Folsom Dam Water Control Manual Update Joint Federal Project, Folsom Dam

E OF CALIF

US Army Corps of Engineers

BUILDING STRONG

Public Workshop October 29, 2015 Sterling Hotel 1300 H Street, Sacramento, CA

BUREAU OF RECLAMATIO

Sacramento Area Flood Control Agency

U.S.ARMY

WELCOME & INTRODUCTIONS

PURPOSE OF MANUAL UPDATE

- Revise operation rules for Folsom Dam to reduce flood risk based on the capabilities of the Folsom Joint Federal Project (JFP).
- Reflect operational capabilities created by improved weather forecasts.
- Potentially reduce the volume of flood control reservation in Folsom Reservoir at any particular time by comparison to the operations that have been in effect since '95

OBJECTIVES OF MANUAL UPDATE

- Pass the Probable Maximum Flood while maintaining 3 feet of freeboard below the top of dam to stay within the dam safety constraints of the U.S. Department of Interior, Bureau of Reclamation.
- Control a 1/100 annual chance flow ("100-year flood") to a maximum release of 115,000 cubic feet per second as criteria set by the Sacramento Area Flood Control Agency to support Federal Emergency Management Agency levee accreditation along the American River.
- Control a 1/200 annual chance flow ("200-year flood") as defined by criteria set by the State of California (State) Department of Water Resources to a maximum release of 160,000 cubic feet per second, when taking into account all the authorized modifications within the American River Watershed.

TODAY'S DISCUSSION

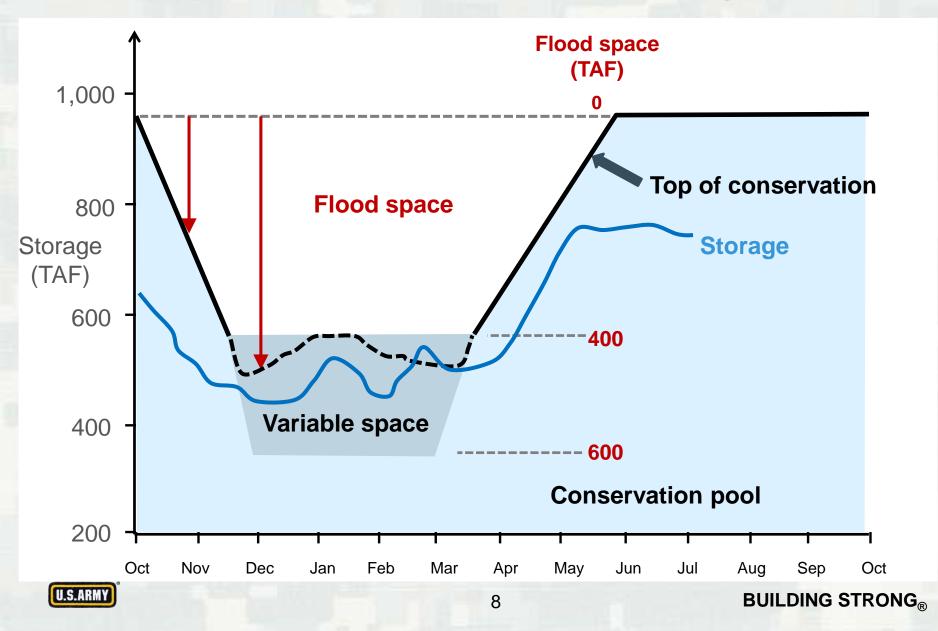
Project Milestone Schedule

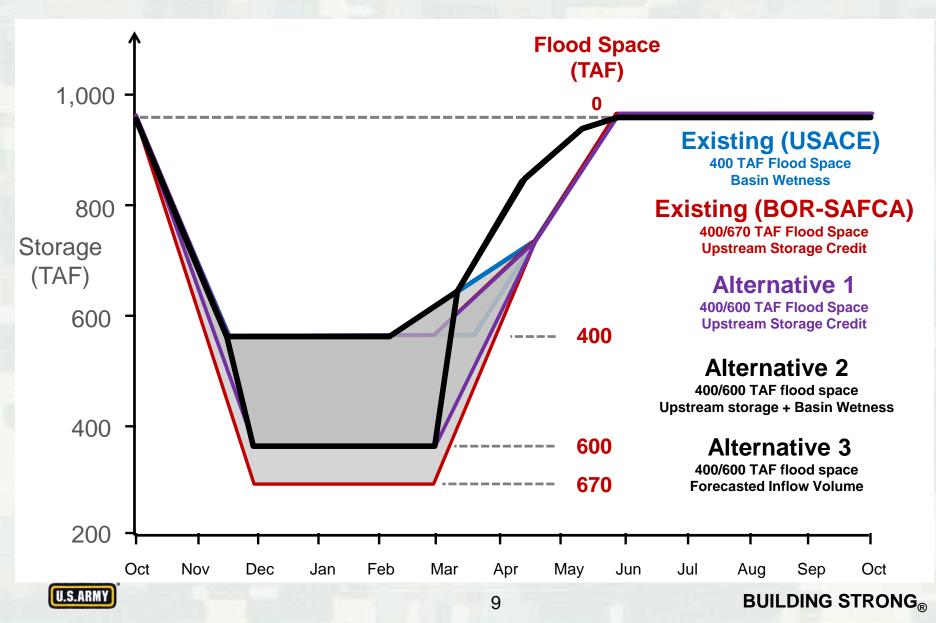
- Timeline for Close of Stakeholder Feedback prior to Draft NEPA / CEQA public release
- Present & Discuss Modeling Results and Effects of Alternatives, with Focus on:
 - Basin Wetness Alternative (Alt #2)

• Forecast Alternative (Alt #3)

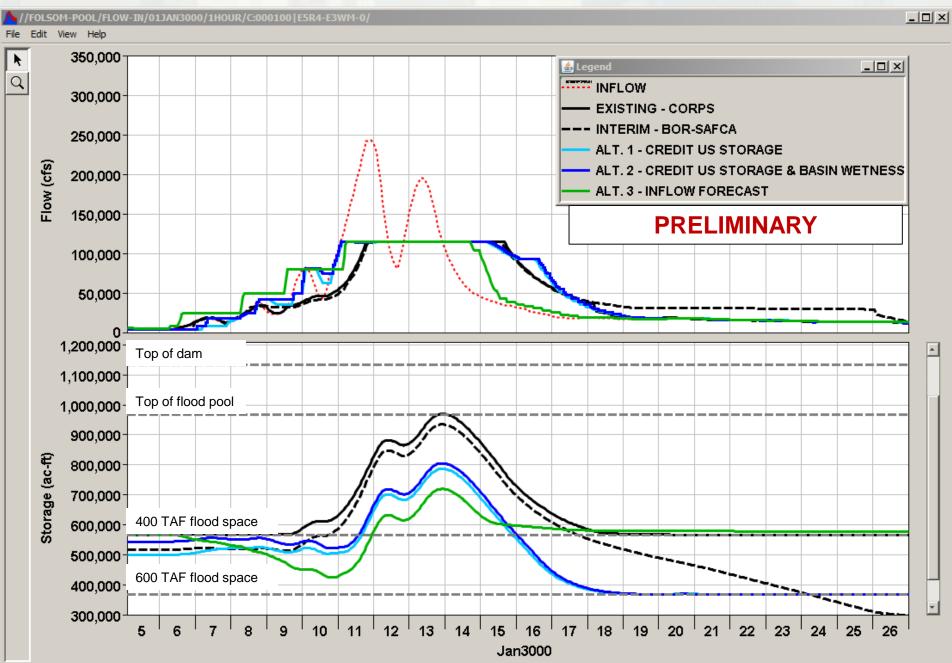
PROJECT MILESTONE SCHEDULE

JANUARY 2016	TECHNICAL WORKSHOP: IN-BASIN MODELING RESULTS AND EFFECTS
	USACE COMPLETES ENGINEERING REPORT
FEBRUARY 2016	PUBLIC WORKSHOP: TENTATIVELY RECOMMENDED ALTERNATIVE
FEBRUARY – JUNE 2016	USACE/PARTNER REVIEW; USACE-REQUIRED INDEPENDENT SAFETY ASSURANCE REVIEW
	USACE COMPLETES DRAFT NEPA / CEQA DOCUMENTS
MAY – SEPTEMBER 2016	OBTAIN BIOLOGICAL OPINION (135-DAY REVIEW)
JUNE – AUGUST 2016	PUBLIC REVIEW OF DRAFT NEPA / CEQA DOCUMENTS
DECEMBER 2016 – JANUARY 2017	PUBLIC & ENVIRONMENTAL AGENCIES' REVIEW OF FINAL NEPA / CEQA DOCUMENTS


BRIEF RECAP OF ALTERNATIVES



7


"Generic" Water Control Diagram

2 Baselines and **3** Alternatives

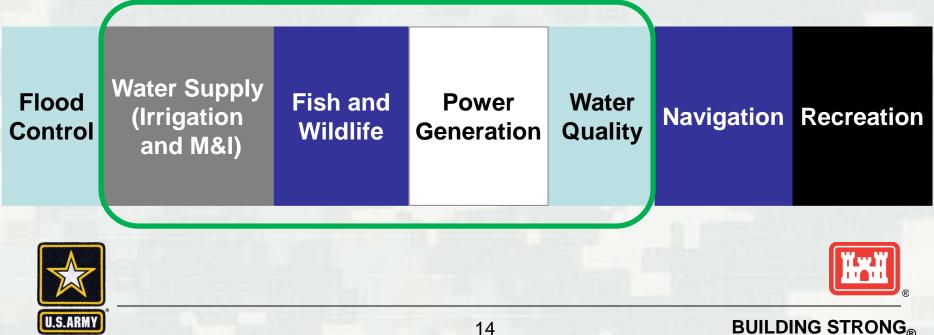
100-YR, 1986 PATTERN, EXISTING AND ALTERNATIVES

Forecast Alternative Refinement

- More storm patterns
- Seasonal events
- Forecast variability
- Emergency Spillway Release Diagram (ESRD)

QUESTIONS?

BUILDING STRONG®


ENVIRONMENTAL EFFECTS

Environmental Effects Analysis

 Environmental effects analyses are centered around effects flood management operations alternatives would have on the other Folsom Dam Project purposes:

Two Levels of Analysis

Screening-Level Effects Analysis

- Compares 'with-project' alternative to baseline conditions CalSim II period of record outputs
- Monthly flood storage reserve requirement in Folsom is feature of an operation scenario that is incorporated into CalSim II
- Screening level comparison of SWP/CVP beneficial uses of project water <u>(focus on key</u> <u>system indicators)</u>

Detailed Effects Analysis

- Evaluate other system effects that CalSim II cannot simulate
- Comparison of alternatives to baseline conditions
 - Long-term average values and sorted by water year type (period of record)
- <u>Closer evaluation of effects in</u> <u>Lower American River (and</u> <u>other locations, as needed)</u>

With-Project Alternatives

ALTERNATIVE 2: BASIN WETNESS ALTERNATIVE (J602P)

- 400,000/600,000 AF Flood Storage
- Auxiliary Spillway Complete
- 3-2-4 temperature control device (TCD) shutter configuration
- Folsom Flood Storage Requirements <u>Based on Basin</u> <u>Wetness Parameters and</u> <u>upstream storage credit</u>

ALTERNATIVE 3: FORECAST ALTERNATIVE (J602F)

- 400,000/600,000 AF Flood Storage
- Auxiliary Spillway Complete
- 3-2-4 TCD shutter configuration
- Folsom Flood Storage Requirements <u>Based on</u> <u>Forecasted Inflows</u>

Baseline Conditions

EXISTING CONDITIONS/ CURRENT OPERATIONS (E504)

- 400,000/670,000
 Acre-Feet (AF) Flood
 Storage
- No Auxiliary Spillway
- 3-2-4 TCD shutter configuration
- 2004 Operation Rules

FUTURE WITHOUT PROJECT/ NO ACTION (J604)

- 400,000/670,000 AF
 Flood Storage
- Auxiliary Spillway complete; used in emergencies only
- 3-2-4 TCD shutter configuration
- 2004 Operation Rules

CUMULATIVE EFFECTS

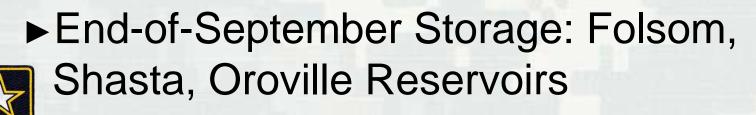
<u>**Past</u>** – 400,000 AF (Fixed) flood space; no JFP; 1-1-7 TCD shutter configuration;1987 WCD (E503p ResSim Model)</u>

Future – 400,000/ 600,000 AF flood space; <u>Authorized 3.5-ft Dam</u> <u>Raise</u>; JFP; 7(1)-2 TCD shutter configuration; 2017 WCD updated for Dam Raise (R702 ResSim Model)

Resources to be Evaluated

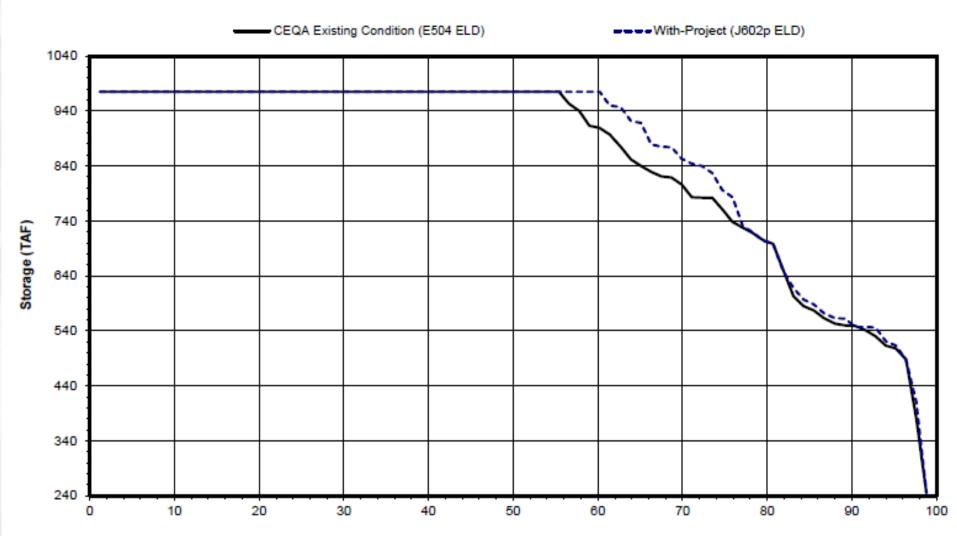
- Water Supply (Storage and Delivery)
- Water Quality
- Power Generation
- Fisheries (*far-field* and Lower American River)
- Hydrology
- Hydraulics
- Terrestrial Resources (Veg and Wildlife)
- Special Status Species
- Recreation
- Cultural Resources

WATER STORAGE



Water Storage Model & Parameters

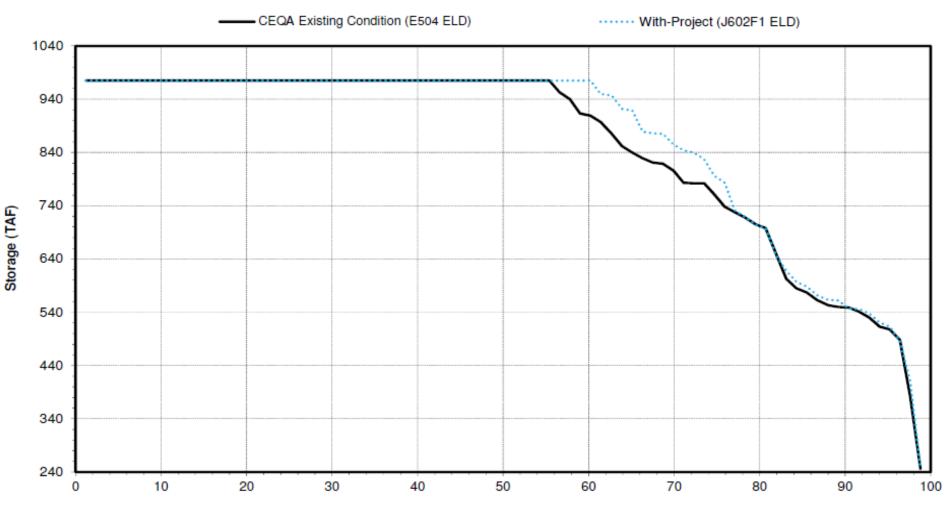
- CalSim II Outputs
- Model Parameters
 - End-of-May Storage: Folsom, Shasta, Oroville Reservoirs



Folsom Reservoir End-of-May Storages Basin Wetness Alt (Alt. 2) vs. 400/670 Baseline

Folsom Reservoir End of Month Storage

May

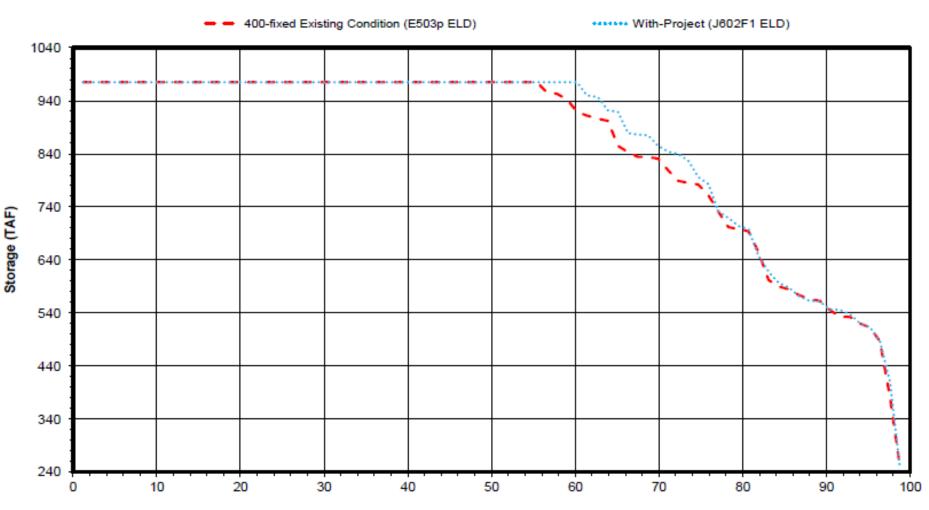


Probability of Exceedance (%)

Folsom Reservoir End-of-May Storages Forecast Alternative (Alt. 3) vs. 400/670 Baseline

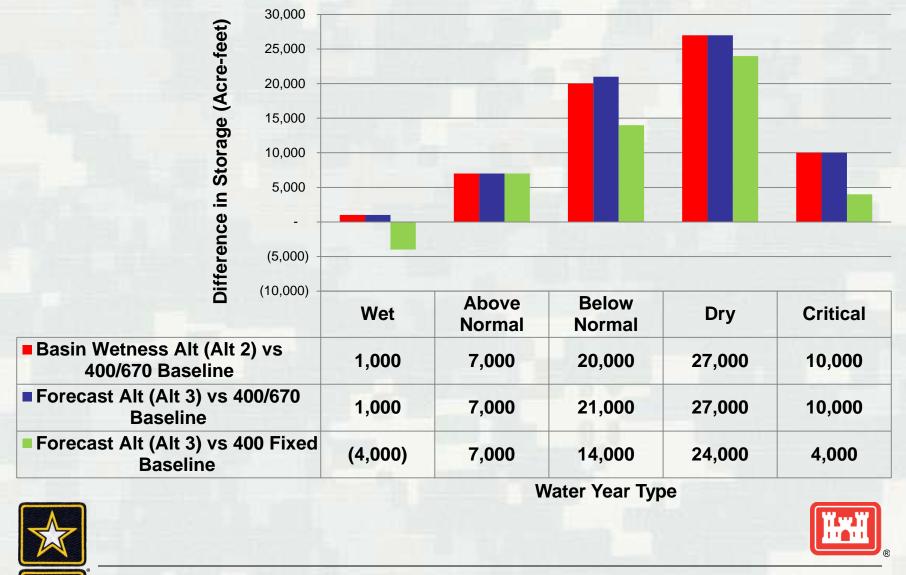
Folsom Reservoir End of Month Storage

May



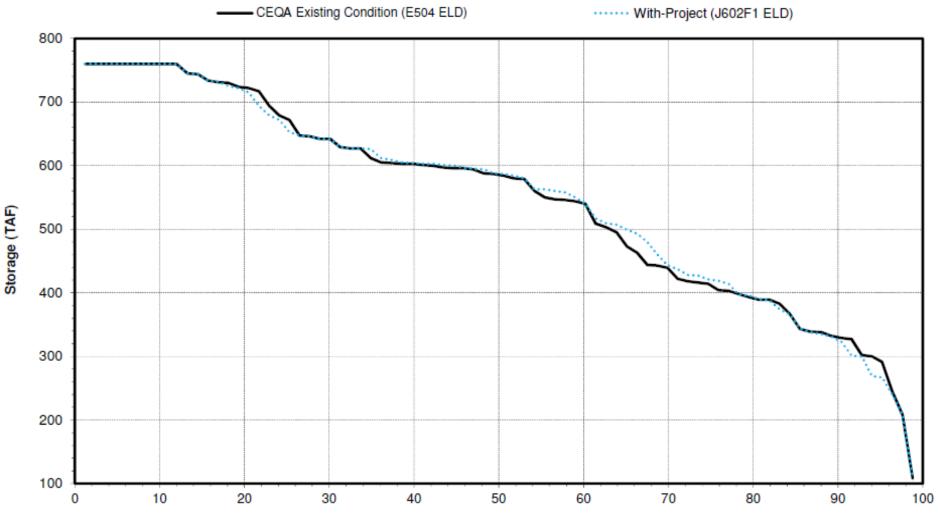
Probability of Exceedance (%)

Folsom Reservoir End-of-May Storages Forecast Alternative (Alt. 3) vs. 400 Fixed Baseline


Folsom Reservoir End of Month Storage

May

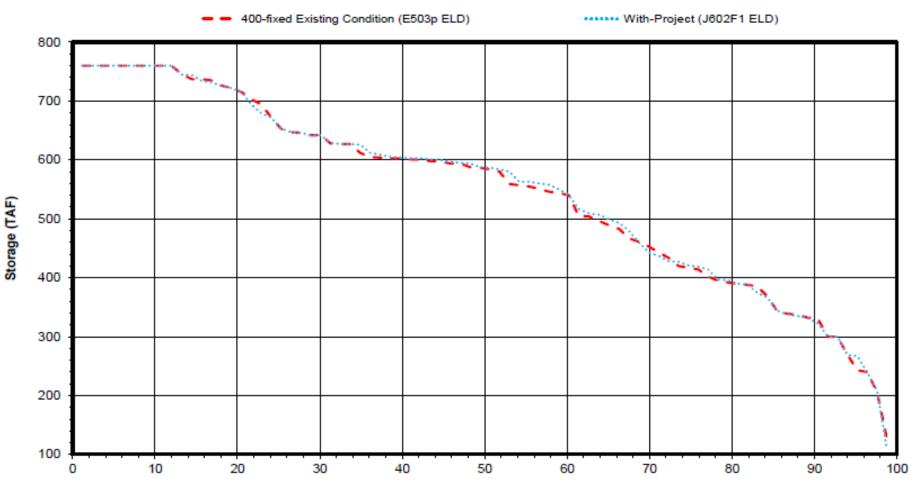
Probability of Exceedance (%)


Differences in Folsom End of May Storage by Water Year Type

Folsom Reservoir End-of-September Storages Forecast Alternative (Alt. 3) vs. 400/670 Baseline

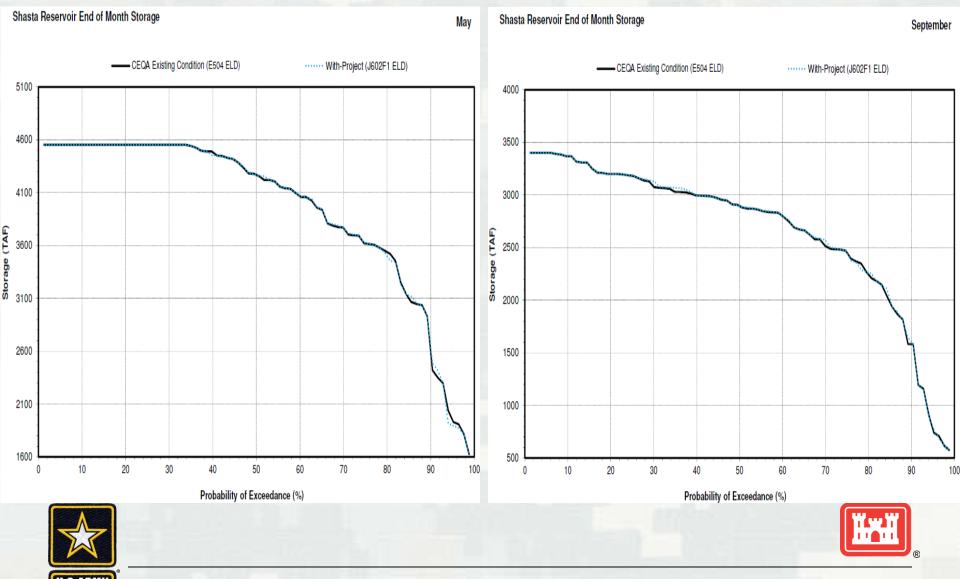
Folsom Reservoir End of Month Storage

September



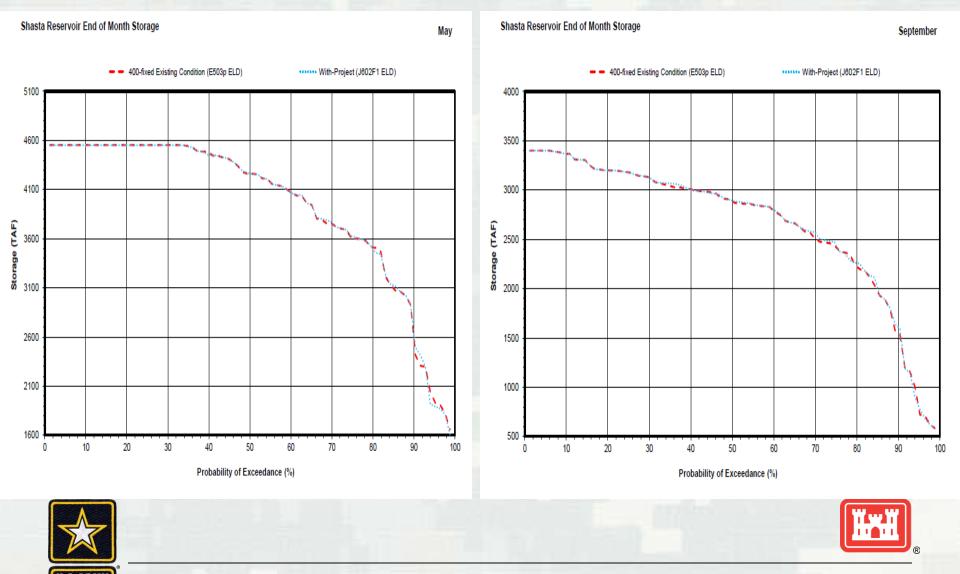
Probability of Exceedance (%)

Folsom Reservoir End-of-September Storages Forecast Alternative (Alt. 3) vs. 400 Fixed Baseline


Folsom Reservoir End of Month Storage

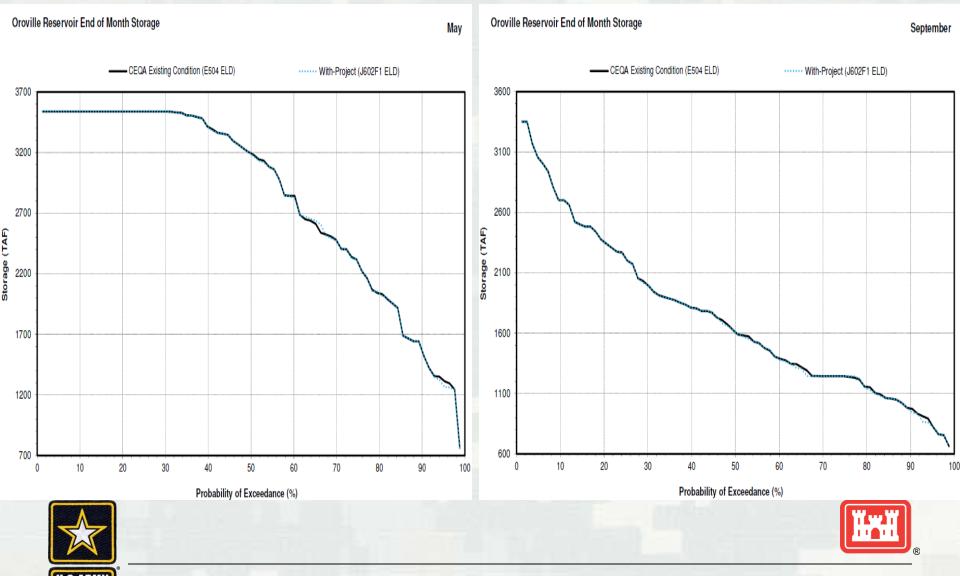
September

Probability of Exceedance (%)

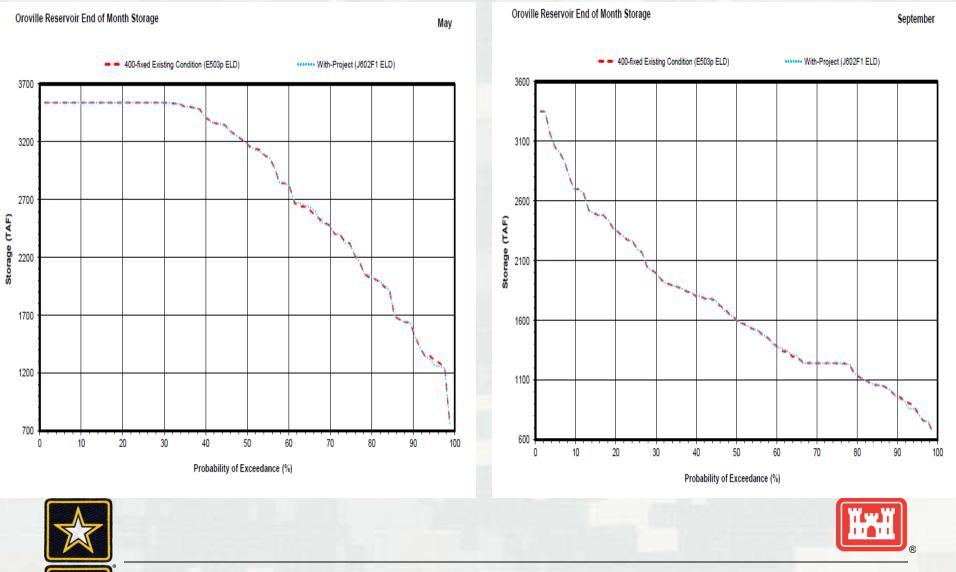

Shasta Reservoir End-of-Month Storages Forecast Alternative (Alt. 3) vs. 400/670 Baseline

BUILDING STRONG®

27


Shasta Reservoir End-of-Month Storages Forecast Alternative (Alt. 3) vs. 400 Fixed Baseline

BUILDING STRONG®


28

Oroville Reservoir End-of-Month Storages Forecast Alternative (Alt. 3) vs. 400/670 Baseline

BUILDING STRONG®

Oroville Reservoir End-of-Month Storages Forecast Alternative (Alt. 3) vs. 400 Fixed Baseline

BUILDING STRONG®

30

Percent Difference in Long Term Average Storage

Reservoir Storage	Basin Wetness Alternative (Alt 2)	Forecast Alternative (Alt 3)					
	vs. 400/670 Baseline	vs. 400/670 Baseline	vs. 400 Fixed Baseline				
Folsom (end-of-May)	+1.4	+1.5	+1				
Folsom (end-of-Sep)	+0.4	+0.3	0				
Shasta (end-of-May)	0	0	0				
Shasta (end-of-Sep)	+0.2	+0.2	0				
Oroville (end-of-May)	-0.1	0	0				
Oroville (end-of-Sep)	-0.2	-0.2	0				

Storage Outcomes of Both Alternatives

- Improved flood risk management operations
- Slightly improved end of May Folsom storage
- CalSim II results overall have indicated no substantial changes to system-wide performance
 - CalSim II represents conservation operations. Does not capture operator discretion.

Delta Water Quality

BUILDING STRONG®

Delta Water Quality Model and Parameters

- CalSim II Artificial Neural Network (ANN) computes salinity based on water operations
- Salinity dynamics in the Delta addressed at a screening level
 - ≻Changes in X2

Export/Inflow ratio

➤Total Delta inflow/outflow

X2 – Differences in Count of Occurrences East of Control Points

		Feb		Mar			Apr			May			Jun			
Water Year Type	Control Point	Alt 2 (BW) vs 400/ 670	Alt 3 (F) vs 400/ 670	Alt 3 (F) vs 400 Fixed	Alt 2 (BW) vs 400/ 670	Alt 3 (F) vs 400/ 670	Alt 3 (F) vs 400 Fixed	Alt 2 (BW) vs 400/ 670	Alt 3 (F) vs 400/ 670	Alt 3 (F) vs 400 Fixed	Alt 2 (BW) vs 400/ 670	Alt 3 (F) vs 400/ 670	Alt 3 (F) vs 400 Fixed	Alt 2 (BW) vs 400/ 670	Alt 3 (F) vs 400/ 670	Alt 3 (F) vs 400 Fixed
	81 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wet	75 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	64 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
About	81 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal	75 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Norman	64 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	81 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal	75 Km	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	64 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	81 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dry	75 Km	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	64 Km	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
	81 Km	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Critical	75 Km	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
	64 Km	0	0	0	-1	-1	-1	1	1	1	0	0	0	0	0	0

Both Alternatives had the same number of occurrences east of 81 Km as all baselines for all water year types

Delta Outflow Objectives

Month	Minimum Delta Outflow (cfs)				
January	4,500 (6,000 if eight river index is >800 TAF)				
February-June	X2 Standard				
	8,000 for wet and above normal years				
July	6,500 for below normal years				
	5,000 for dry years				
	4,000 for critical years				
August	4,000 for wet, above normal, and below normal years				
	3,500 for dry years				
	3,000 for critical years				
September	3,000				
October	4,000 for all except critical years				
	3,000 for critical years				
November-December	4,500 for all except critical years				
	3,500 for critical years				

Both Alternatives met all Delta Outflow Standards and were consistent with all baseline conditions.

Delta Export/Inflow Ratio

 65 percent (0.65/1 ratio) for July through January, 35 percent (0.35/1 ratio) for February through June

	Alt 2 (BW) vs. 400/670	Alt 3 (F) vs. 400/670	Alt 3 (F) vs. 400 Fixed
Largest difference in average annual value	0.2 for March (1% difference vs baseline)	11% difference vs	0.3 for March (1.5% difference vs baseline)
Water year-type max negative change	critical years (-3.5%	-1.3 in January of critical years (-3.8% difference vs baseline)	
Water year-type max positive change			0.4 in March of wet years (2.6% difference vs baseline

Both Alternatives met all standards during all water year types.

Delta Water Quality Effects Summary

X2 – No Effect

Delta Outflow – No Effect

Delta Export/Inflow – No Effect

HYDROELECTRIC POWER

Hydroelectric Power Models and Parameters

- CalSim II reservoir storages and releases applied to LTGen and SWPGen models
- Evaluation of:
 - Total capacity, quantity and timing of energy production
 - ➢Any changes in Project use
 - >Net capacity and energy at load center
 - Effects to timing of peaking operations at Folsom Dam

Hydroelectric Facilities

SWP		CVP	
Power	Pumping	Power	Pumping
Oroville	Banks	Trinity	Tracy
Thermalito	San Luis	Lewiston	Contra Costa
San Luis	Dos Amigos	Carr	O'Neill
Alamo	Buena Vista	Spring Creek	San Luis
Mojave	Teerink	Shasta	San Felipe
Devils Canyon	Chrisman	Keswick	Dos Amigos
Warne	Edmonston	Folsom	Folsom
Castaic	Pearblossom	Nimbus	Corning
	Oso	New Melones	Red Bluff
	South Bay	San Luis	San Luis
	Del Valle	O'Neill	DMC

Las Perillas

Badger Hill

Tehama

Long-Term Average Power and Pumping Basin Wetness Alt (Alt 2) vs 400/670 Baseline

Central Valley Project Facilities

Capacity (MW) Energy Generation (GWh) Energy Use (GWh) Foregone Energy (GWh) Transmission Losses (GWh) Net Generation (GWh)

Basin Wetness Alt (Alt 2) vs 400/670 Baseline

0% (same) 0% (same) 0% (same) 0% (same) 0% (same) 0% (same)

State Water Project Facilities

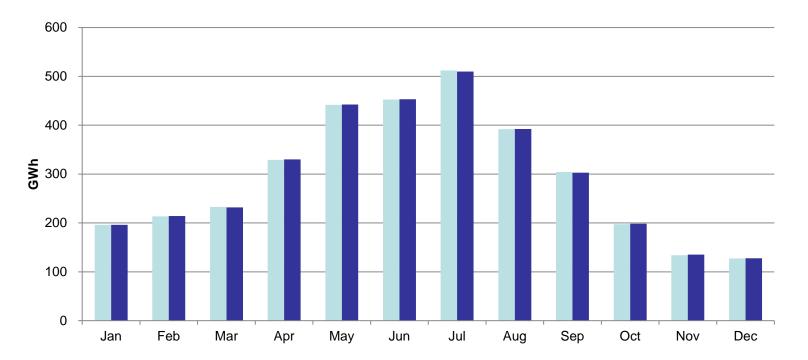
Capacity (MW) Energy Generation (GWh) Energy Use (GWh) Foregone Energy (GWh) Transmission Losses (GWh)

Net Generation (GWh)

Basin Wetness Alt (Alt 2) vs 400/670 Baseline

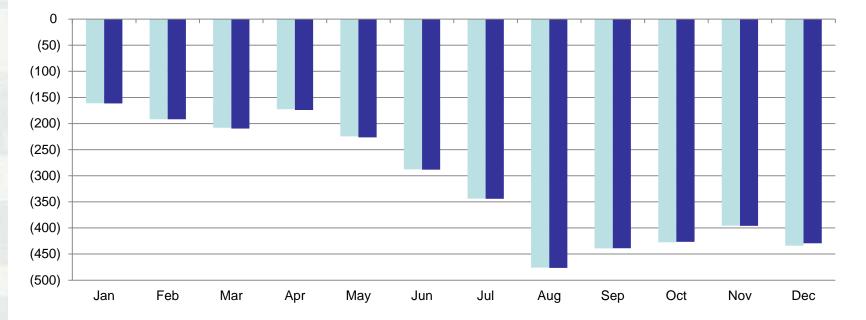
0% (same) 0% (same) 0% (greater than baseline condition) 1% (greater than baseline condition) 0% (same) 0% (same)

Long Term is the average quantity for the calendar years 1922-2002.


Load Center is the geographical area where energy is delivered, in this case the Western Area Power Administration's Tracy transmission area. Foregone Energy is the difference in the reservoir release and the powerplant release; as a function of plant head requirements and energy factors. Net Generation is the difference between energy generation and energy use at pumping facilities.

Long-Term Average Power and Pumping Basin Wetness Alt (Alt 2) vs 400/670 Baseline

Average Monthly CVP Net Project Generation at Load Center


Existing BOR/SAFCA 400/670 TAF Flood Space Operations with Upstream Credit Storage (E504 ELD)

■ Alternative 2 400/600 TAF Flood Space Operations with Upstream Credit Storage and Basin Wetness (J602p ELD)

Long-Term Average Power and Pumping Basin Wetness Alt (Alt 2) vs 400/670 Baseline

Average Monthly SWP Net Project Generation at Load Center

Existing BOR/SAFCA 400/670 TAF Flood Space Operations with Upstream Credit Storage (E504 ELD)

Alternative 2 400/600 TAF Flood Space Operations with Upstream Credit Storage and Basin Wetness (J602p ELD)

Central Valley Project Facilities

Capacity (MW) Energy Generation (GWh) Energy Use (GWh) Foregone Energy (GWh) Transmission Losses (GWh) Net Generation (GWh)

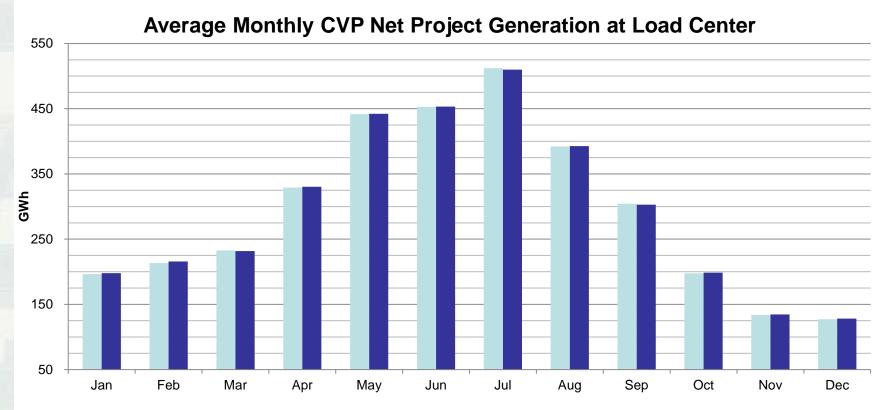
State Water Project Facilities

Capacity (MW) Energy Generation (GWh) Energy Use (GWh) Foregone Energy (GWh) Transmission Losses (GWh)

Net Generation (GWh)

Forecast Alt (Alt 3) vs 400/670 Baseline

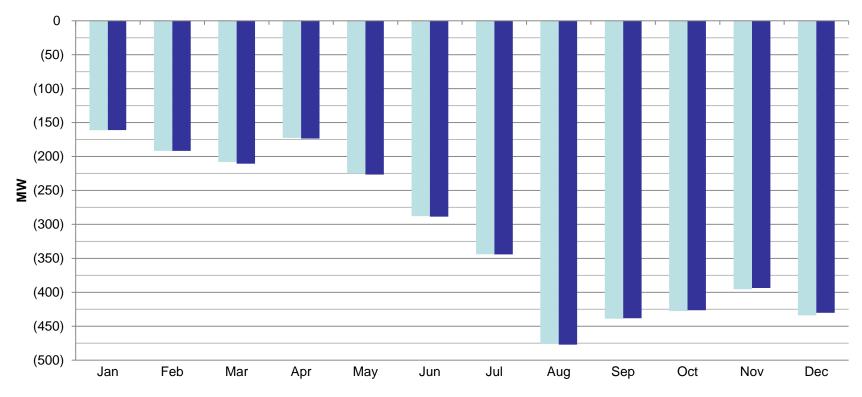
0% (same) 0% (same) 1% (greater than baseline condition) 1% (less than baseline condition) 0% (same) 0% (same)


Forecast Alt (Alt 3) vs 400/670 Baseline

0% (same) 0% (same) 1% (greater than baseline condition) 1% (greater than baseline condition) 0% (same) 0% (same)

Long Term is the average quantity for the calendar years 1922-2002.

Load Center is the geographical area where energy is delivered, in this case the Western Area Power Administration's Tracy transmission area. Foregone Energy is the difference in the reservoir release and the powerplant release; as a function of plant head requirements and energy factors. Net Generation is the difference between energy generation and energy use at pumping facilities.



Existing BOR/SAFCA 400/670 TAF Flood Space Operations with Upstream Credit Storage CEQA Existing Condition (E504 ELD)
 Alternative 3 400/600 TAF Flood Space Operations with Forecasted Inflow Volumes (J602F1 ELD)

Existing BOR/SAFCA 400/670 TAF Flood Space Operations with Upstream Credit Storage CEQA Existing Condition (E504 ELD)

Alternative 3 400/600 TAF Flood Space Operations with Forecasted Inflow Volumes (J602F1 ELD)

Central Valley Project Facilities

Capacity (MW) Energy Generation (GWh) Energy Use (GWh) Foregone Energy (GWh) Transmission Losses (GWh) Net Generation (GWh)

State Water Project Facilities

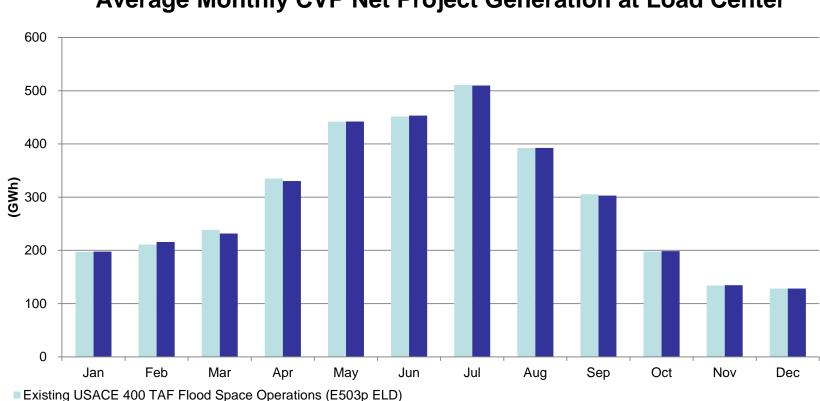
Capacity (MW) Energy Generation (GWh) Energy Use (GWh) Foregone Energy (GWh) Transmission Losses (GWh)

Net Generation (GWh)

Forecast Alt (Alt 3) vs 400 Fixed Baseline

0% (same) 0% (same) 0% (same) 1% (greater than baseline condition) 0% (same) 0% (same)

Forecast Alt (Alt 3) vs 400 Fixed Baseline


0% (same) 0% (same) 0% (same) 1% (greater than baseline condition) 0% (same) 1% (less than baseline)

Long Term is the average quantity for the calendar years 1922-2002.

Load Center is the geographical area where energy is delivered, in this case the Western Area Power Administration's Tracy transmission area. Foregone Energy is the difference in the reservoir release and the powerplant release; as a function of plant head requirements and energy factors. Net Generation is the difference between energy generation and energy use at pumping facilities.

Average Monthly CVP Net Project Generation at Load Center

Alternative 3 400/600 TAF Flood Space Operations with Forecasted Inflow Volumess (J602F1 ELD)

BUILDING STRONG®

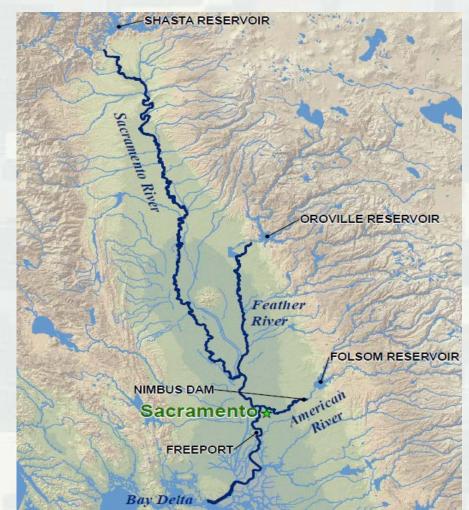
0 (50) (100) (150) (200) **Š** (250) (300)(350) (400) (450) (500) Feb Mar Jul Sep Oct Nov Dec Jan Apr May Jun Aug

Average Monthly SWP Net Project Generation at Load Center

Existing USACE 400 TAF Flood Space Operations (E503p ELD)

Alternative 3 400/600 TAF Flood Space Operations with Forecasted Inflow Volumess (J602F1 ELD)

FISHERIES FAR-FIELD EVALUATION


Fisheries Far-Field Evaluation Models and Parameters

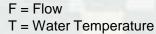
- CalSim II and U.S. Bureau of Reclamation Temperature Model
- Effects analysis based on river flows, lake levels, water temperature modeling, and X2 location.
- Special-status fish species (i.e., steelhead, Chinook salmon, delta smelt, green sturgeon, etc.) and recreationally important species (e.g., striped bass and American shad).

Fisheries Evaluations

- Species-specific
 - By lifestage
 - Temporal distribution
 - Spatial distribution
 - ► Flow
 - Water temperature
 - Spawning habitat
 - Delta parameters

Fisheries Far-Field Evaluation Locations

Sacramento River


- Below Keswick Dam (F, T)
- ► Ball's Ferry (T)
- ► Jelly's Ferry (T)
- ► Bend Bridge (F, T)
- ► Red Bluff (F, T)
- ► Feather River confluence (F, T)
- ► Freeport (F, T)
- Rio Vista (F)

Feather River

- Below Fish Barrier Dam (F, T)
- Below Thermalito Afterbay (F, T)
- Mouth of Feather River (F, T)
- Yolo Basin

BUILDING STRONG®

Fisheries Far-Field Evaluations

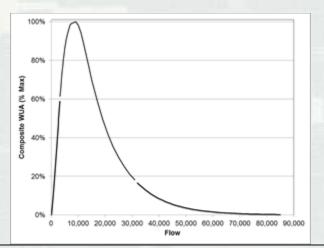
- Riverine Flow & Water Temperature Outputs
 - Long-term average & average by WYT summary tables
 - Exceedance distributions
 - Species-specific summaries
- Riverine Spawning Habitat Outputs
 - Long-term average and average by WYT summary tables
 - Difference in % maximum Weighted Usable Area (WUA)

Exceedance distributions

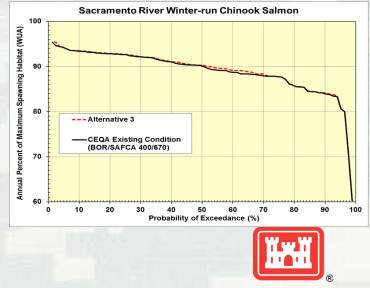
Alternative 3 vs CEQA Existing Condition

 Preliminary results of simulated flow and temperature-related fisheries evaluations in the Far-Field

> Under Alternative 3 (Forecasted Inflow) relative to the CEQA Existing Condition (BOR/SAFCA 400/670)

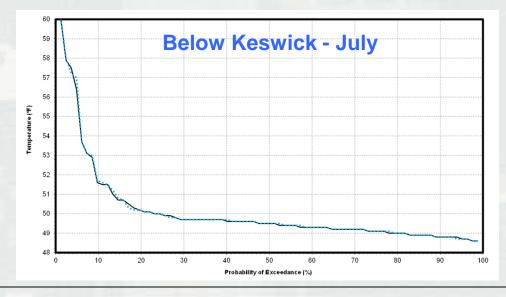

Sacramento River - Flow

Long-term average monthly flow


 Essentially equivalent year-round

 Flow exceedance distributions

 Very few changes of 10% or more
 Spawning habitat availability
 Generally similar or equivalent

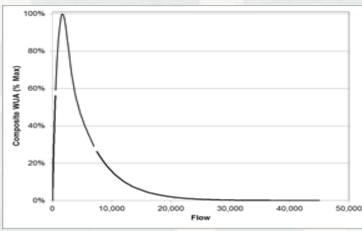


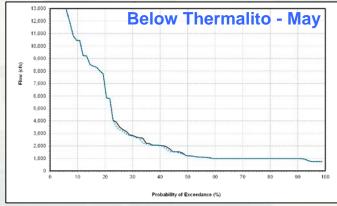
BUILDING STRONG®

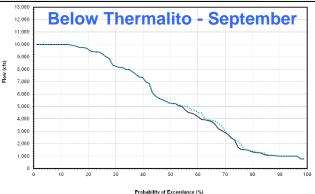
Sacramento River – Temperature

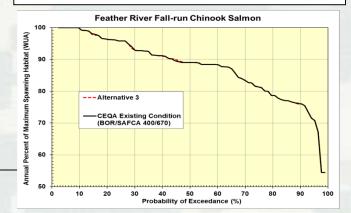
- Long-term average monthly temperature
 - Essentially equivalent year-round
- Exceedance distributions
 - Maximum increase (1.3°F July)
 - ► Maximum decrease (0.8°F September)

58

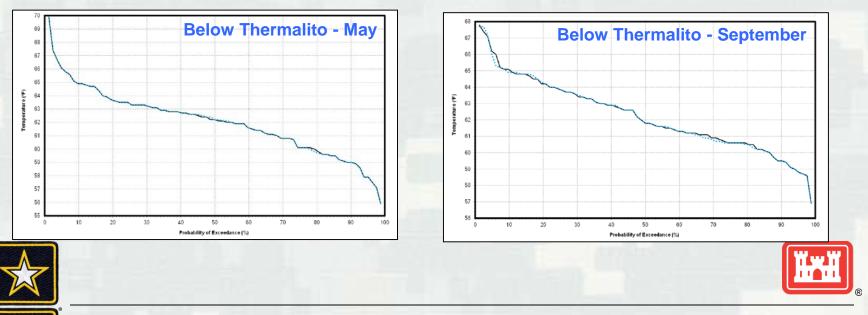


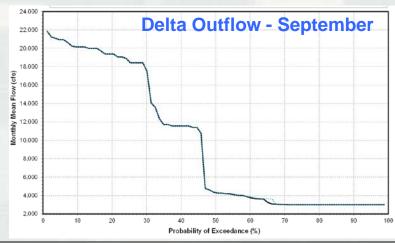

BUILDING STRONG®


Feather River - Flow


59

- Long-term average monthly flow
 - Essentially equivalent all months except September
 - 1.1% increase below Thermalito
- Flow exceedance distributions
 - ► Very few changes of 10% or more
- Spawning Habitat
 - ► Generally similar




Feather River - Temperature

- Long-term average monthly temperature
 - Essentially equivalent year-round
- Exceedance distributions
 - Maximum increase (0.6°F October)
 - ► Maximum decrease (0.7°F September)

Delta Parameters

- Flows at Rio Vista, Delta Outflow, Old and Middle River Flows, Yolo Bypass Outflow, and X2 location
- Long-term average monthly values
 - Essentially equivalent most of the time
- Exceedance distributions
 - Generally similar, with slight increases and decreases in some species-specific parameters

Far Field Species Evaluations

Common Name		Status	
	Sacramento River winter-run Chinook salmon ESU	Federally and state endangered	
	Central Valley spring-run Chinook salmon ESU	Federally and state threatened	
•	Central Valley fall-/late fall-run Chinook salmon ESU	Federal species of concern	
		State species of special concern	
	Central Valley steelhead DPS	Federally threatened	
	Southern DPS of North American green sturgeon	Federally threatened	
		State species of special concern	
	Delta smelt	Federally threatened	
		State endangered	
	Longfin smelt	Federal candidate	
		State threatened	
	Hardhead	State species of special concern	
	Pacific lamprey	Federal species of concern	
	River lamprey	State species of special concern	
	Sacramento splittail	State species of special concern	
	White sturgeon	Recreational and/or commercial importance	
	American shad	Recreational and/or commercial importance	
	Striped bass	Recreational and/or commercial importance	

Alternative 3 vs. Existing Condition (USACE 400)

- Generally similar changes in flows and water temperatures as Alternative 3 relative to the CEQA Existing Condition
 - Slightly fewer flow reductions in the Sacramento River
 - Slightly fewer flow increases in the Feather River
 - Similar changes in Delta parameters

Alternative 3 (Forecast) vs. Alternative 2 (Basin Wetness)

 Generally equivalent changes in flow, water temperature, and Delta parameters under Alternative 3 relative to Alternative 2

Lower American River

- Detailed Evaluation
 - Sub-monthly timestep, by river mile
 - ► Flow
 - ► Water temperature
 - ► Spawning WUA
 - Redd dewatering

Summary of Environmental Effects Analysis To Date

- Slightly improved end of May Folsom storage
- CalSim II results overall have indicated no substantial changes to system-wide performance
 - CalSim II represents conservation operations. Does not capture operator discretion.
- Next Steps: Detailed evaluation of American River effects

DISCUSSION & QUESTIONS

OCT 2017

BUILDING STRONG®