Folsom Dam Water Control Manual Update

Public Workshop

November 18, 2014

9:00 am - Noon

U.S.ARMY

Location: 1020 11th Street, Sacramento CSAC Conference Center, 2nd Floor

US Army Corps of Engineers BUILDING STRONG_®

Welcome and Introductions

Purpose of Manual Update

- Revise operation rules for Folsom Dam to reduce flood risk based on capabilities of Folsom Joint Federal Project (JFP)
- Reflect operational capabilities created by improved weather forecasts
- Potentially reduce volume of flood control reservation in Folsom Reservoir at any particular time by comparison to operations that have been in effect since 1995

Objectives of Manual Update

- Pass the Probable Maximum Flood while maintaining 3 feet of freeboard below top of dam to stay within dam safety constraints of U.S. Department of Interior, Bureau of Reclamation.
- Control a 1/100 annual chance flow ("100-year flood") to a maximum release of 115,000 cubic feet per second as criteria set by Sacramento Area Flood Control Agency to support Federal Emergency Management Agency levee accreditation along American River.
- Control a 1/200 annual chance flow ("200-year flood") as defined by criteria set by State of California (State) Department of Water Resources to a maximum release of 160,000 cubic feet per second, when taking into account all authorized modifications within American River Watershed.

Purpose of Today's Workshop

- Review and receive input on flood operation alternatives that U.S. Army Corps of Engineers (USACE) is currently evaluating; and
- Receive input on other flood operation alternatives that possibly should be evaluated

Joint Federal Project Time Lapse Video

http://youtu.be/tYXsPEwMZeQ?l ist=UUnFQ8FQ-6bx9yYCH8YmnB2g

JFP Increased Release Capability

7

BUILDING STRONG_®

Existing and JFP Outlets

Water Control Manual

Water Control Plan

- ► Objectives
- ► Constraints
- ► Key diagrams
 - Emergency Spillway Release Diagram
 - Water Control Diagram

Primer on Water Control Diagrams

Storage Zones

Water Control Diagram Example Seasonal Variation

Water Control Diagram Example **Seasonal Variation + Variable Space** Flood space (KAF) 1,000 0 Top of conservation **Flood space** 800 Storage Storage (KAF) 600 400 Variable space 400 **600 Conservation pool** 200 Oct Nov Feb Mar Jul Dec Jan Apr May Jun Aug Sep Oct

13

U.S.ARMY

We Will Cover:

Existing

- ► USACE 400 + Basin Wetness
- ► BOR-SAFCA 400/670 + Upstream Storage
- Alternatives (400/600 with JFP)
 - ► 1 Upstream Storage Credit
 - ► 2 Upstream Storage Credit + Basin Wetness
 - ► 3a Upstream Storage Credit + Runoff Forecast
 - ► 3b Integrated Inflow Forecast

WATER CONTROL DIAGRAMS

Water Control Diagram

Water Year 1997 Simulation

17

Water Control Diagram

Alternative 2 - 400/600 KAF Variable Flood Space (Upstream Storage + Basin Wetness)

Forecast Alternatives 3a and 3b

- Incorporate inflow forecast, and uncertainty about that forecast, into release decision logic.
- Release schedule specifies minimum release required based on current storage and forecasted inflow.

Alternative 3a - 400/600 KAF Variable Flood Space (Upstream Storage + Unimpaired Runoff Forecast)

Alternative 3b - 400/600 KAF Variable Flood Space (Integrated Inflow Forecast)

Status

- Completed Models
 Existing USACE
 Existing BOR-SAFCA
 Alternative 1
- Under Development
 Alternative 2
 - Alternatives 3a and 3b

More Detailed Look

Integrated Inflow Forecast

Alternative 3b 400/600 KAF Variable Flood Space

Overview

Reclamation Mid-Pacific Region Sacramento, CA

1. American River Characteristics

2. Meteorology and Hydrology

3. Winter Flood Example

Floodway

40k - 50k

8k

25k

115k

160k

Typical American River Cross Section

Meteorology and Hydrology November 25, 2012 – 1 Day AR & QPF Forecasts

Meteorology and Hydrology November 25, 2012 – 3 Day AR & QPF Forecasts

Meteorology and Hydrology November 25, 2012 – 5 Day AR & QPF Forecasts

General Objectives

- 1. Readily store in Variable Space based on hydrologic conditions
- 2. Evacuate an increment of storage prior to main storm event by making prudent release decisions based on forecast confidence
- 3. Initial Release decisions based on a Forecast/Storage based framework

Conceptual Design Approach

Reclamation Mid-Pacific Region Sacramento, CA

- **1. Structured Elements**
 - Communication and Certainty
- **2. Decisions Tied to Release Thresholds**
 - Notification and Operational Coordination
- **3. Forecast-Informed Release**
 - Modest Releases in Advance of Major Events
- 4. Anticipate Forecast Dynamics

Appropriate Flood Risk and Forecast Uncertainty

Reclamation

Prudent Storm Release Actions

Shasta Flood Control Diagram

used 100 INFLOW 79,000 90 TO s pace 70,000 80 INFLOW 79,000 Percent required flood control 70,000 70 -INFLOW TO TO 60,000 60 39,000 INFLOW 50 TO 60,000 40 50,000 30 60,000 20 MAXIMUM 39,000 POWER 50,000 10 RELEASE 0 -50 60 70 80 90 100 110 120 130 140 150 40 20 30 0 10 Actual or forecast inflow in 1,000 c.f.s.

Release Schedule Applies to Rising Limb

Forecast Based Release Schedule

Reclamation Mid-Pacific Region Sacramento, CA

Select Maximum Release Value from Release Decisions

BUILDING STRONG_®

Example Advance Release: Rising Limb

BUILDING STRONG®

R

Benefits Applying Forecasts

- Forecast Storm Reasonably Well
 - Mobilize flood preparedness
 - ► Prepare flood space
 - Moderate releases downstream
 - Reduce excessive scour/gravel mobilization
 - Improve spring re-fill management

Risks Applying Forecasts

Forecast Storm Imprecisely

► Volume Over Predicted

 Prepare greater flood space than actually needed

► Volume Under Predicted

 Lost opportunity to moderate releases downstream

Further Refinement

- Incorporate Feedback
- Pre-Storm Storage Condition
 - Assess Fill Potential vs Basin Conditions
- Further Evaluate Forecast Uncertainty
- Iterative Refinement:
 - Inflow Volume Thresholds
 - Release Decision Smoothing
 - Forecast Variability and Confidence

Questions/Comments

JFP – WCM Integrated Master Schedule

15 Nov 14

11/17/14 BCM

Discussion / Questions

Stakeholder Input on Other Possible Alternatives

Summary Comments

BUILDING STRONG_®

Closing Remarks

