded by explaining that is partly the way it has been done based on the current guidance and trying to be consistent nationwide. He conveyed that what is happening in the economic study is determining what the benefits are versus the cost. He further went on to express that he felt it was a mistake to take economic criteria and applying it to

performance. He added that, in his mind, to get to the true level of protection, a different approach should be taken.

Background Presentation / Project Overview - MPP

Mary provided the team with a presentation of the ARCF-GRR with a description of the three primary areas: Natomas Basin, American River North Basin, and American River South Basin. These three primary areas were analyzed by URS who determined the critical reaches considering seepage, stability, and erosion based on 100-year high water elevation. The map Mary showed the group had seepage, stability, erosion and height deficiency plotted in reaches in the three different primary areas and reflected the areas that ARCF-GRR encompasses. Mary added that based on another URS analysis, for a 200-year event (not displayed), erosion was everywhere.

Mary reported that eventually, the ARCF-GRR team may breakout the Natomas Basin from the other basins due to priority.

It was noted that the damages shown on the map are determined based on a deterministic analysis considering a minimum factor of safety 1.4 for stability and 1.6 (gradient higher than 0.5) for under seepage for the 100-year flood event. The deterministic analysis was conducted determining the weakest cross sections within a reach considering the worst geotechnical parameters. Geotechnical R&U analysis made for the index points (as selected by the deterministic analysis as the critical points on a reach) uses the average values (or the most credible values) applying a coefficient of variation based on statistical analysis. The R&U determine the risk of failure due to stability and under seepage applying the coefficients of variation around the mean values considering the factor of safety of 1.

Mary walked the group through a specific sample to illustrate the engineering R&U fragility curves determined by seepage and stability R&U analysis versus the judgmental portion of the R&Y combined fragility curves. Ed inquired if a variation across the levee for vegetation and encroachment were being looked at the same as is done for under seepage and stability. Mary responded no, that for the judgment curve, items are looked at within the reach where for the stability and under seepage it was considered the critical cross section representing a reach, with average parameters and their coefficient of variation. Ed countered by asking if they should look at the average condition along the reach. Mary answered by advising they have some index points where seepage and stability are not an issue, however, vegetation and encroachment are. Ed replied by asking if the integral of the area underneath is what is taken into consideration. Mary confirmed. She added that she will describe the specifics of each reach when they get to each reach section.

Most Likely Failure Modes Identification - Team

This part of the meeting consisted of the team being polled in relation to identifying what causes a levee to go into failure mode, that is, what causes levees to fail or breach. Nineteen different causes were identified as listed at the end of this section.

After the various factors where identified, the panel was asked to vote which ones are most likely to cause a levee to fail. The number listed to the side reflects the number of votes it received during this particular exercise in relation to their view of its significance to causing a failure mode.

- Under seepage piping / stability 9
- Overtopping 4
- Stability 6
- Erosion waterside, scour 7
- Through seepage (internal erosion) 4
- Closure structures 0
- Penetrations through foundation 1
- Seepage through animal holes 6
- Uprooted trees 0
- Human intervention 0
- Seismic overtopping 0
- Seismic seepage 0
- Seismic stability 0
- Through seepage (stability) 4
- Penetrations through levee -5
- Encroachment (pools) 0
- Wave/Wind erosion leads to overtopping 0

- Wave erosion 0
- Ditches (seepage / encroachment) 0

After this vote, much discussion was held as to how the different failure modes interact and impact one another.

Mohsen inquired about the levee failure in RD 784 in '97. Ed advised the erosion moved back faster than they could do the flood fighting and it became larger at the crescent as it worked its way back to the levee. Mohsen stated his point is that some of these breaches have occurred on some good levees in relation to the inspection point. Ed advised he said that he's seen where erosion has affected the seepage, which has impacted the stability.

Identification of Significant Failure Modes - Panel Votes

The panel was asked to consider the top seven significant failure modes identified from the previous exercise and vote in regards to how they see the likelihood of a failure mode caused by one of these factors. The results (with the number of votes received) are provided below:

- Under seepage 10
- Through seepage 8
- Erosion = Analysis* 7 / *Research analytical methods use existing tools to form judgment.
- Overtopping 4
- Penetrations 6
- Stability 6
- Rodents 6

It was determined that when considering "Other Failure Modes" (sense on how these relate to those identified as most important), judgment is very important, but should not be more about 20%.

Relative Ranking and Contribution of Significant Failure Modes (weighting factor 0 - 100%) - no flood fighting - Team

The panel was then asked to conduct a relative ranking of the significant failure modes with no flood fighting involved. The results were as follows:

- Erosion
- Penetrations
- Rodents
- Others

After another vote, it was determined that the Top 3 may contribute 10-25% to a levee breach or failure.

Discussion of Importance of Judgment Curve - Team

A lengthy discussion was held with the team as far as the importance of the judgment curve and the various components that should be included.

It was noted that certain components are currently being considered in the evaluations and analytical models. These include erosion, penetration, vegetation (includes rodents, beavers, squirrels, etc.), and encroachment. The team felt there were other components that should be considered as well. These include as-builts/knowledge of construction/maintenance, the separation of rodents from vegetation, swimming pool encroachments, penetrations through the levee, and penetrations through levee foundation.

After much discussion, the team came to the consensus that the following components are what need to be considered:

- Encroachments
- Erosion
- Penetrations
 - Through levee
 - Through foundation
- Rodents
 - o Beaver
 - o Squirrel
 - Vegetation
 - Trees

Brush

Maintenance - Overall

It was noted that failure considers the overall reliability of the levee.

Dan advised they are trying to define a methodology of performance curves to apply to both "with" and "without project" conditions. Mike N. responded by asking if this shouldn't be done in parallel to Economics. Dan explained there is a difference between the two based on the performance of the levee. Mary added to this by explaining the goal in their economic analyses is to determine damages based on levee failure. MDR then conveyed to the team that where Mary needs the most support is in determining how to do this.

Mike I. stated that collectively there is not a way to quantify how they feel about a specific section. Les asked Mike I. If there was a way to tell how the seepage and stability curves are being used. Mike I. responded by stating there was, as another category of judgment. He went on to say that on its own, erosion may not be an issue, however, when the section is looked at collectively, it causes "heartburn". Further, individually they may not add up to such a bad score, however, collectively it poses an issue.

Pete contributed to the discussion by inquiring as to how much should judgment affect the curve. Tom Smith added that how comfortable one is with the data they have is an important component. Dan stated in his mind it is more reach-specific.

Les expressed concern about using the term "judgment". He wanted to look at analytical components and temper them. MDR agreed we need to revise the agenda to include "relative importance of judgment". Judgment can be based on non-analytical info as well as analytical inputs. Non-analytical should look at best estimates; while analytical is the best estimate with Co-efficient Of Variations (COV). Henri and Paul both commented that the analytical stuff is what points to failure on the weaker levees. Judgment is still important.

It was noted that consideration of agreement in failure modes & influence, importance of the economic model versus level of protection & public safety can have a difference on the basis of risk and communication. It is important to define the level of performance versus economics.

Discussion of Need for Specific Performance Curve for Unique Flaw / Failure Mode - Team

MDR led the group in a discussion of specific performance curves needed for unique flaws or failure modes. In this discussion failure modes or flaws not covered in typical analysis were looked at. MDR advised it is important to recognize these specific potential failures as they may need to be included in a special curve for special instances, current or future.

Pumping stations/plants, drainage ditches, and farmer water supply wells were some items that were mentioned as having an impact on levee performance. Henri noted that some items could be categorized under "maintenance". Mary commented that while she agrees it can be a failure mode, the problem with maintenance is that it cannot be added in remediation (the sponsors are responsible for the maintenance) or included in the remediation action for the feasibility study.

A question was posed as to whether or not the failure modes should be analyzed or just included in the judgment. It was suggested that special / unique failure modes should be considered for inclusion as a special curve if analytical methods are available. Les commented that his sense was that this should be captured under the various categories under judgment. Mike N. cautioned the team not to double-up and compounding the "unknowns".

Change in Agenda

At this point of the meeting, a decision was made to change the agenda by fast forwarding to looking at the various sites individually versus the development of generalized performance curves for each component.

Site-Specific Performance Curves for Various Situations / Flaws - MDR / MPP

The purpose of this section was to provide Mary with feedback on specifics. For the first site, Mary presented a specific scenario for components of the judgment curve. The team discussed and provided input to the judgment curve.

SITE 1 - Natomas Basin, Sacramento River close to American River at location of Pump Station #1 on the Sacramento River

GENERAL CONDITIONS:

- o Sandy foundation and seepage issues. Seepage analysis shows a very high risk due to under seepage (high hydraulic gradients). Based on URS erosion analysis, this area is flagged as high risk when the water is at the highest elevation, but Mary isn't sure the analyses assessed the existing conditions such as vegetation, riverbank protection and encroachments on the waterside including apartment houses constructed on fill placed on the river berm to the crest of the levee. Mary also sees penetration issues here from pipes from the RD 1000 pump station, pressurized pipes and other. Ed advised the Corps found old wood, concrete, etc. when the Corps studied the area for improvement. Paul noted there are a lot of structures within the entire reach such as restaurants, businesses, etc. On some areas of the reach the levee is oversized, with the crest as much as 60 feet wide. The existing conditions include the following:
- o A deep soil/cement/bentonite wall to be constructed under WRDA'99 authorization
- No gap
- o An existing shallow slurry wall (30' to 40')
- o Generally the levee crest is 40 feet wide except the area where it is further overbuilt
- o The levee is constructed of sand (typical dredge fill) with containment berm
- o The side slope is as everywhere else 1V:3H on the waterside and 1V:2H on the landside
- Tom added that this is a unique piece of the river and high water elevations should have lower velocities due to Sacramento Bypass on the upper end which diverts the water in the Yolo Bypass

Scenario #1 - VEGETATION

- CONDITIONS (and discussion on conditions):
 - o In specific to vegetation, the trees go up to the top of the levee on both sides (water and land). Rodents are an issue, too.
 - o Trees 10 years old in levee
 - Possible roots
 - Henri feels the numbers on Mary's proposed curves are way too high on vegetation
 - Les drove a clarification discussion regarding openness to changing the categories. It was decided the Corps is willing to do this, however, Mary advised she cannot drop vegetation based on Corps policy
 - o Clarifying point: vegetation goes to extent of the levee. It is everywhere and oversized
 - Mohsen asked how the tree roots behave near slurry walls. Do they penetrate the wall or what? Ed advised composition of the wall influences the behavior of the roots and their strength.
 - Tom advised the wind affects the trees on levees more than anything else, so he is challenging the current curve result. He thinks the failure mode for trees on levees is windfall.
 - MDR advised we are now looking at redefining failure in this case as poor performance. The
 meeting's objective is to redefine the judgmental curves based on people opinion with
 experience on the Sacramento River system.
 - o Trees are in 40' crown width section in vicinity of the pump station and at the top of the levee. Are they so bad that they would require human intervention such as flood fighting or levee repairs later? The scenario would be something that might affect the performance of the levee with tree gone needing immediate action such as flood fight:
 - For 60' crown width reach on the overbuilt levee (vote taken after earlier misunderstanding on issue / scope):
 - After removing the high and low factors, the average was 5.14%
 - For 40' reach considering the water at top of levee:
 - After removing the high and low factors, the average was 5.14%
 - For 40' reach considering the water at half of levee height:
 - After removing the high and low factors, the average was 9.14%
 - o Results must be consistent with other analytical approaches
 - Mary wants to know how much does water velocity change impact the removal of the trees from the levee slope and cause holes in the slope. The Sacramento Bypass Weir is open at elevation 27 feet and at some point the velocity goes to 0 and then upstream it goes to 2 feet per second back towards the Weir (per Tom Smith). Tom advised this is such a small

percent as associated with vegetation. The problem with trees is wind and erosion. Ed recommended 2% from 28 all the way across to top of levee.

Scenario #2 - ENCROACHMENTS

- CONDITIONS (and discussion on conditions):
 - o Homes on waterside (difficult to inspect) multi-million \$ homes
 - All of the housing on the water side brings water & utilities together, which makes it difficult to inspect.
 - Restaurants
 - Apartments
 - o On the land side, this is an Urban area. The city has a pump station there and there are some ranchettes further up.
 - o Most of the encroachments are on the waterside and at the top of levee & berm.
 - o Lack of inspection due to fences and hedges
 - Visibility is poor and access is difficult as people will not permit inspections
 - o Paul advised there has been work in regards to the inspection not resolved, but in progress
 - o Interventions can be done
 - Inspections
 - Maintenance
 - Mary is most concerned with encroachment (particularly swimming pool and landscaping) causing seepage issues
 - Les noted that they need to be looking at this as a serious condition safety factor of 1.
 Problem of Encroachments commensurate with limiting P(S) = 1
 - Ed noted both the seepage and stability analytical methods cannot include the encroachments, however, encroachments can impact seepage and stability
 - o Mohsen stated he was more concerned about the leach fields that were put in this area some years ago. He doesn't believe there was anything to regulate their placement.
 - The question was posed if encroachments contribute to the development of a problem in regards to the safety of the levee. It was determined it was higher than trees, but lower than utilities.
 - For 40' crown width reach considering the water at top of levee:
 - After removing the high and low factors, the average was 6.57%
 - Influence factors
 - o Operational issues
 - Impact on seepage & stability
 - o Water at top of levee
 - MDR brought up the issue of whether or not encroachments should be kept in our evaluation. In some areas, they are significant and others are not. Henri stated he didn't think it is significant enough. He felt in cases where we aren't able to drive or walk on the levees, they should be considered. Paul agreed with Henri on the American River, but on Sacramento River he felt it should be considered. Mary advised she has to include them for consistency, however, she can put the impact as 0 wherein that's the case.
 - Pete & Les suggested we continue this process and see where we are on it after we've looked at few more areas and then revisit it.

Scenario #3 - PENETRATIONS

- CONDITIONS (and discussion on conditions)
 - Shallow slurry cut-off wall
 - Utility lines through the levee
 - Pump 1A and Pump 1B are constructed differently and Corps is evaluating this matter per Joe S and is being evaluated under WRDA 96-99. There could be some potential seepage under the boxed culvert. This should be analyzed as a seepage model.
 - Structure was built in 1915. Inspection of the inside is being done and the Corps is awaiting the results
 - The discharge lines from the pump station have flap gates and hand cranks that are 1914 vintage. There is seepage at joints into conduit.
 - o This is the only issue in this area that is not characterized.
 - o Mary stated she needs to know if seepage in an issue in regards to the culvert. The response was that seepage is an issue with the culvert and it is being looked at. However, the authorized repair is only for the cut-off wall, does not include discharge line replacement or

repair so seepage along the conduit and structural failure of the culvert remain issues. For the existing condition, Mary has no idea as to what is there. Repair of the conduit would be considered in the CF GRR alternatives.

- A question was posed a far as what the chance is the culvert would damage the levees. MDR noted that if this culvert is this big of a problem, then they need to get engineering involved. This culvert is critical for the entire reach.
- o Paul advised this has been an ongoing issue with SAFCA for some time.
- o Ed commented that if we pulled the culvert out, then we need to look at the utilities along the rest of the reach. His concern that this one spot will mask things for the entire reach.
- MDR made a decision that at this point we are going to discuss utility penetrations along the reach eliminating the discharge lines from the pumping plant, accepting that these need further civil investigation and special design.
- Paul advised there are some other utilities along the waterside as well as some utility crossings. It is a mixed bag. There is also a big sewer force main and some irrigation lines. These are the ones that Paul is aware of.
- o Steve Mahnke mentioned there was a sewer line along I-80 that caved at the installation by directional drilling and this is a concern. The levee settled a couple of inches and a big subsidence was observed under an abandoned house. Ed stated he thought that was going to be put into a judgment. He added that he was not planning to pull that out. Ed asked Steve if the collapse was mitigated. Steve responded that he did not think so. Paul advised pressure grouting was added and impact of seepage was looked at. Mary was involved in the repair of the site that included compaction grouting and backfilling the subsidence. The levee is monitored monthly for any further movements and the reports provided to Mary for information. So far, the repair of the area shows to be satisfactory so there is no more concern regarding this line.
- o Paul advised there are some pressurized gas lines as well. These are transmission gas lines and fuel lines that go under the levee.
- o It was noted there are lots of utilities; some of which go high, some go low, some are in good shape and others are not.
- A vote was called in regards to Utilities' impact on the levee for the reach from the Sacramento Bypass to the American River:
 - For 40' reach at top of levee (with the water at the upper 3 feet):
 - After removing the high and low factors, the average was 10.29%
 - Influence factors
 - Uncertainty biggest failure
 - Slurry wall cut off shallow, the pipes were not relocated during cut-off wall construction
 - Sewer problem
 - Rectified/Fixed
 - o Concerns on directional drilling
 - Sewer line controlled closer
 - Another vote was called for the same conditions with the sewer line being considered:
 - Considering the high and low factors, the average was 19.44%
 - After removing the high and low factors, the average was 16%
 - A third vote was called for the same conditions without sewer line, but considering penetrations in general for this reach:
 - Considering the high and low factors, the average was 6.11%
 - After removing the high and low factors, the average was 5.43%
- Les noted that we need to remember what was said earlier today and not to look at worse conditions. The group is supposed to look at standard deviations. Mary's point was that it must be included in this case because it's the worse condition and the best is zero. In order to get average, she must consider it.
- o Pete commented that it sounds like it's the same type of thing as the culvert.

SUGGESTIONS FOR DAY 2

The meeting shifted to a discussion led by MDR as to what could make the discussions better on Day 2.

• Ed suggested Mary go back and provide the details on the scenarios she wants answers to.

- A question was raised if other panels are going to be held on GRR. Ed said perhaps and MDR recommended they make the panels smaller if they do.
- Mike I said he saw the discussions as useful. He thinks we need to go back to our original premise that all of these together only contribute 20% to the judgment. It was agreed that the reach the team just reviewed is different. After this one, is 20% appropriate for judgment?
- Mike N. asked as far as the overall scope was the objective still to get all areas done as originally laid out in the agenda. Dan advised that all areas are needed in order for them to breakout Natomas.
- Tom added that each reach is different and expressed he didn't think the team was going to race through them
- Les suggested that, for tomorrow, to pick the ones that have the best range of things, i.e., typical versus extreme. Mary advised she doesn't have any "typical".
- A need to prioritize work was expressed
- A recommendation was given to pick a range of sites to get broad feedback.

Day 1 Concluded at 5:15 pm

DAY 2

Project: American River Common Features GRR

Date: Thursday, June 18th, 2009

8:00 am to 4:30 pm

USACE - Sacramento District,

Room 1424

Facilitator: Michael Ramsbotham (MDR), USACE

Meeting

Called By: Mary Perlea (MPP), USACE, Project Geotechnical Engineer

ATTENDEES

See Attendance Record (to be attached at end of finalized meeting minutes)

MEETING MINUTES

Sign-In

Day 2 of the meeting commenced at 8:00 am with team members signing in.

Introductory Comments - MDR

MDR led the group with introductory comments. Mary iterated where the meeting ended yesterday in regards to Utilities and the sewer line. She expressed a desire to revisit it this morning in regards to its impact on the levee safety due to the age of the pipe. This is unknown to her at this point.

MDR conveyed his belief that the conclusion drawn was that it should be analyzed separately, giving it a full engineering evaluation and not "lump summed" in this evaluation. He advised we are not going to review it under this judgment curve, but on its own curve supported by additional analysis. He iterated that it should not be "eliminated" but handled separately by a civil engineer, possibly as its own reach.

Ed stated he understood WRDA 96-99 was going to take care of the under seepage portion. The pipe itself was where we were going to do a separate evaluation. Henri said if WRDA 96 covers it, it's probably not going to be the weak link anymore; in addition, it's being maintained. Steve added that with it being made of concrete, it should have long life. Mike I stated he thought it could be a weak link. Ed expressed concern about the pipe joints. Additional concern was expressed regarding who has authority. Ed advised they need to go back and discuss with the PM organization and see where it stands with the WRDA 96. Dan stated they have already made the argument and can argue that repair/replacement of pipe may be accomplished under WRDA 96-99, if needed.

MDR reminded the group the purpose of the meeting is to get through as many of these scenarios as possible in

order to give Mary guidance in completing the curves.

RESUMPTION OF SITE 1 DISCUSSIONS FROM DAY 1

Scenario #4 - ANIMAL BURROWS (RODENTS)

- CONDITIONS (and discussion on conditions)
 - Animal burrows (low density)
 - 4' to ? in depth
 - o There is no history of beaver dens / damage
 - Beaver low
 - Squirrel located more near the toe, but can be anywhere on the slope
 - o Rodent abatement program is reactive
 - Levee is average of 40' wide
 - o There is lots of housing and development (on both sides)
 - o Cut off wall = 35'
 - o A vote was called for these conditions:
 - Considering the high and low factors, the average was 2.78%
 - After removing the high and low factors, the average was 2.71%
 - Conclusion: Animal burrows not a significant issue at this site

Scenario #5 - EROSION

- CONDITIONS (and discussion on conditions)
 - No Sacramento Bank Erosion Site documented per Tom Smith
 - Houses & Encroachments add some problem
 - Per Tom Smith, no history of erosion; the Sacramento Bypass Weir is at elevation 27 ft, no issue; velocity changes upstream
 - Sand covers the site. It is a very sandy site and there is a unique hydraulic condition that keeps that site scoured out. It has been fixed, so Tom stated he doesn't see a threat of erosion to the reach
 - Erosion from the river at high flow is not a problem; however, it could be with one of those intermediate flows with the water below the elevation 27 feet (below the Sacramento Bypass Weir)
 - Wind wave erosion may be an issue as much as stream velocity?
 - Tom advised they have documented no erosion in this part of the river due to wind wave short term duration.
 - o A vote was called for these conditions:
 - Considering the high and low factors, the average was 4.11%
 - After removing the high and low factors, the average was 3.86%
 - Conclusion: Erosion not an issue overall at this site

SUMMARY OF COMPONENTS ON THIS REACH (PREDICTING ALL WOULD EQUAL 10-25%)

- (General) Utilities (without sewer) 6%
 Vegetation 2-3%
 Erosion 4%
 Encroachment 7%
 Rodents 3%
- o TOTAL 22-23% ... not in the formulary method
- o FORMULARY METHOD / JUDGMENT = 80.6% ... 19.5% PROBABILITY OF FAILURE

The group decided to take a different rating approach on the subsequent sites. It was decided to discuss all conditions at the individual sites and then vote on all judgment components at the same time. If further discussion is needed, additional votes could be taken. The numbers next to each of the components reflect the average after excluding the highest and lowest factor.

SITE 2 - NATOMAS CROSS CANAL - DOWNSTREAM OF HIGHWAY 99 / VESTAL DRAIN (24' TO 43.5' landside of the levee toe)

- GENERAL CONDITIONS:
 - o Vestal Drain Canal is near the levee
 - o Historical seepage problems / remediated
 - Waterside stability at one location
 - o Other slips on water side

- Several phases of remediation
- o Grass only on the levee they regularly burn
- Embankment constructed of fat clay
- o Cracks 3' deep
- o There is a landside berm and chimney drain
- o Crest at 43' high / 20' wide
- A vote was called with these conditions at the top of levee elevation of 43.5'. The results and additional discussion points follow:
 - Utilities 5%
 - o Few, but old
 - o 2 Pump Stations
 - Water intake
 - o Pipes are 3' wide and are penetrating the levees a little over mid-height
 - Pressurized coated steel pipes that are coated below the 200-year water level
 - Vegetation 1%
 - o Agricultural area on the landside
 - o A few trees on water side
 - Erosion 2.7%
 - o Erosion from wind wave pretty low, not an issue
 - o Flow velocity is low
 - Erosion at outfall structures mostly
 - Encroachments 1%
 - o Highway 99
 - Rodents 6.5%
 - o Yes, east end beaver and beaver dams in the berm; no ground squirrel
 - Total 16%
 - The group was satisfied with these numbers

SITE 3 - AMERICAN RIVER SOUTH - CLOSE TO CAPITAL CITY FREEWAY BRIDGE

- GENERAL CONDITIONS:
 - Deep slurry cut-off wall except the window at the bridge that will be closed as WRDA 99
 - o SAFCA is placing additional rock onto the levee, but doesn't go up to the crest
 - o River Park flood fight in 55 for erosion
 - o Cap City Freeway flood fight in '86 for erosion
 - H Street Bridge
 - All part of historical Erosion Vegetation covers portion of the levee; Stone protection placed on 5 sites
 - Tom provided Dan's team last week with a report about the erosion and the existing hard layers in lower American River. This has a lot of the detail that will be included in the CGF GRR alternatives.
 - Downstream of Watt North bank and head cut to sewer line there is potential for channel erosion
 - o In regards to velocity on levee, 1 2 fps for a discharge of 145,000 to 160,000 cfs. The discharge when the water is at the top of the levee is 192,000 cfs.
 - Significantly Encroached with houses, swimming pools and other
 - o Trees on Levee / Some toppling with wind events
 - o Considering entire Reach A from Mayhew to end of River Park, a vote was called with these conditions considering the water at the top of levee elevation of 60°. The results and additional discussion points follow:
 - Utilities 3.86%
 - o Many gravity lines penetrations
 - o Some windows in the slurry cut-off wall remain but supposed to be closed
 - Vegetation 3.00%
 - Vegetation reaches top of levee on both land and water side of levee
 - Erosion 31.43%
 - Some historical erosion issues
 - Encroachment 3.57%

- Lots of houses with swimming pools
- Homes close to the levee
- Rodents 2.43%
 - o Rodent issues (not bad rodent abatement and grouting programs are active)
- Total is 44% / Overall average was 31%
 - Conclusion:
- o A second vote was taken under the same conditions for erosion only considering the water at the top of the levee. The results were:
 - o Average of 60%
- A third vote was taken under the same conditions for erosion only at 145 cfs at 6 feet below the top of the levee. The results were:
 - Average of 36%
- Mary inquired if we could consider the same threat on the North side. The response was yes, the same mechanism should be considered. Paul noted the North side is not encroached, so the encroachment may be less on the North side.
- With the significant erosion risk, the group noted that this failure method should be pulled out of the judgment curves on this reach and treated with an analytical approach similar to the seepage and stability.

SITE 4 - SACRAMENTO RIVER SOUTH - FROM AMERICAN RIVER DOWN TO LITTLE POCKET

- GENERAL CONDITIONS:
 - Levee is 14'high
 - o There is a small floodwall, about 4 feet on the landside that works mainly as a retaining wall for the fill placed on the landside. The floodwall is high on the waterside. Railroad lines are on the landside fill. The City will construct the Riverside Promenade along this reach.
 - o Numerous encroachments
 - o Lot of seepage, mostly clear water, particularly at I-5.
 - 'Boat' I-5 Section is problematic
 - o Pioneer Reservoir relief wells and seepage berm
 - Erosion "Concrete" rumble placed on the waterside slope that is less efficient for erosion but attracts rodents
 - o Mary doesn't know if penetrations are controlled, but there are many of them
 - Closure sections are upstream of Old Sac
 - Just downstream of confluence with American River some erosion
 - Sutter Road presents a weak link
 - highest-tallest levee section
 - erosion issue
 - small slips at entrance
 - Sac Bank sites are not finished
 - o Erosion site at downstream end of reach jus above Little Pocket = at RM 55.2
 - o I-5 higher than levee
 - Section very steep
 - o Nothing "typical" about this reach.
 - Beavers are active
 - Stan Solida Cave in void at Sac RM 56.7L
 - Erosion site at Captain's Table is being considered as part of this
 - There are some relief wells
 - A vote was called with these conditions considering the water at the top of levee elevation. The results and additional discussion points follow:
 - Utilities 5.43%
 - Vegetation 4.71%
 - Erosion 15.71%
 - Encroachment 5.71%
 - Rodents 7.86%
 - 2nd vote taken after discussion had the following results:
 - Utilities 7.14%
 - Vegetation 3.14%
 - Erosion 13.57%

- Encroachment 6.00%
- Rodents 6.43%
- Medians were as follows:
 - o Utilities 7
 - Vegetation 3
 - o Erosion 15
 - o Encroachment 5
 - o Rodents 5
- On lower Sacramento River, it's not just erosion from wind wave, but velocity is involved as well.

SHAPE OF THE CURVES DISCUSSION:

The group diverted from ranking the components for specific sites to holding a brief discussion regarding the shape of the curves. Highlights of the discussion included:

- The shape of the curve may vary
- 0 P(f) not necessarily at toe of levee
- 0 P(f) could be somewhere above the toe
- Specific characteristics of levee will impact shape / inflection points
- Generally concave up to design walls surface of defect
- Risk may not start at elevation of landside levee toe.
- Judgment curves are to deal with miscellaneous conditions not analyzed in seepage and/or stability analyses.

SITE 5 - SACRAMENTO RIVER - LITTLE POCKET (RM 54 to 56)

- GENERAL CONDITIONS:
 - o Top of Levee is 41' with 20' wide
 - Steep waterside slopes
 - Deep Cutoff wall
 - We do not own right-of-way / access is limited / no immediate access/fences and gates all along the levee slopes and crown
 - A lot of room on the waterside for rodents hard to mitigate, but not an apparent problem
 - A lot of vegetation / trees & plants
 - o Seepage a problem before cutoff wall
 - Lots of penetrations
 - o Bend in the river large berm / erosion not an issue
 - o A lot of encroachments
 - Swimming Pools some go to the toe of the levees
 - Tennis Court cracked up due to under seepage or perhaps just normal wear?
 - Sprinklers all over the place
 - A vote was called with these conditions at the top of levee elevation. The results and additional discussion points follow:
 - Utilities 4.43%
 - Vegetation 2.71%
 - Erosion 8.43%
 - Encroachment 6.43%
 - Rodents 3.43%
 - Medians:
 - o Utilities 5
 - o Vegetation 2
 - o Erosion 8
 - Encroachment 6
 - o Rodents 3
 - $\circ\quad$ After further discussion it was determined that a second vote was not needed.
 - A special note:
 - It will be important for Mary to go back and compare the feedback on various sites for the same issue. It should also be noted that information is based on conditions today and are subject to change.

SITE 6 - ARCADE CREEK

- GENERAL CONDITIONS:
 - o There is a pump station
 - o Levee height deficiency Water is at top of levee
 - o Levee embankments aren't as bad as the others
 - o Levee constructed of clay material and it is less erosive
 - No trees on these levees
 - Levees were raised in the 1990s
 - o T-wall exists
 - o Arcade Creek is a narrow, deep and fast-acting canal
 - o Some of the tallest floodwalls up to 20'
 - o Beavers are an issue
 - Have had collapses due to them upstream of Norwood bridge on the north side
 - Not many squirrel
 - Deep drainage canal on North side where it meets NEMDC. The city has an 8 foot deep concrete line channel
 - o No slurry walls
 - Some older utilities cross the levees
 - Several pump stations that came in with the Folsom Dam Project and are likely around 60years old
 - o Protected agricultural area at one time, now highly developed
 - Access is good
 - Few encroachments
 - o Water has high velocity, but not aware of erosion issues
 - A vote was called with these conditions at the top of levee elevation. The results and additional discussion points follow:
 - Utilities 3.86%
 - Vegetation 1%
 - Erosion 2.71%
 - Encroachment 2.86%
 - Rodents 5.43%
 - Medians:
 - o Utilities 5
 - o Vegetation 1
 - o Erosion 3
 - o Encroachment 3
 - o Rodents 5
 - A second vote with the same conditions was called for utilities and rodents only after further discussion. The results and additional discussion points follow:
 - Utilities 6.86%
 - Vegetation -
 - Erosion -
 - Encroachment -
 - Rodents 8.29%
 - Medians:
 - o Utilities 7
 - Vegetation -
 - o Erosion -
 - o Encroachment -
 - o Rodents 8

SITE 7 - SACRAMENTO RIVER BIG POCKET

- GENERAL CONDITIONS:
 - o This is a narrow levee, only about 20' wide
 - It is asphalt paved
 - Sump132 is an active seepage site. Relief wells have been put in to fix and bring the new intake into compliance

- o Slurry wall stops at Cliff's Marina, where railroad track leaves the levee
- Known utilities were cut and relocated
- Old irrigation line was plugged last summer
- Encroachments are dramatic (same as in Little Pocket, but may have some going into the levee)
 - Cliff's Marina
 - Railroad prohibits inspection of the levee
 - Swimming Pools
 - Houses and fences
- o Public highway at toe
- o Trees go to the crest of the levee and cover most of the levee center line
 - 6 ft tree in diameter on the levee
- Erosion issues? Yes, numerous erosion sites at this part of the levee; on West Sac after Mason's Bend, there is a scour / straightens up downstream at Garcia Bend There have been a lot of repair work in this area (6-8 sites repaired) after 2006 flooding. Critical site repair has been completed. Repairs may not include key in trench
- o No berm. It is right at the toe of the levee
- o Made of silty sand and sand; there is also some sort of organic crust, not clay
- Soil / Cement / Bentonite slurry wall
- Active Erosion Reach
- Minimal rodent activity
- Wind wave minimal erosion
- Boat wake / wave issue at lower water, but this is a summer elevation issue
- A vote was called with these conditions at the top of levee elevation. The results and additional discussion points follow:
 - Utilities 3.86%
 - Vegetation 3.29%
 - Erosion 13.14%
 - Encroachment 7.43%
 - Rodents 3.29%
 - Medians:
 - Utilities 3
 - Vegetation 2
 - o Erosion 15
 - Encroachment 7
 - o Rodents 3
 - Conclusion: The group feels this erosion is just as bad as Little Pocket (although Little Pocket higher).
- A second vote with the same conditions was called for erosion only after further discussion.
 The results and additional discussion points follow:
 - Utilities -
 - Vegetation -
 - Erosion 16.29%
 - Encroachment -
 - Rodents -
 - Medians:
 - Utilities -
 - o Vegetation -
 - o Erosion 16
 - Encroachment -
 - o Rodents -
 - o Encroachment -
 - o Rodents -

Site 7 concluded the rankings portion of the meeting for specific sites.

QUESTION FROM DAN:

MDR advised the team he had a question from the Project Manager, Dan Tibbitts, to pose to the panel:

"On the components below, are there any other problem reaches that we did not cover, i.e., "reaches of concern"?

Les stated he feels the 5-6 sites that we've rated should cover the other 21 sites. Mike I agreed.

After further discussion, the following areas were identified to be of concern for the component described: UTILITIES:

- o Natomas: Pump Station 1 & 2
- Pleasant Grove Creek Canal
- Del Paso Blvd Flood Gate

VEGETATION:

o North of I-5 along Sacramento River

EROSION:

o Wind wave - Sacramento River just below Cross Canal

ENCROACHMENTS:

o None

RODENTS:

o **Non**e

QUESTION FROM MARY: SPD1 SAYS SENSITIVITY ANALYSIS NEEDS TO BE DONE IF THE LEVEE FAILS OR JUST POOR PERFORMANCE? PROBABILITY OF POOR PERFORMANCE VERSUS PROBABILITY OF BREACH?

The group proceeded to have a lively discussion on these questions. Highlights / comments of the discussion included:

- As water goes up, human intervention will be less successful. You would be pulling your crews off at that point due to danger level.
- o Ability to mitigate the risk with human intervention increases as water surface goes down.
- o Can you easily translate P(f) to P(breach)?
- o Do we have any chances to prevent failure?
- o What is the affect of flood fighting?
- o What are the chances of going from poor performance to failure?
- Intervention is either successful or not; if successful, no breach; if not successful, can have breach or no breach (depends if the correct problem has been detected).
- o No intervention?
- o Success is defined as stopping the progression of the levee failure / breach.
- Don't want to count flood fighting first
- o Henri commented it is almost like you need another curve
- o Economics group is wanting these sensitivity analysis
- o This can be looked at as a "correction factor", however, one is the real curve
- Paul noted that the curves will be different depending where you are in the country.
- Toe of levee does not appear to be an issue
- o 33% of the levee height eventually to be considered as less likely the poor performance to lead to failure
- o Mike I suggested Mary refers back to historical data and that this discussion is purely conjecture. He doesn't feel it can be done in this forum without empirical data.
- MDR iterated to Mary that she has to look at each curve and evaluate them on this topic individually. She would need another Expert Elicitation to cover this topic
- o This topic of discussion ended without resolution

LESSONS LEARNED / RECOMMENDATIONS TO CORPS - Discussion started at 4:20 pm

MDR led the team in a discussion on the lessons learned, to include recommendations to the Corps, as a result of this 2-day meeting and the feedback they have provided. Highlights / comments include:

- Vegetation does not contribute significantly to P (poor performance)
- o Local sponsors with knowledge & experience in maintaining the levee is extremely valuable to the discussion as well as the history of such information
- Need biased and unbiased opinions
- o Confidence in prediction were on the reaches where folks had experience and knowledge
- o Need better "read ahead" performance history
- o Les asked MDR what he thought about having nine panelists. Les commented that he thought it worked out well in regards to consensus. MDR responded that in order to get to what we needed to talk about, it was good to have a broad group; but to try to accomplish 27 sites, it was too

many people. Smaller groups normally result in faster answers; however, larger groups likely produce better answers. For this, he felt it went well. Having a panel of nine was valuable in this case.

- o Ed expressed he felt the generalized discussion first was good and then going to site specific worked well. Start up with general discussion was helpful for him.
- Les added having clear set of definition and purpose/goal would have been helpful. Further, he said he thought we got there, it just took a while.
- o Mike I felt the way we got through things this afternoon went very well.
- Paul suggested that a more expedient voting method would have been helpful and helped things to move forward.
- o Mike N noted that judgment curves are important and can significantly affect performance / economic results. He would like to see a cap on how judgment affects the overall decision. Inclusion of judgment curves make "flaws" / failures more frequent and likely increases average annual damages: as components increase, P(f) increases. He expressed a summary of data developed simultaneously as debate proceeds would be good.
- o Need separate evaluation for critical site P(f) high and not included in judgment.
- o Mike N. inquired about how rodents are being looked at. From discussion, it seems that beavers are of much more concern than squirrels.
- o There was an determined need to separate out:
 - Pump Plant 1?
 - o Sewer Line?
- o What happens now as far as information collected these past two days?
 - Melanie will compose a draft of the meeting minutes to be distributed to the Expert Elicitation attendees
 - Attendees will be asked to provide comments by tracking changes within a specified time
 - Melanie will finalize minutes
 - o Mary will then compile report to include summary, statistical information as well as the revised curves. The report will require the signatures of everyone.
 - o Once produced, she will provide a copy to all
- Henri noted that while the curves developed by the panel are much lower than Mary's, it doesn't
 mean the existing conditions considering encroachment, penetration and vegetation are
 desirable. He advised there is a need to keep probability approach separate from deterministic.
- o Dan advised the team they have an array of alternatives that will comply with environmental or with SAFCA's (for which they will likely need a variance).

Wrap-Up Comments - Team

MDR solicited wrap-up comments from the team.

Ed told the team of a vegetation issue he experienced in Lompoc with cottonwood after a large storm. It took out the bridge and flooded the area. It was a big hindrance.

Day 2 Concluded at 5:10 pm