Delta Wetlands Project In-Delta Storage Model

Prepared By

2450 Alhambra Boulevard, Second Floor Sacramento, California 95817

Contents

Page

Delta Wetlands	Project In-Delta Storage Model	D-1
In	troduction	D-1
G	eneral Description	D-2
С	alSim Baselines	D-4
	Description of CalSim II Assumption	D-4
	Level of Development	D-5
	Old and Middle River Flow Criteria	D-6
IC	DSM Simulation Calculations	D-8
IC	DSM Spreadsheet Layout	D-10
	Control	D-11
	IDSM Output Tables and Graphs	D-19
Attachment 1	Columns and Simulation Equations in the IDSM Worksheet Model	D-23

List of Tables and Figures

Table	Pag	e
D-1	2007 Delta Smelt Interim Remedy Order1 D-	7
D-2	Assumed Old and Middle River Flow Criteria in CalSimD-	8

Figure	Page
D-1	D-1643 and Biological Opinion Constraints on Project Operations D-3
D-2	Documentation—IDSM Worksheet DescriptionsD-11
D-3	IDSM Control Worksheet Provides a Summary Results Table at the Top D-12
D-4	User Selection of the CalSim Baseline in the Control Worksheet D-12
D-5	User-Defined Project Diversion and Discharge Operations under OMR Flow Criteria
D-6	User-Defined Project Diversion Criteria with Flexibility to Implement D- 1643 SpecificationsD-14
D-7	User-Defined Project Discharge for Export Criteria with Flexibility to Implement D-1643 SpecificationsD-15
D-8	User-Defined Month to Release Reservoir Contents when Storage Exceeds a Specified Level
D-9	Direct Transfer and Place of Use Limits D-16
D-10	Groundwater Bank Specifications D-17
D-11	Discharge for Export Constraints Pertaining to Water Quality Standards and the Delta Export to Inflow RatioD-18
D-12	User Defined Additional Permitted Banks Pumping Capacity D-18
D-13	User Control of the Delta Cross Channel Operation D-18
D-14	Webb and Bacon Storage Capacity, Storage-Area Curve, and Evaporation Rate SettingsD-19
D-15	Example Plot of Monthly Island Storage from the TS_plot WorksheetD-20
D-16	Example Annual Plot of Island Discharge for Export from the Ann_plot Worksheet
D-17	Example Table of Annual Average Island Discharge by Purpose and Water Year Type as Found in the Ann_plot WorksheetD-21
D-18	IDSM Schematic Allows Model Users to Step Through Simulations Month-by-Month to View Results and Analyze ConstraintsD-22

Acronyms and Abbreviations

Banks	SWP Harvey O. Banks Pumping Plant
BO	Biological Opinion
CA	California Aqueduct
CACMP	Common Assumptions Common Model Package
CALFED	CALFED Bay-Delta Program
CEQA	California Environmental Quality Act
cfs	cubic feet per second
CVP	Central Valley Project
CVPIA	Central Valley Project Improvement Act
D-1485	State Water Resources Control Board water right Decision 1485
D-1641	State Water Resources Control Board water right Decision 1641
Delta	Sacramento–San Joaquin River Delta
Delta Wetlands	Delta Wetlands Properties
DWR	California Department of Water Resources
E/I	export/inflow
EIR	Environmental Impact Report
FMWT	Fall Midwater Fish Trawl
FNA	Future No Action
IDSM	In-Delta Storage Model
Joint-Point	Joint Point of Diversion operations for the CVP and SWP
Jones	CVP Tracy C.W. "Bill" Jones Pumping Plant
LOD	Level of Development
MBK	MBK Engineers, Inc.
NEPA	National Environmental Policy Act
NMFS	National Marine Fisheries Service
NTU	Nephelometric Turbidity Units
OCAP	Operation Criteria and Plan
OMR	Old and Middle River
Project	Delta Wetlands Project
Reclamation	U.S. Department of the Interior, Bureau of Reclamation
Semitropic	Semitropic Water Storage District
State Water Board	State Water Resources Control Board
SWP	State Water Project
USFWS	U.S. Fish and Wildlife Service
VAMP	Vernalis Adaptive Management Plan
WQCP	Water Quality Control Plan

Delta Wetlands Project In-Delta Storage Model

Introduction

Delta Wetlands Properties (Delta Wetlands) proposes to develop two island reservoirs in the Sacramento–San Joaquin River Delta (Delta) as part of the Delta Wetlands Project (Project). Bacon Island and Webb Tract are the designated sites for water storage. The intended operation is to divert water onto the islands during periods of Delta surplus (i.e., State Water Project [SWP] and Central Valley Project [CVP] pumping at permitted capacity with more than required Delta outflow) and release water for south-of-Delta export or increased Delta outflow for improved water quality or habitat conditions.

Delta Wetlands has identified specific places of use for the project and has submitted petitions with the State Water Resources Control Board (State Water Board) to add these proposed places of use to the project's applications. Delta Wetlands needed to explore the benefits of integrating the in-Delta water storage facilities with groundwater banks located in the San Joaquin Valley and southern California and with designated places of use for the delivered water. In previous studies, there was no modeled linkage between the project's water supply delivery at south Delta CVP or SWP pumping plants and south-of-Delta demands. The Reservoir Islands were intended to hold water for less than a year, and some of the water the project diverted to storage was during wet and above normal runoff years. South-of-Delta groundwater banks would provide the means to store project water for dry year supply.

To address designated place of use deliveries, the recent OMR flow criteria, groundwater bank integration, and the many issues of water operations in the Delta, MBK Engineers, Inc. (MBK) developed the In-Delta Storage Model (IDSM) to evaluate monthly project operations under various regulatory requirements and rules of operation. The model provides the output necessary to perform environmental assessments for the SEIS and provides flexibility to compare multiple alternatives for project operating rules. This document provides a description of the IDSM logic and the necessary CalSim II results that are used as the baseline conditions for exploring project operations. The document also discusses the IDSM calculations and user input and output interface (i.e., tables and graphs).

General Description

The IDSM was developed to simulate In-Delta Storage operations at a monthly time-step based on water years 1922–2003 hydrologic conditions as simulated by CALSIM II. The IDSM model is a Microsoft Excel spreadsheet. Each month of a simulation, IDSM simulates the diversion of water to storage or the discharge of water from the island reservoirs to export or increase Delta outflow, based on several Delta flow conditions including available Delta surplus (within the export/inflow [E/I] ratio), available island storage capacity, Delta water quality, available export capacity, available south-of-Delta conveyance capacity, and south-of-Delta water demand. IDSM tracks Webb and Bacon Island storages, island diversions and discharges, Delta outflow, X2, Rock Slough salinity, QWEST, flow in Old and Middle Rivers, Delta exports, groundwater bank recharge and pumping, groundwater bank storage, and south-of-Delta delivery of project water. IDSM output is provided in monthly and annual plots and tables.

The control worksheet provides the ability to easily modify project design, regulations, and operations to evaluate different project alternatives. For instance, the user can choose different CalSim baselines to reflect changed Delta regulations; specify island diversion and discharge constraints; specify the island reservoirs and groundwater banks storage and flow capacities; identify the place of use demand parameters; and specify discharge operations for water quality improvement (increased outflow).

The project is simulated without interference to the baseline CVP and SWP Delta operations. IDSM calculations change Delta outflow, Delta exports, and south-of-Delta conveyance and deliveries from the selected CalSim baseline without changing the baseline CVP and SWP operations. Upstream reservoir operations and Delta inflow are left unchanged, and CVP and SWP Delta exports, as simulated in the CalSim baseline, are not changed. The IDSM-calculated diversions to the project are solely from Delta surplus—water that is unneeded for in-basin use and that no other diverters in the Sacramento-San Joaquin basins have the capacity or right to take. South-of-Delta exports of Project water are made using CVP Tracy C.W. "Bill" Jones Pumping Plant (Jones) and SWP Harvey O. Banks Pumping Plant (Banks) capacity that was unused by the SWP, CVP, and third party transfers to CVP and SWP contractors as represented in the CalSim baseline.

CRITERIA	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
D1643 Diversion Criteria												
No Diversion to Storage												
Initial Delay Period-X2 days past Chipps (75 km)	10) days of X2 < 75								10	days	
Initial Ramping Period-5,500 cfs max	5	days < 5500 cfs								5	days	
Min 14-day running avg of X2 requirement		X2<75	km									
Min 14-day running avg of X2 requirement	X2<81 km						X2<81 km					
Min 14-day running avg of X2 requirement when Delta Smelt are present at CCWD intake.												X2<81 km
Proj. div is 500 cfs if 14-day running avg of X2		81 <x2>80 km</x2>						3	1 <x2>80 km</x2>			
Project Div is 1,000 cfs if 14-day running avg of X2		X2>81 km							X2>81 km			
Maximum allowable X2 shift (location)		2.5 km									2.5 km	
Limit on % of Net Delta Outflow	15%	15%	15%	0%	0%	25%	25%	25%	25%	25%	25%	25%
Max. Annual Diversion to Storage				Webb Trac	ct-262 taf/vear Ba	icon Island-258 ta	f/vear					
Biological Opinion Diversion Criteria												
Initial Diversion for Water Year		X2<74 km								×	/2<74 km	
Minimum X2 requirement (location0		X2<81 km									X2<81 km	
Limit on % of surplus water	90%	75%	50%	0%	0%	50%	75%	90%	90%	90%	90%	90%
Limit on % of SJR-15 days per month	125%	125%	50%									125%
Limit Diversions during DXC Closure												
Limit Div to 550 cfs unless QWEST remains +ve												
Maximum Top-Off Diversion Rate						215 cfs	270 cfs	200 cfs	100 cfs	33 cfs		
Reduce Diversion to 50% of previous days diversion rate if Delta Smelt are present												
*DISCHARGE FOR EXPORT												
D1643 Discharge Criteria Webb Tract (max 2.000 cfs)												
Flood prohibitions			No discharge	es for export								
Limit on % of available export capacity							75%					
Bacon Island (max 4,000 cfs)				E0%	50%	E09/						
		75%	50%	50%	50%	50%	75%					
Limit on % of available export capacity		1070	30%	30%	3078	10 mg/l 14-day	rupping average					
						10 mg/1 14-day	Turining average					
Zero salinity increase if it is already exceeding 90% of standard.												
Max. Annual Release of Stored Water						822	taf/year					
Max. Annual Export of Stored Water						250	taf/year					
Biological Opinion Discharge Criteria Reserved Environmental Water	10%	10%	10%	10%	10%	10%						10%
Limit Discharge for export to 50% of previous												
days diversion if Delta Smelt are present												

Figure D-1. D-1643 and Biological Opinion Constraints on Project Operations

CalSim Baselines

A standardized package of models have been developed for the California Department of Water Resources (DWR) and the U.S. Department of the Interior, Bureau of Reclamation (Reclamation) for use in feasibility analyses and CEQA and National Environmental Policy Act (NEPA) analyses of the CALFED Bay-Delta Program (CALFED) surface storage projects. These projects include expanded Lake Shasta, expanded Los Vaqueros Reservoir, Sites Reservoir, Upper San Joaquin River storage, and In-Delta Storage (DWR's proposed variation of the project). The suite of tools include CalSim II (water supply planning), DSM2 (Delta hydrodynamics and water quality), LCPSIM and CVPM (water supply economics), LTGEN/SWP Power (power generation/consumption), and others.

Reclamation and DWR are currently using Common Assumptions Common Model Package (CACMP) Version 9B for the CEQA/NEPA analysis of several water resource projects currently in the planning stages.

Description of CalSim II Assumption

CalSim II is a planning model designed to simulate the operations of the CVP and SWP reservoirs and water delivery system for current and future facilities, flood control operating criteria, water delivery policies, instream flow and Delta outflow requirements. CalSim II is a widely accepted tool for modeling the CVP and SWP and is the primary system-wide hydrologic model being used by DWR and Reclamation to conduct planning and water supply analyses of potential projects using a monthly time-step.

CalSim II is a monthly simulation with optimization model. The model simulates operations by solving a mixed-integer linear program to maximize an objective function (i.e., meet constraints and flow objectives) for each month of the simulation. CalSim II was developed to simulate the operation of the CVP and SWP for defined facilities, hydrological conditions and a set of regulatory requirements. The model simulates the operations of the CVP and SWP using 82 years of historical hydrology from water year 1922–2003.

CalSim II is set up to simulate and account for the effects of various regulatory requirements through a multi-step algorithm. CalSim II model "steps" simulate operations of the system under select regulatory requirements and agreements. The model is run for one year for each step and end of year conditions from the final step become input to start the next year for the first step. The Version 9B model contains five steps. The only purpose for the steps is to calculate incremental effects of several sets of constraints and objectives. Only the results from the final step are used for the next year's simulation.

1. State Water Board water right Decision 1641 (D-1641)—D-1641 was issued in 1999, revised in 2000, and specifies how the 1995 Water Quality

Control Plan (WQCP) is to be implemented. D-1641 provides both flow and water quality requirements at key locations in the Delta. D-1641 is the current basis for most regulatory requirements governing the Delta which in turn affects how the SWP and CVP operate upstream reservoirs and Delta export pumps. The Vernalis Adaptive Management Plan (VAMP) flows and export reductions are simulated in this step.

- 2. State Water Board water right Decision 1485 (D-1485)—Section b(2) of the Central Valley Project Improvement Act (CVPIA) dedicated 800,000 acre-feet of water to be made available for environmental purposes. Non-discretionary b(2) water, is the difference in water costs (either additional releases from upstream reservoirs or water available but not exported from the Delta) to meet the more stringent requirements of D-1641 instead of the previous requirements of D-1485.
- 3. **CVPIA b(2)**—Discretionary b(2) water may include additional winter releases from upstream reservoirs or export reductions in the weeks before and after the reductions that occur in the spring as part of the VAMP.
- 4. **Conveyance**—The conveyance and transfer steps of CalSim II are primarily used to simulate specific secondary aspects of project operations. The conveyance step simulates Stage 1 water transfers associated with the Phase 8 Settlement and the Lower Yuba River Accord, which are included in the allocations for the CVP and SWP and include transfers.
- 5. **Transfer**—The CalSim II transfer step layers Stage 2 water transfers onto the operations and simulates Joint Point of Diversion operations for the CVP and SWP (Joint-Point). Stage 2 transfers are private party transfers moved through the Delta as a last priority for export capacity. Joint-Point operations increase the flexibility of CVP and SWP exports by allowing both projects to utilize available export capacity at the other project's pumps. The transfer step also includes the wheeling of CVP water for Cross Valley Canal contractors at the Banks pumping plant. The project could be considered as a third-party transfer in this step of the CALSIM model, but is not included in the common assumptions simulations (V9B).

Level of Development

An existing Level of Development (LOD) study assumes that current land use, facilities and operational objectives are in place for each year of simulation (water year 1922–2003). The results are a depiction of the current water system operations which provides a basis for comparison of project effects for existing conditions (NEPA analysis). A Future LOD study is used to explore how the water system may perform under an assumed future set of physical and institutional circumstances. This future setting is developed by assuming year 2030 land use, facilities and operational objectives and is used for the Future No-Action (FNA) conditions (NEPA analysis). The Project was simulated with IDSM using the CALSIM existing level of development (2005) results.

Old and Middle River Flow Criteria

Regulations and criteria governing operation of the Delta and upstream facilities sometimes change to reflect new concerns or protections. In December 2007, there was an interim court order (Wanger Decision-remedy actions) that established a set of Old and Middle River flow criteria to protect Delta smelt. The remedy actions are outlined in Table D-1. These remedy actions could significantly reduce SWP and CVP Delta exports from January to June since pumping at that time would be restricted to satisfy the maximum allowed reverse flow criteria. As a consequence, the OMR criteria could boost SWP and CVP reliance on summer exports to make up for lost winter and spring exports. Interim OMR flow criteria were simulated as an optional regulatory condition in CACMP V9B CalSim II.

Reclamation is currently developing its revised Operation Criteria and Plan (OCAP) that will include operating rules protecting Delta smelt, salmon, and other fish, as specified by the U.S. Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS). The December 2008 USFWS Biological Opinion (BO) on OCAP for Delta smelt and the June 2009 NMFS BO on OCAP for Chinook salmon, steelhead, and green sturgeon supplanted Wanger's interim order. While there are similarities between the interim decision and the BO requirements, there are also some significant differences including a Fall Delta outflow requirement. To date, there is no CalSim simulation of the recent OCAP BOs in the Common Assumptions package.

Table D-1. 2007 Delta Smelt Interim Remedy Order1

1) This table only shows the parts of the December 14, 2007 Order that affect water supplies.

2) Triggered only if turbidity exceeds 12 NTU at any of 3 specific Delta Stations. Action lasts for 10 days once triggered.

3) The Vernalis Adaptive Management Plan (VAMP) includes San Joaquin River flow enhancements and curtailed CVP/SWP pumping.

As shown in Table D-1, application of the interim OMR criteria is dependent on turbidity in December and January, and the onset of smelt spawning along with the opinion of USFWS smelt working group from February to June. None of these adaptive management conditions can be simulated in CalSim II. Therefore, to formulate a CalSim baseline with OMR flow criteria, it was assumed that turbidity exceeds 12 Nephelometric Turbidity Units (NTU) at the sampling stations on December 25th of every year. Also, it was assumed that smelt spawning commences on February 19th, and that the USFWS imposes the strictest OMR criteria allowed from this day to the 20th of June. From a water supply perspective, both are conservative (i.e., minimum exports) assumptions. Table D-2 provides the resulting OMR criteria applied in the CalSim modeling. The CVP and SWP south-of-Delta delivery allocation procedures were modified to account for resulting reductions in available Delta export capacity.

Table D-2. Assumed Old and Middle River Flow Criteria in CalSim

Date	CalSim OMR Criteria (cfs)				
December 25–January 3	-2,000				
January 4–February 18	-5,000				
February 19–April 14	-750				
April 15–May 15	Exports controlled by VAMP criteria				
May 16–June 20th	-750				
Notes: cfs = cubic feet per second; OMR = Old and Middle River; VAMP = Vernalis					

Adaptive Management Plan

Two CalSim baselines have been included in IDSM. The first is a CACMP Version 9B CalSim II simulation at an existing level of development with no OMR flow criteria. In IDSM, this baseline is referred to as V9B. The second baseline is a CACMP Version 9B CalSim II simulation at existing level of development with interim OMR flow criteria as specified in Table D-2. This baseline is referred to as V9BOMR in IDSM.

IDSM Simulation Calculations

In IDSM, all monthly calculations are made in the worksheet titled Model. A full listing of the columns and equations contained in the Model worksheet is provided in the Attachment. The purpose of this section is to provide a qualitative discussion of the IDSM logic and assumptions for operating the island reservoirs.

Each month there are three possible modes of operation for Bacon Island and Webb Tract: (1) divert to storage, (2) discharge for export, or increased Delta outflow (improved water quality), and (3) do nothing. Operations are simulated based on hydrologic conditions from the CalSim baseline, and project constraints and operations rules specified by the IDSM user. IDSM first looks for an opportunity to divert water onto Bacon Island or Webb Tract. Available surplus Delta outflow is calculated from the CalSim baseline hydrology and consideration of the export to inflow limits found in D-1641. The project diversions are assumed to satisfy the D-1641 E/I limits. All user specified constraints on island diversions are calculated, and the individual island maximum allowed diversions are taken as the controlling bounds (i.e., minimum of the individual constraints) for each Reservoir Island.

IDSM next calculates the project discharges from both Reservoir Islands for export. Project discharges for export can go directly to designated places of use or be used to recharge groundwater banks; direct delivery takes priority over recharge. IDSM quantifies contractor unmet demands from the CalSim baseline and recharge capacity from user input. Contractor unmet demands may be further limited by place of use restrictions (i.e., percent of CVP and SWP unmet demands). The model calculates available permitted export capacity and California Aqueduct (CA) physical conveyance capacity from the CalSim baseline. IDSM calculates a maximum potential south-of-Delta export of project water for the given month. Next, IDSM quantifies user defined bounds on island discharge, including whether project exports are limited by the D-1641 E/I ratio.

Once export opportunities are taken, prospects for increasing Delta outflow to improve water quality or estuarine habitat benefits are calculated. Project discharges for Delta outflow are specified by the IDSM user and are based on the Delta outflow and salinity conditions in the CalSim baseline. Discharge for outflow is limited to the remaining specified discharge capacity or water on the island. Available capacity and storage may already be reduced due to project discharges for export.

IDSM operates on a month-by-month basis with no attempt to optimize operations for a particular objective. For example, if the model can provide a Delta benefit in a given month, the model will discharge to provide this benefit without consideration of potential discharge for export opportunities in future months. The IDSM user must specify Delta outflow rules carefully to achieve a mix of water supply, water quality, and habitat benefits.

Some simplifications of project operations were necessary due to the monthly time-step of CalSim and IDSM. For example, a single island can't divert and discharge in the same month. If IDSM determines a given month is a diversion opportunity for Webb Tract, the discharge for Webb Tract will be set to zero. In real-time operations, this may not always be the case. It is reasonable to expect that the project could divert during high Delta inflows in the first half of the month and discharge for export or Delta outflow benefits during the second half of the month.

IDSM may determine that one island has a diversion opportunity and the other has a discharge for export opportunity if the islands have different specified monthly operating criteria. For instance, consider the following rules for project operations when OMR flow criteria controls south-of-Delta exports:

- 1. Webb Tract is allowed to divert Delta surplus
- 2. Webb Tract is not allowed to discharge for export

- 3. Bacon Island is not allowed to divert Delta surplus
- 4. Bacon Island is allowed to discharge for export

The reasoning behind these rules might be that Webb Tract diversions won't negatively impact (i.e., increase) reverse OMR flow whereas Webb Tract discharge for export would increase the measured reverse OMR flow. Bacon Island diversions would draw water (and fish) up the Old and Middle River channels, but Bacon Island discharge for export would not change the transport of fish towards the export pumps. Under these rules, when OMR criteria limit exports, and there is surplus Delta outflow, there are occasional diversion opportunities on Webb Tract in the same month that IDSM simulates a discharge for export opportunity for Bacon Island. Without the OMR criteria, the IDSM model does not simulate discharge for export when surplus Delta outflow is available, because project diversions are generally more limiting, and CVP and SWP exports would already be at the maximum permitted level.

Filling of Bacon Island is given priority over filling Webb Tract. This priority is based on the discharge constraints placed on Webb Tract by D-1643. As specified in D-1643 Webb Tract can't discharge for export from February to June. No such restrictions are placed on Bacon Island by D-1643. So the idea is to fill Bacon Island first because there is greater opportunity for early discharge for export.

IDSM also has operating rules for the groundwater banks. As stated previously, exported project water will first go to SWP/CVP contractor unmet demands within the identified place of use. Once that monthly demand is satisfied, the remainder of project exports can go to recharge groundwater banks. The user specifies total bank capacity and maximum recharge rates. IDSM tracks storage in the groundwater banks. If SWP Table A allocations fall below a certain user specified threshold, water is pumped from the groundwater banks to identified SWP contractor unmet demand. In months where there is both island storage and groundwater pumping for meeting demand within the identified place of use.

IDSM Spreadsheet Layout

IDSM is organized in worksheets. The worksheets are grouped by function such as user input, simulation calculations, simulation results, and input/output processing. The first worksheet of the model, Documentation, lists each worksheet and its purpose as shown in Figure D-2. Most IDSM users will focus only on worksheets containing user input, model calculations, and analysis of results.

Control

IDSM user input is organized in the Control worksheet. At the top of the Control worksheet, as shown in Figure D-3, a color coded user input key is provided

along with a summary results table. Values that can be changed by the user are color coded yellow, pink and green. Yellow cells are parameters of particular interest to these studies such as the Old and Middle River Flow Criteria, place of use, and groundwater banks among others. Pink cells are used to implement rules associated with D-1643 and associated biological opinions and protest dismissal agreements. Green cells cover some of the physical constraints such as island reservoir capacity, storage area-curves, and monthly evaporation rates. After making changes, the user runs the model by pressing F9 (calculation).

Group	Worksheet	Description
User Input	Control	From this page, the user can change change IDS operational parameters and turn on or off various operational constraints
Model Calcs	Model	The simulation of IDS is performed in this worksheet. Decisions are made concerning island diversion, discharge, and destination of discharge according to baseline conditions and user specified operational controls.
View Results	TS_plot Ann_plot MonthlyStudyComparison AnnualStudyComparison System schematic Table TS_plot 10yr	Time series plot for entire simulation Annual summary graphics and tables Monthly time series plots comparing current and saved studies Annual summary graphics and tables comparing current and saved studies Results viewer on system schematic User defined output table Time series plots focusing on the last 10 years of the simulation (1994-2003)
Intermediate Calcs	SavedAnnualResults SavedPOEResults SavedMonthlyResults Saved Graph Calcs Graph Calcs Schematic Data Conversions	Annual results saved by pushing the SAVE button on the CONTROL worksheet Probability of exceedance results saved by pushing the SAVE button on the CONTROL worksheet Monthly time series results saved by pushing the SAVE button on the CONTROL worksheet Output to support plots of saved study Calculation to support output graphics of current simulation Data used for system schematic CFS-TAF conversion
CalSim Input and Output Processing	CalSimIn CalSimOut Control Calc Export Control CalSimOut_CA CA Avail Qwest OMR River Indicies	Selected CalSim model inputs CalSim model output used in IDSM Calculation of Delta outflow controls Calculation of available export capacity CalSim output for California Aqueduct (CA) flows Available CA capacity at key locations Calculation of Qwest that can vary by selected CalSim baseline Calculation of Old and Middle River flow which can vary by selected CalSim baseline Sacramento and San Joaquin River indicies
DSS Data Retrieval	DSSPathnames DSSPathnames_CA DSSPathnames_B2 DSSPathnames_RA	Pathnames for CalSim DV DSS output and SV DSS input. Works for all applicable CalSim studies. Pathnames for CalSim DV DSS output concerning California Aqueduct. Works for all applicable CalSim studies. Pathnames for CalSim DV DSS output from b2 step Pathnames for CalSim DV DSS output from Remedy Action study.

Figure D-2. Documentation—IDSM Worksheet Descriptions

The summary results table at the top of the control sheet (shown in Figure D-3) allows the user to modify operations rules or infrastructure and immediately see the effects on island operations on the same page. Summary results include average annual island discharge by destination and the overall deliveries to SWP and CVP contractors. Results are also averaged over different water year types so the user can see how project benefits are distributed over dry and wet years. If the user likes a particular simulation, the monthly results can be saved for comparison to subsequent simulations by using the SAVE button (shown to the left of the summary table in Figure D-3). Tabular and graphical comparisons of results from the saved and current simulations are found in worksheets MonthlyComparison and AnnualComparison.

In-Delta Storage I Model Operations Con	D SM) sheet		Yellow ce Pink cells They can Green ce the user.	ells are the s are para also be v Ils are pa	e paramet meters se varied by tl rameters p	ers of inte t in the or he user. pulled fror	erest for th iginal perm m the DWI	is study a nit applica R IDS Fea	nd can be ation, D16 asibility Str	changed I 43, or asso udies. The	by the use ociated doo ese can be	r. cuments. varied by	
			ls	and Disc	charge (T	'AF/year)				SOD De	liveries (T	AF/year)	
Summary Results:	Sac Index WY Type	Direct SWP Delivery	Direct CVP Delivery	AVWB Put	SWRU Put	OSWSD Put	SWSD Put	Delta Outflow Release	Total	SWP Delivery	CVP Delivery	Total	
SAVE	W AN	19 27	34 63	17 29	12 24	8 9	1 1	77 33	167 187	50 55	34 63	84 118	
	BN	58	56	23	21	13	1	63	236	98	56	154	
	D C	65 2	7 2	23 13	24 12	13 9	1 1	20 26	152 64	151 57	7 2	158 59	
	ALL	34	31	20	18	10	1	48	163	82	31	113	

Figure D-3. IDSM Control Worksheet Provides a Summary Results Table at the Top

The first cell (yellow) for user input is to select the CalSim baseline as shown in Figure D-4. Currently, there are two baselines provided: (1) V9B and (2) V9BOMR. The user simply types "1" or "2" in the yellow cell to make the selection. The key difference between the two baselines is that V9B does not include Old and Middle River flow criteria, whereas V9BOMR does. This affects the availability of Delta surplus for island diversion and export pumping capacity for island discharge. It also affects unmet south-of-Delta water demand and available conveyance capacity in the California Aqueduct. By selecting the CalSim baseline, the IDSM user defines the Delta conditions for evaluation of the project. IDSM can incorporate new CalSim baselines as necessary.

The next section of user input is to define diversion and discharge for export rules for the island reservoirs when OMR flow criteria are controlling Delta exports (Figure D-5). Rules can vary by island and month. For diversion or discharge, the first option the user has is to turn the rules off or on: "0" or "1", respectively. In the monthly tables, the user can specify a flow diversion or discharge restriction to apply (0 cfs or greater) when OMR flow criteria restrict Delta exports. (Note that these restrictions will only be applied when the CalSim baseline with OMR flow criteria is selected-V9BOMR.) IDSM also reevaluates OMR flow under project operations to determine if island diversion or discharge for export creates an OMR flow criteria control. Diversions to Bacon or Webb will not change OMR flow, but discharges for export from Bacon or Webb will reduce OMR flow (i.e., greater reverse OMR).

IDS Allowed Diversio	ons/Discha	arges	Under	Remed	ly Actio	ons (O	nly ap	plies fo	or OMF	R flow	criteria	baseli	nes)	
Webb Tract allowed diversion when a Remedy Action is controlling exports.														
		Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep]
	Off(0)/On(1)	1	2	3	4	5	6	7	8	9	10	11	12]
Webb maximum diversion	0	0	0	0	0	0	0	0	0	0	0	0	0	cfs
		0	0	0	0	0	0	0	0	0	0	0	0	off(0)/on(1)
Webb Tract allowed discharge	for export whe	n a Reme	dy Action	is controll	ling.		Allowanc	e of divers	sions pree	mpts allo	wance of d	ischarge.		
		Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	I
	Off(0)/On(1)	1	2	3	4	5	6	7	8	9	10	11	12	
Webb max. exp. dis.	1	0	0	0	0	0	0	0	0	0	0	0	0	cfs
		0	0	0	0	0	0	0	0	0	0	0	0	cfs
		1	1	1	1	1	1	1	1	1	1	1	1	off(0)/on(1)
Bacon Island allowed diversion	when a Reme	dy Action	is control	ling expor	ts.									_
		Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	1
	Off(0)/On(1)	1	2	3	4	5	6	7	8	9	10	11	12]
Bacon maximum diversion	1	0	0	0	0	0	0	0	0	0	0	0	0	cfs
		1	1	1	1	1	1	1	1	1	1	1	1	off(0)/on(1)
Bacon Island allowed discharge	Bacon Island allowed discharge for export when a Remedy Action is controlling.													
_	-	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	1
	Off(0)/On(1)	1	2	3	4	5	6	7	8	9	10	11	12	I
Bacon max. exp. Dis.	0	0	0	0	0	0	0	0	0	0	0	0	0	cfs
		0	0	0	0	0	0	0	0	0	0	0	0	cfs
		0	0	0	0	0	0	0	0	0	0	0	0	off(0)/on(1)
	-	_		_	_									

Figure D-5. User-Defined Project Diversion and Discharge Operations under OMR Flow Criteria

IDSM allows user-specified diversions under the OMR criteria. It also allows user- specified discharge for export under the criteria. However, for a given island in a given month, IDSM does not allow the user to specify both allowed diversions and discharges. If the user specifies both, IDSM ignores the discharge for export allowance. Enabling both diversion and discharge in a given month would defeat the purpose of the fish protection measures

The user-specified controls for project diversions, as shown in Figure D-6, take the form of the major D-1643 constraints (shown in Figure D-1). The purpose was to allow the user to apply the original D-1643 constraints, or to test changes in those constraints to match changes in Delta regulations. In the Diversion Criteria section of the Control worksheet, there is a cell for specifying an initial X2 trigger location, a monthly table for limiting diversions by percentage of Delta surplus and maintaining a minimum QWEST. Monthly allowances for topping off—diversions to replenish storage lost to evaporation—are also included. Similar constraints on project operations were part of D-1643. In some cases, the original D-1643 daily constraints were simplified to fit the monthly time-step of IDSM.

Diversion Criteria												
Total diversion capacity to the islands was specified as 9000 cfs in the original permit application. At a monthly timestep, this will never bound diversions due to storage capacity limits.												
Max. Total Diversion Rate	4000	cfs										
Initial X2 trigger	81		D1643 sp	ecifies that	at X2 mus	t be down	stream of	Chipps Is	sland (75 k	m) for 10	days prior	r to initial water year diversions
The following table sets montly d	iversion cons	traints an	d triggers	as expres	sed in D1	643 and a	associated	l docume	nts.			
	Oct 1	Nov 2	Dec 3	Jan 4	Feb 5	Mar 6	Apr 7	May 8	Jun 9	Jul 10	Aug 11	Sep 12 month number
Diversion Allowed (1=yes, 0=no)	1	1	1	1	1	1	0	0	1	1	1	1 trigger
no div is X2 east of	81	81	81	81	74	74	74	74	81	81	81	81 km
% of Delta Surplus	100	100	100	100	100	100	100	100	100	100	100	100 %
% of previous outflow	25	25	25	25	25	25	0	0	25	25	25	25 %
% of SJR	999	999	999	999	999	999	999	999	999	999	999	999 %
Qwest Minimum (cfs)	-20000	-20000	-20000	-20000	-20000	-20000	-20000	-20000	-20000	-20000	-20000	-20000 cfs
Qwest Diversion Limit (cfs)	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999 cfs
DXC closed												
Delta inflow <30,000 cfs	9999	3000	3000	3000	9999	9999	9999	9999	9999	9999	9999	9999 cfs
Delta inflow >30,000 cfs	9999	4000	4000	4000	9999	9999	9999	9999	9999	9999	9999	9999 cfs
X2<80km X2>80km X2>81km	0 80 81	9999 2000 1000										
Habitat Island Diversion	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Diversion (cfs)	1 30.9	2 28.6	3 30.9	4 3.3	5 19.8	6 0.0	7 0.0	8 6.5	9 50.4	10 58.5	11 42.3	12 45.4 cfs
Allowed Topping Off (must sub	otract Habita	t Isl. Div)										
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
	1	2	3	4	5	6	7	8	9	10	11	12
Diversion (cfs)	33	0	0	0	0	0	0	0	215	270	200	100 cfs
Webb Tract Max. Webb Diversion Rate	Webb Tract Max. Webb Diversion Rate 2000 cfs											
Maximum annual diversion Maximum diversion Dec 15 -Mar 31	155 106.900	taf taf										
Bacon Island Max. Bacon Diversion Rate	2000	cfs										
Maximum annual diversion Maximum diversion Dec 15 - Mar31	147.000 110.570	taf taf										

Figure D-6. User-Defined Project Diversion Criteria with Flexibility to Implement D-1643 Specifications

Figure D-7 shows project discharge criteria input in the Control worksheet. Again, input flexibility to apply D-1643 discharge criteria or test changes in these criteria was provided. This included limits on the percentage of available export capacity available for project transfers, limits on Webb Tract discharge for export from February to June, and percentage of San Joaquin River flow limits placed on Bacon Island. The project discharges can be constrained by the D-1641 E/I ratio or allowed to exceed the E/I ratio. The user can modify these constraints as necessary.

Figure D-7. User-Defined Project Discharge for Export Criteria with Flexibility to Implement D-1643 Specifications

Some D-1643 constraints, such as those tied to the Fall Midwater Fish Trawl (FMWT) delta smelt index, cannot be modeled in a simulation model like IDSM. Accordingly, there is no alteration of diversion or discharge constraints based on the FMWT index value. The diversion and discharge constraints are consistently applied as specified in the Control worksheet for each year of the simulation. Furthermore, IDSM does not constrain island diversions or discharge based on water quality operating criteria which are specified in various Protest Dismissal Agreements. Analyses related to FMWT criteria and water quality operating criteria must be conducted outside the context of the IDSM.

In the section shown in Figure D-8, the IDSM user can specify a month at which the contents of the reservoir will be released for Delta outflow when storage exceeds a user specified level. Unique rules can be applied to each island. The current model implementation gives priority to discharge for export, if the opportunity arises, over discharge for outflow. The purpose of this control is to allow the user to empty the island reservoirs by a given month each year to reduce the accumulation of salinity and TOC in the stored water.

End of Year Storage Release							
Select the wateryear month to re-	Select the wateryear month to release all remaining Delta Wetlands storage (Oct = 1). To turn off select 0 for month.						
	WY Month Sto	iorage Trigger Level (TAF)					
Select month to release							
remaining water from Webb	2						
Select month to release							
remaining water from Bacon	2						

Figure D-8. User-Defined Month to Release Reservoir Contents when Storage Exceeds a Specified Level

Figure D-9 shows the Control worksheet section where the user specifies the project allocation under which SWP and CVP contractors would request project

water from the islands or stored in groundwater banks. The allocation trigger for both the SWP and CVP is set at 90% in Figure D-9. In this case, if SWP allocations were higher than 90% in a given year, SWP contractors would not request project water in that year. Project water could still be stored in groundwater banks when not needed for direct delivery. Place of use can be limited by specifying the percent of unmet SWP and CVP demand that can be delivered from the project islands or groundwater bank. For instance, assume the project identifies a number of SWP contractors that represent 50% of Table A water demands. The IDSM user would enter 50% next to SWP for "percent of demand to meet." This would limit delivery of project water to SWP contractors with 50% of unmet Table A demands.

SWP and CVP Dema	nd Triggers, Pl	ace of Use Limitations, and Direct Transfer Restrictions
Enter percent allocation below	which Delta Wetlands	water will be purchased for direct delivery or groundwater extraction. Presently, groundwater reserved for SWP use.
SWP CVP	Allocation Trigger 90%	Percent Demand to meet 50% 50%
The following triggers are for di	irect delivery from IDS	to SWP and CVP contractors.
Use Banks and Jones to meet unmet CVP demands, JPOD (1=yes,0=no) Use Banks to meet unmet SWF demands (1=yes,0=no)		

Figure D-9. Direct Transfer and Place of Use Limits

The project has identified four groundwater banks to store its water during wet years when unmet demand in the designated places of use are low. They are Antelope Valley Water Bank, Stored Water Recovery Unit, Original Semitropic Water Storage District, and Semitropic Water Storage District. In the Control worksheet, as shown in Figure D-10, the user can define, for each bank, maximum storage capacity, maximum monthly and annual put rates, and maximum monthly and annual take rates. Also, a loss factor can be set for each water bank. The loss is set as a percentage of groundwater bank puts.

Ground Water Banks	
Antelope Valley Water Bank (AVWB)	
Maximum storage (1000 AF) 500 Initial Storage 0 Losses (% of put) 0% Maximum Put (cfs) 350 Maximum Put (TAF / Year) 100 Maximum Take (cfs) 250 Maximum Take (TAF / Year) 100	Set to 0 to turn off AVWB.
Stored Water Recovery Unit (SWRU)	
Maximum storage (1000 AF) 450 Initial Storage 0 Losses (% of put) 0%	Set to 0 to turn off SWRU.
Maximum Put (cfs) 420 Maximum Put (TAF / Year) 50 Maximum Taka (cfs) 420	270-420
Maximum Take (CIS) 420 Maximum Take (TAF / Year) 150	150-283
Original Semitropic Water Storage Distric	t (OSWSD)
Maximum storage (1000 AF) 1000 Initial Storage 0 Losses (% of put) 0% Maximum put (cfs) 530	Set to 0 to turn off OSWSD.
Maximum Put (TAF / Year) 100	90.5-350
Maximum Take (CIS) 300 Maximum Take (TAF / Year) 100	90-223
Semitropic Water Storage District (SWSD)	
Maximum storage (1000 AF) 66.7 Initial Storage 0 Losses (% of put) 0% Maximum Put (cfs) 100 Maximum Put (TAF / Year) 30.015 Maximum Take (cfs) 100 Maximum Take (TAF / Year) 19.143	Set to 0 to turn off SWSD.

Figure D-10. Groundwater Bank Specifications

IDSM tracks salinity impacts at various Delta locations using the G-Model¹. (The G-Model is a salinity-outflow relationship based on a set of empirical equations.) The islands divert water during high flow periods when Delta salinity is low, and the islands release water during low flow periods when Delta salinity is high. Project releases for Delta outflow can help push seawater downstream. The Control worksheet section shown in Figure D-11 provides the user some options for project water quality releases along with some discharge for export flexibility under D-1641 regulations. The first yellow cell in Figure D-11 allows the user to decide whether the project can discharge for export when the export to inflow ratio specified in D-1641 is controlling exports. If yes (1), project discharge can be exported without regard to the E/I ratio. The next user settings are for "carriage water" (fraction of discharge reserved for outflow) to be paid for export of project water. The constraints can be turned on (1) or off (0), and the carriage is set as a percentage of discharge for export by month. The next user control in Figure D-11 allows discharge for export when D-1641 Delta salinity standards are otherwise controlling Delta inflow or exports. The user enters "1" to allow it, or "0" to not. The last user control in Figure D-11 allows for project water quality releases at specified Rock Slough chloride concentrations. The constraint can be turned on or off and the maximum water quality release and the water quality trigger are specified by month.

¹ Denton, R.A. (1993). Accounting for Antecedent Conditions in Seawater Intrusion Modeling – Applications for the San Francisco Bay-Delta. Hydraulic Engineering 93, Vol1 pp. 448-453. Proceedings of the ASCE National Conference on Hydraulic Engineering, San Francisco.

Delta Salinity and Exp	port to In	flow R	atio										
G model parameters for water		Rock	Rock	Jersey	Emmato	Collinsvil							
quality		Slough	Slough	Point	n	le	Mallard						
		Chloride	EC	EC	EC	EC	EC						
	A	16.5	150	150	150	150	150						
	В	2200	5000	8000	10000	25000	30000						
	С	0.0006	0.0005	0.0004	0.0004	0.0003	0.00025						
		Quality =	A + B * E	XP(-C * D	elta Outfle	ow)							
Export to Inflow Ratio		_											
Allow discharge export when El													
Ratio controls (1=yes, 0=no)	1	1 indica	tes that E	/I does no	t limit disc	harge for	export, su	ggest settin	g to 0				
		-											
Carriage Water													
Manual Carriage Setting	0	Turns on	/off discha	arge for ex	port carri	age costs	in table be	elow.					
		-											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
	1	2	3	4	5	6	7	8	9	10	11	12	
CW all months	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
ANN Control of Discharge for	Export												
Allow export when ANN controls													
WQ (1=yes, 0=no)	1												
The water quality release will occ	cur when con	centratior	is exceed	the speci	fied trigge	r level.							
Release for Delta water													
quality (1=yes, 0=no)	0												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
	1	2	3	4	5	6	7	8	9	10	11	12	
Max release for WQ (cfs)	1000	1000	1000	0	0	0	0	0	0	0	0	1000	
Rock Slough CL trigger (mg/L)	150	150	150	150	150	150	150	150	150	150	150	150	

Figure D-11. Discharge for Export Constraints Pertaining to Water Quality Standards and the Delta Export to Inflow Ratio

Figure D-12 shows a section in the Control worksheet where the user can expand Banks permitted capacity by month. The user specified flow is added to the monthly permitted capacity as determined from the CalSim baseline. The user can turn off any specified additional monthly permitted capacity by using the switch at the top of the table.

Expanded Banks Peri	nitted Pu	Imping	Capad	city								
Expand Permitted Capacity (0 =												
no, 1 = yes)	0											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
	1	2	3	4	5	6	7	8	9	10	11	12
Expanded Capacity (cfs)	0	0	0	0	0	0	0	0	0	1820	1820	1820

Figure D-12. User Defined Additional Permitted Banks Pumping Capacity

Figure D-13 allows the user to open the Delta Cross Channel gates in months that the CalSim baseline closes the gates for a portion or the entire month. The purpose is to boost QWEST when project diversion operations are constrained by QWEST minimum flows. A switch is provided for the user to turn the monthly Delta Cross Channel settings off.

Delta Cross Channel	Operatio	n										
Reoperate Gate (0 = no, 1 = yes)	0											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
	1	2	3	4	5	6	7	8	9	10	11	12
Month to open (1 = open all												
month, 0 = base operation)	0	0	0	1	1	1	1	1	1	0	0	0

Figure D-13. User Control of the Delta Cross Channel Operation

A section in the Control worksheet also allows the user to size the island reservoirs and set monthly evaporation rates. This section is shown in Figure D-14.

Figure D-14. Webb and Bacon Storage Capacity, Storage-Area Curve, and Evaporation Rate Settings

IDSM Output Tables and Graphs

There are several IDSM worksheets provided to help the user review simulation results. In worksheet TS_plot, monthly project operations with resulting changes in Delta outflow, exports, groundwater bank storage, and south-of-Delta operations are plotted over the water year 1922–2003 period of simulation. An example plot, containing 10 years of the 82 year simulation, of Webb Tract and Bacon Island storage is provided in Figure D-15. The timeseries plots are organized so that the model user can trace operations from month to month and determine the reasons for diversion and discharge decisions and the destination of island discharge.

Figure D-15. Example Plot of Monthly Island Storage from the TS_plot Worksheet

IDSM results are also summarized in annual plots and tables. Figure D-16 contains a plot of annual discharge for export and specifies whether the water is delivered to SWP contractors, CVP contractors, or groundwater banks. Figure D-17 is an example table of annual average analysis of Project operations provided in Ann_plot. The Ann_plot worksheet also includes information on available Delta surplus, island diversions, discharge for Delta outflow, SWP and CVP contractor deliveries, and other key operational variables.

Figure D-16. Example Annual Plot of Island Discharge for Export from the Ann_plot Worksheet

			Island D	ischarge (T	AF/year)			
	Direct	Direct					Delta	
Sac Index	SWP	CVP		SWRU	OSWSD	SWSD	Outflow	
WY Type	Delivery	Delivery	AVWB Put	Put	Put	Put	Release	Total
W	19	34	17	12	8	1	77	167
AN	27	63	29	24	9	1	33	187
BN	58	56	23	21	13	1	63	236
D	65	7	23	24	13	1	20	152
С	2	2	13	12	9	1	26	64
ALL	34	31	20	18	10	1	48	163

Figure D-17. Example Table of Annual Average Island Discharge by Purpose and Water Year Type as Found in the Ann_plot Worksheet

Another helpful tool for reviewing IDSM output is the IDSM schematic (worksheet System Schematic) as shown in Figure D-18. Using the buttons seen at the top left corner, the user can step through the current IDSM simulation month by month and view the CalSim baseline boundary conditions and associated project operations. Enough detail is provided to allow the user to diagnose the controlling constraints in each time-step whether its available Delta surplus, available export capacity, or south-of-Delta demand. The schematic also compares baseline X2, Delta outflow, Qwest, OMR flow, and exports to the updated values that incorporate the effects of island diversion and discharge.

Figure D-18. IDSM Schematic Allows Model Users to Step Through Simulations Month-by-Month to View Results and Analyze Constraints

Attachment 1 Columns and Simulation Equations in the IDSM Worksheet Model

Heading	variable description	Column Title	Units:	Column	Formula / data
		Wateryear.mon		A	1922.01
		Water year		В	=INT(A13)
		Mon Num		С	1
		Month		D	Oct
		Sac River Index SRI		E	=VLOOKUP(\$B13,'River Indices'!\$A\$3:\$C\$84,3)
		San Joaquin River		-	
		Days in month	Linite:	г С	=VLOOKOF(\$613, Kivel Indices (\$A\$3.\$F\$64,6) =Conversions[D13
		Delta inflow	offe	9 ц	HI OOKI ID/HS0 CalSimOut(\$C\$2:\$1)/\$006 (Control Calc)(\$A13 FALSE)
ŀ		"Baseline" Previous	013		
	X2 PRV	month X2 position	km		=HLOOKUP(I\$9.CalSimOutI\$C\$2:\$IV\$996.'Control Calc'!\$A13.FALSE)
-	D419	Banks Pumping	cfs	J	=HLOOKUP(J\$9,CalSimOut!\$C\$2:\$IV\$996.'Control Calc!\$A13,FALSE)
		Available Banks			
		capacity	cfs	К	=MAX('Export Control'!M13-'Export Control'!E13,0)
	S12	SWP San Luis	TAF	L	=HLOOKUP(L\$9,CalSimOut!\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
	swp_in_total	Total Article 21	cfs	M	=HLOOKUP(M\$9,CalSimOutl\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
	D418	Jones Pumping	CIS	N	=HLOOKUP(N\$9,CalSimOut!\$C\$2:\$1V\$996,Control Calc !\$A13,FALSE)
		Available Jones	ofo	0	-MAX//Export Control/IAP13 (Export Control/ID13.0)
ŀ	S11	CV/P San Luis		D	HI OCKI DE DE CONTRETS EXPORTEDUITE (CONTRET CALCULATION)
	011	El Surplus	cfs	0	
		WQ (ANN) Surplus	cfs	R	='Control Calc'!CM13
		Exportable Delta			
		Surplus	cfs	S	='Control Calc'!CQ13
		"Baseline" Total Delta			
		Outflow	cfs	Т	='Control Calc'!CL13
	D407	Required Delta	at-		
	D4U/	Outflow San Joaquin River et	cts	U	=nLUUNUF(U\$9,CalSimUuti\$C\$2:\$IV\$996,Control CalC!\$A13,FALSE)
	C620	Vernalis	ofo	V	-HI OOKI ID///\$0 CalSimOut/\$0\$2:\$1//\$006 (Control Calc/\$\$13 EALSE)
•	0000	Verridilo	013	v	
	C400	Sac River at Freeport	cfs	w	=HLOOKUP(W\$9,CalSimOutl\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
		Number of Days			
		Cross Channel Gate			
	DXC	Open	days/month	Х	=HLOOKUP(X\$9,CalSimOutl\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
m	Qwest	Qwest	cfs	Y	=HLOOKUP(Y\$9,Qwest!\$C\$2:\$E\$996,Control Calc!\$A13,FALSE)
	C401B	DXC + Geo. Slough	cts	Z	=HLOOKUP(2\$9,CalSimOuti\$C\$2:\$1\\$996,Control Calc1\$A13,FALSE)
с	EXPRATIO_	E/I Ratio		AA AR	=HLOOKUP(AA\$9,CalSIMOUI;3C\$2:\$IV\$995,Control CalC!\$A13,FALSE)
a		AprMay Tracy Ctrl		AC	= Export Control AD13
1		AprMay Banks Ctrl		AD	= Export Control AE13
s	SWP PERDELDV	SWP Allocation (%)		AE	=HLOOKUP(AE\$9,CalSimOut!\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
i	-				
m		SWP Demand Trigger		AF	=IF(AE13<\$AF\$1,IF(OR(C13<3,C13>7,),1,0),0)
	SWP_TA_TOTAL	SWP Table A Delivery		AG	=HLOOKUP(AG\$9,CalSimOutI\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
В.	SHORT_SWP_TOT_	SWP SOD Shortage		AH	=HLOOKUP(AH\$9,CalSimOut!\$C\$2:\$IV\$996,Control Calc!\$A13,FALSE)
а		SWP Table A		A1	-MIN//AC13+AH13/AE13 500/Conversions/C13)
s .		Request			-INIM((AC157A1115)/AE15,500/CONVERSIONS:C15)
e		Unmet SWP demand		AJ	=MAX(0.MIN(Al13-AG13,'Graph Calcs'!AS13/Conversions!C13-Model!AG13))
		SWP Demand for			
n		Additional Supply		AK	=AJ13*AF13*AK\$1
е		SWP Article 56			
	SWP_CO_TOTAL	Delivery		AL	=HLOOKUP(AL\$9,CalSimOut!\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
	PERDV_CVPAG_S	UVP Allocation (%)		AM	=HLOOKUP(Awiş9,CalSimOut!\$C\$2:\$IV\$996,'Control Calc!!\$A13,FALSE)
		CVP Demand Trigger		AN	=IF(AM13<\$AN\$1 IF(OR(C13<3 C13>8) 1 0) 0)
		CVP SOD AG		/ 11 1	
	DEL CVP PAG S	Delivery		AO	=HLOOKUP(AO\$9,CalSimOut!\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
		CVP SOD AG			
		Request		AP	=IF(AM13=0,0,AO13/AM13)
		Unmet CVP demand		AQ	=AP13-AO13
		CVP Demand for			
	1440	Additional Supply	-4-	AR	=AQ13*AN13*AR\$1
	1410	Delte Precipitation	CIS	AS AT	=FLUUNUF(AS99, CalSimIn19, C\$2:\$17, \$995, CONTROL CalC !\$A13, FALSE) -HLOOKUP(AT\$9, CalSimIn18C\$2:\$17, \$996, 'Control Calc'!\$A13, FALSE)
·	DEMAND D410	Delta CU	cfs	AU	HLOOKU IP/AU\$9 CalSiminisC\$2:51V5950, Control Calc/SA13 FALSE/
	DEMAND_D412	Delta CU	cfs	AV	=HLOOKUP(AV\$9,CalSimIn!\$C\$2:\$IV\$996,Control Calc!\$A13,FALSE)/Conversions!C13
	_				
		NDCU for South Delta	cfs	AW	=AU13-AS13+AV13-AT13
	D418	Jones Delta Export	cfs	AX	=HLOOKUP(AX\$9,CalSimOut!\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
	D419	Banks Delta Export	cfs	AY	=HLOOKUP(AY\$9,CalSimOut!\$C\$2:\$IV\$996,'Control Calc'!\$A13,FALSE)
	D408	CCWD Export	cfs	AZ	=HLOOKOP(AZ\$9,CalSimOut!\$C\$2:\$IV\$996,Control Calc!\$A13,FALSE)
		Diversions	cfe	RΔ	=SUM(AW13:A713)
		Trigger for Water	610		
		Quality Demand		BB	='Control Calc'!DM13
		B2 Delta Action			
		(0=yes, 1=no)		BC	='Control Calc'IDN13

		"Baseline" Previous			
		month X2 position	km	BD	=122.2+0.3278*BD13-17.65*LOG(BE13,10)
		Delta Outflow	cfs	BE	=T13
BC		Gmodel Ending			
3 0		Antecedent		BF	=BE13/(1+(BE13/BF12-1)*EXP(-BE13/6000))
a 0 c n		Gmodel Effective			
5 II 0 d		Outflow		BG	=BE13+6000*LN(BF12/BF13)
eu	OMR	OMR Flow	cfs	BH	=HLOOKUP(BH\$9,OMR!\$C\$2:\$D\$996,'Control Calc'!\$A13,FALSE)
		QWEST	cfs	BI	=Y13
		QWEST with DXC			=BI13+Control!\$B\$250*HLOOKUP(\$C13,Control!\$B\$252:\$M\$253,2,FALSE)*(0.133*W13+829+0.16*W13+1261-
		gate reop	cfs	BJ	Z13)
10		Rock Slough	Chloride	BK	=Control!C\$200+Control!C\$201*EXP(-Control!C\$202*\$BG13)
τη		Rock Slough	EC	BL	=Control!D\$200+Control!D\$201*EXP(-Control!D\$202*\$BG13)
as		Jersey Point	EC	BM	=Control!E\$200+Control!E\$201*EXP(-Control!E\$202*\$BG13)
		Emmaton	EC	BN	=Control!F\$200+Control!F\$201*EXP(-Control!F\$202*\$BG13)
	Water Quality from G	Collinsville	EC	BO	=Control!G\$200+Control!G\$201*EXP(-Control!G\$202*\$BG13)
	Model	Mallard	EC	BP	=Control!H\$200+Control!H\$201*EXP(-Control!H\$202*\$BG13)
		Previous month X2			
S		position	km	BQ	=122.2+0.3278*BQ13-17.65*LOG(BS13,10)
t		Delta Water Quality			=IF(BK13>HLOOKUP(C13,Control!\$B\$221:\$M\$223,3,FALSE),HLOOKUP(C13,Control!\$B\$221:\$M\$222,2,FALS
u		Demand	cfs	BR	E),0)*\$BR\$1
d		Delta Outflow	cfs	BS	=BE13-DO13-EB13+ET13
у		Gmodel Ending			
-		Antecedent		BT	=BS13/(1+(BS13/BT12-1)*EXP(-BS13/6000))
D		Gmodel Effective			
е		Outflow		BU	=BS13+6000*I N(BT12/BT13)
1		Change in Banks			
t		Export	cfs	вv	=MIN(D113.EP13)
а		Change in Jones			
		Export	cfs	BW	=EP13-BV13
С		Banks Export	cfs	BX	=BV13+AY13
0		Jones Export	cfs	BY	=BW13+AX13
n		OMR Flow	cfs	BZ	=BH13+EP13*OMR!D13
ď		Qwest with DXC gate			
1		reop	cfs	CA	=BJ13+DP13+EC13-DO13-EB13-BV13-BW13
ť		Rock Slough	Chloride	CB	=Control!C\$200+Control!C\$201*EXP(-Control!C\$202*\$BU13)
		Rock Slough	EC	CC	=Control!D\$200+Control!D\$201*EXP(-Control!D\$202*\$BU13)
0		Jersey Point	EC	CD	=Control!E\$200+Control!E\$201*EXP(-Control!E\$202*\$BU13)
n		Emmaton	EC	CE	=Control!F\$200+Control!F\$201*EXP(-Control!F\$202*\$BU13)
s	Water Quality from G	Collinsville	EC	CF	=Control!G\$200+Control!G\$201*EXP(-Control!G\$202*\$BU13)
	Model	Mallard	EC	CG	=Control!H\$200+Control!H\$201*EXP(-Control!H\$202*\$BU13)

	Initial X2 delay and	Days in month X2			=INT(IF(AND(BD13 <control!\$b\$56,bd14<control!\$b\$56),g13,if(and(bd14<control!\$b\$56,bd13>=Control!\$</control!\$b\$56,bd14<control!\$b\$56),g13,if(and(bd14<control!\$b\$56,bd13>
	ramping	west of Chipps	days/month	СН	B\$56).G13/(BD14-BD13)*(BD14-Controll\$B\$56).0)))
		10 day X2 west of			
		Chippe trigger	dovo	CI	
		Chipps trigger	uays	CI	= IF(A)D(A12, A C(A2, A) C(A2, C(A2, C(A2, A))) = (A)D(C(A2, A) C(A2, A)
		D :			=IF(AID)(C13=1,C113>=10),C113-C113,IF(AID)(C113>=10,C112>=10),G13,IF(AID)(C112>0,C113>=10),G13-
		Diversion days	days/month	CJ	CI13+CI12,IF(CI13>=10,CH13-CI13,0))))
D		Diversion Ramping			
i		days	days/month	СК	=IF(C13=1,MIN(CJ13,5),IF(CJ12>=5,0,IF(CJ13<5,CJ13,5-CK12)))
		Percent of month full			
v		diversion allowed	%	CL	=MIN(1,(CJ13-CK13)/G13)*100
е		Percent of month			
r		diversion up to			
S		5 500cfs allowed	%	CM	=CK13/G13*100
i		0,000010 0.01100	70	0	
0		X2 dolow and ramping			
n		Az delay and ramping	-1-		CL 42/400*0000 - CM42/400*EE00
		diversion constraint	CIS	CN	=CE13/100 9000+CM13/100 5500
		X2 constraint			
0		X2>81=500 cfs			
		X2>80=1000cfs	cfs	CO	=VLOOKUP(BQ13,Control!\$B\$74:\$C\$76,2)
S		No diversion if			=IF(AND(BQ13>HLOOKUP(C13,Control!\$B\$60:\$M\$62,3),I14>HLOOKUP(C13,Control!\$B\$60:\$M\$62,3)),0,9000
t		X2>value	cfs	CP	
0		Diversion Allowed	cfs	CQ	=IF(HLOOKUP(\$C13,Control!\$B\$60;\$M\$61,2)=0,0,9000)
r		X2 Shift diversion			
а		constraint	cfs	CR	=MAX(0.IF(AND(C13>=1.C13<=6).T13-10^((122.2 + 0.3278*113-114-2.5)/17.65).9000))
ä		Maximum Diversion	515		
9	Total	Rate	cfe	CS	=CS\$1
Č .		Maximum Diversion	010		
•	Webb	Rate to Webb	cfs	ст	-CT\$1
ι,	WEDD	Maximum Diversion	013	01	-0101
0	Deese	Dete to Decen	ofo	CU	
n	Dacon	Rate to bacon	CIS	CU	=======================================
S		Percent or Delta	-1-	01	
t		Surpius	CIS	CV	=HLOOKUP(\$C13;Control!\$B\$60:\$M\$63;4)/100°S13
r		Percent of Delta			
а		Outflow	cts	CW	=HLOOKUP(\$C13,Control!\$B\$60:\$M\$64,5)/100*113
i		Max Diversions from			
n		Dec to Mar	cfs	CX	=IF(OR(C13<4,C13>6),0,MAX(CX12,EO12))
t		Percent of SJR from			=IF(OR(C13<3,C13>6,AND(C13>3,OR(CX12>1000,CX12>CY12-
		Dec to Mar	cfs	CY	100))),9000,HLOOKUP(\$C13,Control!\$B\$60:\$M\$65,6)/100*V13)
ů.					=MAX(0,BJ13-
		Qwest Constraint	cfs	CZ	HLOOKUP(C13,Control!\$B\$60:\$M\$70,7,FALSE),HLOOKUP(C13,Control!\$B\$60:\$M\$70,8,FALSE))
					=IF(H13>30000,HLOOKUP(C13,Control!\$B\$60:\$M\$70,11,FALSE)*(G13-
					X13)/G13,HLOOKUP(C13,Control!\$B\$60:\$M\$70,10,FALSE)*(G13-
		DXC Constraint	cfs	DA	X13)/G13)+MIN(CN13,CO13,CP13,CQ13,CR13,CS13,CV13,CW13,CY13,CT13+CU13,CZ13)*X13/G13
		Maximum diversion to			
		IDS	cfs	DB	=MIN(CN13,CO13,CP13,CQ13,CR13,CS13,CV13,CW13,CY13,CT13+CU13,CZ13,DA13)
		Carriage Water %		DC	=HLOOKUP(\$C13,Control!\$B\$212:\$M\$213,2,FALSE)*DC\$1
		Maximum Discharge			
D		Rate	cfs	DD	=DD\$1
i		Max Export under			
		VAMP	cfs	DE	=IF(OR(C13<7,C13>8,DE\$1=0),15000,MIN(AB13-AX13-AY13,AC13+AD13-AX13-AY13))
		Max Export under FI	cfs	DF	=MAX(99999*DF\$1.Export Control!!T13-Export Control!!C13)
h		Max Export under			· · · · · · · · · · · · · · · · · · ·
		ANN	cfs	DG	=MAX(99999*DG\$1.'Export Control'!AF13-'Export Control'!C13)
a		Available Banks			
r		Capacity plus			
g		specified increase		пн	-MAX/K13+HLOOKLIP(\$C13 Control!\$B\$246:\$M\$247.2 FALSE)*Control!\$B\$244.0)
е		opoolined increace		DIT	
		Max Use of Available			
С		SWP Exports	cfs	וח	-HLOOKUP(C13 Control\\$R\$120;\$M\$121.2 FALSE)/100*DH13
0			010	ы	
n		Max Lise of Available			
S	Combined	CV/D Exports (w/ P2)	ofo	D I	
t	Combined	Bolooco for Export	615	DJ	=ncookor(c13,contion;\$b\$120.\$m\$121,2,FALSE//100/013/bC13
r		may 3000 po dio from			
а	Wabb	lan to lun	ofo	DK	-HI OOKI ID/C13 Controll@B\$128:\$M\$129.2*DK\$1
i	VVEDD	Jan to Juli Balanced Condition or	UIS	UN	
n		PA controlling	ofo		-IF(OP(\$13-0.1 Remedy/Action)C13-AX13-AX13-0.1) 9999.0)
t		TA controlling	CIS	UL	
	Pacan	S ID constraint	ofo	DM	=ir(intcore(c));2)(4)(1)(2)(1)(2)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)
° .	Dacon	Balanced Condition or	CIS	ואוט	
		PA controlling	at-	DN	-IF(OP(\$13-0.1 RemedyAction)C13-AX13-AX13-0.1) 9999.0)
		TA COntrolling	CIS	אוט	-ir (ON(015<0.1,NeineuyAdioii:015-AA15-A115<0.1),3888,0)

		Diversion to Decen		1	
		Diversion to Bacon			
		Island	cfs	DO	=IF(AND(C13=Control!\$B\$144,EA12>Control!\$C\$144),0,MAX(0,MIN(DR13,DS13,DB13,CU13)))
					=MAX(IF(AND(C13'=Control!\$B\$144,EA12>Control!\$C\$144),DU13,0),MIN(3000,DD13-
					EC13 MIN(DE13 DE13 DG13)/(1-DC13)-EC13+BR13 DN13-EC13+BR13 DI13/(1-DC13)+MIN(D.113 AR13)/(1-
		Dia di anna fasar			
		Discharge from			EC13),D113,D013,(AK13*Control!\$B\$156+FD13+FN13+FX13+GH13+AK13*Control!\$B\$155)/(1-DC13)+BK13-
		Bacon Island	cts	DP	EC13))
		Bacon Island Change			
		in Storage	taf	DQ	=(DO13-DP13)*Conversions!C13
		Remedy Action bound			=MIN(9999, MAX(RemedyAction)C13-AX13-AY13+HLOOKUP(C13,Control)\$C\$39;\$N\$41.2 FALSE).9999-
		on diversion	cfe	DP	9999*DB\$1))
		Max rate to joland		DR	(DS4 E44) DW(42)(ConversionalC42
	В	Max fate to Island	CIS	DS	
	а	Remedy Action bound			=MIN(9999,MAX((RemedyAction!C13-AX13-AY13+HLOOKUP(C13,Control!\$C\$45:\$N\$48,3,FALSE))/(1-
	-	on discharge	cfs	DT	DC13)+BR13,9999-9999*HLOOKUP(C13,Control!\$C\$45:\$N\$48,4,FALSE)))
		Max discharge rate	cfs	DU	=EA12/Conversions!C13-DW13/Conversions!C13
	0	Bacon Initial Surface			=IF(EA12*1000>Control!\$C\$265.Control!\$C\$266+(EA12*1000-Control!\$C\$265)/(Control!\$D\$265-
	n	Area	acres	DV	Controll&C\$265)*(Controll&D\$266-Controll&C\$266) EA12*1000/Controll&C\$265*Controll&C\$266)
		Bacon Brev Month			
		Evon Estimato	tof	DW	-MIN/EA12 HI OOKI ID/\$C12 Controll\$D\$92;\$M\$92 2 EALSE\/12*D\/12/1000*D\//\$1
		Evap Estimate	tai	000	- MIN(LAT2, ICONTOL(\$C2,CONTOL:\$D\$02.\$W\$05,2,1 ALSE)/12 D\$13(1000) D\$1\$
					DZ13),DY12,Conversions(\$C13^MAX(0,HLOOKUP(\$C13,Controll\$B\$91:\$M\$92,2,FALSE)-
		Bacon Top Off	taf	DX	HLOOKUP(\$C13,Control!\$B\$86:\$M\$87,2,FALSE)))
		Bacon Top Off			
		Account	taf	DY	=IF(\$C13=2,0,DY12+DW13-DX13)
		Bacon Island Storage			
		before topoff	taf	DZ	=EA12+DQ13-DW13
1		Bacon Island Storage			
s		after topoff	taf	FΔ	=DZ13+DX13
1		Diversion to Webb	tai	L/1	
		Diversion to webb			
a		Iract	CTS	EB	=IF(AND(C13=Control!\$B\$143,EN12>Control!\$C\$143),0,MAX(0,MIN(EE13,EF13,DB13-DO13,C113)))
n					=MAX(IF(AND(C13=Control!\$B\$143,EN12>Control!\$C\$143),EH13,0),MIN(3000,DD13,MIN(DE13,DF13,DG13)/(
d					1-DC13)+BR13,DL13+BR13,DI13/(1-DC13)+MIN(DJ13,AR13)/(1-
		Discharge from Webb			DC13)*Controll\$B\$155+BR13,DK13+BR13,EG13,EH13,(AK13*Controll\$B\$156+FD13+FN13+FX13+GH13+AR1
0		Tract	cfs	EC	3*Control!\$B\$155)/(1-DC13)+BR13))
p		Webb Tract Change			
г о		in Storage	taf	ED	-(EB13-EC13)*ConversionsIC13
		Remody Action bound	tai		- MIN/0000 MAX/Remodulation[C12_AX12_AX12_H] OCK10/C12_Controll@C226:@N#29_2_EALSE\ 0000
r		Remeay Action bound	ofo		=WIN(3333, WAA(NemedyAction:C13-AA13-A113+HEOONOF(C13,C0110):\$C\$20,\$N\$20,2,FAL3E),3333-
а		On diversion	CIS	CC	9999 EE\$1))
t		Max Diversion Rate to			
i		Webb Tract	cfs	EF	=(EF\$1-EN12+EJ13)/Conversions!C13
0	w	Remedy Action bound			=MIN(9999,MAX((RemedyAction!C13-AX13-AY13+HLOOKUP(C13,Control!\$C\$32:\$N\$35,3,FALSE))/(1-
n		on discharge	cfs	EG	DC13)+BR13,9999-9999*HLOOKUP(C13,Control!\$C\$32:\$N\$35,4,FALSE)))
	e	Max DischargeRate			
	D	from Webb Tract	cfs	EH	=EN12/ConversionsIC13-EJ13/ConversionsIC13
	b	Webb Initial Surface			=IF/FN12*1000>Controll\$C\$260 Controll\$C\$261+/FN12*1000-Controll\$C\$260)/(Controll\$D\$260-
		Area	acres	FI	Controll\$C\$260)*(Controll\$C\$261)-Controll\$C\$261) EN12*1000/Controll\$C\$260*Controll\$C\$261)
		Wohh Broy Month	40100		
		Webb Flev. Wohlin	1-1		
		Evap Estimate	tar	EJ	=WIN(EN12,HEORUP(\$C12,CONTROL\$B\$82:\$W\$83,2,FALSE)/12*E113/1000/*EJ\$1
				1	=MIN(EM13,(Control!為B\$98-
				1	EM13),EL12,Conversions!\$C13*MAX(0,HLOOKUP(\$C13,Control!\$B\$91:\$M\$92,2,FALSE)-
		Webb Top Off	taf	EK	HLOOKUP(\$C13,Control!\$B\$86:\$M\$87,2,FALSE)-DX13))
		Webb Top Off			
		Account	taf	EL	=IF(\$C13=2,0,EL12+EJ13-EK13)
		Webb Tract Storage			
		before topoff	taf	FM	=EN12+ED13-EJ13
		Webb Tract Storage	ten.		
		after topoff	tof	EN	=FM13+FK13
		Diversion to Jelenda	ofo		
	т	Diversion to Islands	CIS	EU	=E0157D015 MIN/MIN/E0151(4 D010) DI(42 E010) MIN/DD121(4
				1	
	0			L_	UC13),UM13,U113),UI13+DJ13"Control!\$B\$155,DE13,DF13,DG13,(AK13"Control!\$B\$156+FD13+FN13+FX13+
	t	Discharge for Export	cfs	EP	GH13+AR13*Control!\$B\$155))
	а	Carriage Water	cfs	EQ	=EP13/(1-DC13)-EP13
	I	WQ Release	cfs	ER	=MIN(EC13+DP13-EP13-EQ13,BR13)
		Storage Release	cfs	ES	=EC13+DP13-EP13-EQ13-ER13
	1	Discharge for Delta	cfs	ET	=EC13+DP13-EP13
	P	Evaporation	taf	EU	=DW13+EJ13
		Topoff	tof	EV	-DX13+EK13
	5	Storage	tof		
		Sillaye	lai		

		Available CA Capacity			
		O'Neill to Semitropic	cfs	EX	='CA Avail'!CM13
		Available CA Capacity			
	Aqueduct Capacity	Edmonston	cfe	EV	
		Editionation	015		
		Available CA Capacity			
		Edmonston to			
		Antelope Valley	cfs	EZ	='CA Avail'!CO13
		SWP Direct Delivery	cfs	FA	=MIN(AK13*Controll\$B\$156,EP13)
		CVP Direct Delivery	cfs	FB	=MIN(EP13-FA13,AR13*Control!\$B\$155)
	А		ofo	50	
	n	Maximum Put	CIS	FC	
	t	Constrained by			
	eW	Conveyance	cfs	FD	=MIN(FC13,EX13;EZ13)
	1 a	Remaining Available			
	° 🔓	CA Capacity O'Neill to			
	^p r v	Semitropic		FE	=MAX(0,EX13-MIN(FC13,EY13,EZ13))
	e w	Maximum Take	cfs	FF	=MIN(\$AK13-FA13,FL12/Conversions!\$C13,FF\$1,(FJ\$1-FJ12)/Conversions!\$C13)
	, B B	AVVVB Put	CTS	FG	=MIN(EP13-FA13-FB13,FD13)
	va ←	Put	taf	FH	=IF(\$C13=1.0.FH12+FG13*ConversionsIC13)
	ĩn	AVWB Take	cfs	FI	=FF13
	i k	Cumulative Annual			
	е	Take	taf	FJ	=IF(\$C13=1,0,FJ12+FI13*Conversions!C13)
s	у	AVWB Losses	cfs	FK	=FK\$1*FG13
0		AVWB Storage	tat	FL	=FL12+(FG13-FI13-FK13)~Conversions!\$C13
u		SW/RLL Maximum Put	cfe	EM	-MINI/(E)/\$1_E)/12)/Conversione1\$C13 (EB\$1_EB12)/Conversione1\$C13 EM\$1)
t	R	Maximum Put	613	1 101	
h	s e	Constrained by			
	, c	Conveyance	cfs	FN	=MIN(FM13,\$FE13)
0		Remaining Available			
T	e ^V S	CA Capacity O'Neill to			
р	dĘW	Semitropic Movimum Toko	-1-	FO	=MAX(0,FE13-FM13) MIN/66/V/42_C442_E1/42/Conversional@C42_ED@4_(ET@4_ET42)/Conversional@C42)
e	, R	SWRU Put	cfs	FO	=MIN(\$AR13-FA13-F113,FV12/CONVEISIONS:\$C13,FF\$1,(F1\$1-F112)/CONVEISIONS:\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FB13-\$EG13 FN13)
Ĩ	wyu	Cumulative Annual	013		
t	° U ⊂	Put	taf	FR	=IF(\$C13=1,0,FR12+FQ13*Conversions!\$C13)
а	tn	SWRU Take	cfs	FS	=FP13
	ři	Cumulative Annual	1-1		
0	· t	I ake SW/RLLL occore	tar	FI	=IF(\$U13=1,0,F112+F513*Conversions!\$U13) _FII@1*FO13
р		SWRU Storage	taf	FV	=FV12+(FQ13-FS13-FU13)*Conversions!\$C13
r	S S	OSWSD Maximum			
a	e t	Put	cfs	FW	=MIN((GF\$1-GF12)/Conversions!\$C13,(GB\$1-GB12)/Conversions!\$C13,FW\$1)
t	m o	Maximum Put			
i i	ir	Constrained by	-1-	EV	
i o	ir Ota	Constrained by Conveyance Remaining Available	cfs	FX	=MIN(FW13,\$FO13)
i o n	ir Ota rrg(Constrained by Conveyance Remaining Available CA Capacity O'Neill to	cfs	FX	=MIN(FW13,\$FO13)
i o n	ir Ota rrgO ioeS	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic	cfs	FX FY	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13)
i o n	ir Ota rrgO ioeS gpW	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take	cfs cfs	FX FY FZ	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-FI13-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13)
i o n	ir Ota rrgo ioes gpW iDS nci	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put	cfs cfs cfs	FX FY FZ GA	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13)
i o n	ir Ota (Ota go s gp W ic S n c s a s	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Det	cfs cfs cfs	FX FY FZ GA	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IE(\$C13=1.0,GB12+GA13*Conversions!\$C13)
i o n	ir OtrgOS gpiDS ncsD IW t	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take	cfs cfs cfs taf cfs	FX FY FZ GA GB GC	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-F\$13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13
i o n	ir OtrgeSW icspDSD ncst) aWtr Wtr	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take Cumulative Annual	cfs cfs cfs taf cfs	FX FY GA GB GC	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-F513,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13
i o n	ir OtrgeS gpDS ncsD IWtr ari	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take Cumulative Annual Take	cfs cfs cfs taf cfs taf	FX FY GA GB GC GD	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F13-F513,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13)
i o n	ir OtrgeSW gpDiDS ncStr arie ec	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take Cumulative Annual Take OSWSD Losses	cfs cfs cfs taf cfs taf cfs taf	FX FY GA GB GC GD GE	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*GA13
i o n	ir (OSW tropDicSD) ncWSD) aWSD atic tc t c t c t c t	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Storage	cfs cfs cfs taf cfs taf cfs taf cfs taf	FX FY GA GB GC GD GE GF	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*CA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13
i o n	ir Orrop W ic s W ic s t a W ti ert W	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Losses OSWSD Losses	cfs cfs cfs taf cfs taf cfs taf	FX FZ GA GB GC GD GE GF	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GF12*(GA13-GC13-GE13)*Conversions!\$C13 =GF12*(GA13-GC13-GE13)*Conversions!\$C13
i o n	ir OrropDSD icstric aWaric tect Wa	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Storage SWSD Maximum Put	cfs cfs cfs taf cfs taf cfs taf cfs taf	FX FZ GA GB GC GD GE GF GG	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-F513,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*GA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GQ\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1)
i o n	ir Otragos gpDS gpDS ncst tcc r W stD SetD	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by	cfs cfs cfs taf cfs taf cfs taf cfs taf cfs	FX FZ GA GB GC GC GC GE GF GG GG	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*GA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1)
i o n	irage W orropDisD) icstrict Wateer Wateem	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by Conveyance	cfs cfs cfs taf cfs taf cfs taf cfs cfs	FX FZ GA GC GC GC GC GC GC GC GC GC GC GC GC GC	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F13-F513,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =IMIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*GA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13)
i o n	i t r o p D i s t r o t r o p D i s t r o t r o p i c S W r i c t Q a t e r W a t e r W a t e r i s e m i	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by Conveyance Maximum Take	cfs cfs cfs taf cfs taf cfs taf cfs cfs cfs cfs cfs	FX FZ GA GC GD GE GF GG GF GG GH GI	=MIN(FW13,\$F013) =MAX(0,F013-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13) =MIN(GS4r13-FA13-F113-FS13-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13)
i o n	irage (OSW orige DSD) ic Strict Strop District Waters Water S Semit	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Losses OSWSD Losses OSWSD Storage SWSD Maximum Put Maximum Put Constrained by Conveyance Maximum Take SWSD Put	cfs cfs cfs taf cfs taf cfs taf cfs cfs cfs cfs cfs	FX FZ GA GB GC GD GE GF GG GF GI GJ	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((G0\$1-GO12)/Conversions!\$C13,GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13) =MIN(\$AK13-FA13-F113-FS13-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FG13-\$FG13-\$FG13-\$GA13,GH13)
i o n	irage WSD) itropic Strict Original Strict Semittr	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by Conveyance Maximum Take SWSD Put Cumulative Annual	cfs cfs cfs taf cfs taf cfs taf cfs cfs cfs cfs cfs	FX FY FZ GA GB GC GD GE GF GF GG GI GJ GJ	=MIN(FW13,\$F013) =MIN(\$AK13.FA13.FI13.FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13.\$FA13.FI13.FS13.\$FQ13,FQ13,FX13) =IF(\$C13=1,0,GD12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*GA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(\$GA13.FF13} =MIN(\$GA13.FF13-F13.FG13.\$FG13.\$GC12,Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$GA13.FF13.FI13.FFS13-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$FA13-FF13.FFS13-FG13.\$FG13.\$FG13.\$FG13.\$GA13,GH13) =MIN(\$FA13-FF13.FFS13-FG13.\$FG13.\$FG13.\$FG13.\$GA13,GH13)
i o n	irage OSD) orige Disstrict OrropDistrict Waterr Stri Semitro Semitro	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Take OSWSD Losses OSWSD Losses OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by Conveyance Maximum Take SWSD Put Cumulative Annual Cumulative Annual Cumulative Annual Cumulative Annual	cfs cfs cfs cfs taf cfs taf cfs cfs cfs cfs cfs cfs cfs cfs cfs	FX FY FZ GA GB GC GC GC GC GC GC GC GC GC GC GC GC GC	=MIN(FW13,\$F013) =MAX(0,F013-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =IMIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13'Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13'Conversions!\$C13) =GE\$1^*GA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13) =MIN(\$AK13-FA13-F113-FS13-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$F13-\$FG13-\$FG13-\$FG13-\$GA13,GH13) =IF(\$C13=1,0,GK12+GJ13*Conversions!\$C
i o n	(OSWSD) itropic Water Stor) Original Semitropic Semitrop	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by Conveyance Maximum Take SWSD Put Cumulative Annual Put SWSD Take Cumulative Annual	cfs cfs cfs taf cfs taf cfs cfs cfs cfs cfs cfs cfs cfs cfs cf	FX FZ GA GB GC GC GC GC GC GC GC GC GC GC GC GC GC	=MIN(FW13,\$F013) =MAX(0,F013-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*GA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13) =MIN(GA13-FA13-F13-FS13-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FG13-\$FG13-\$FG13-\$GA13,GH13) =IF(\$C13=1,0,GK12+GJ13*Conversions!\$C13) =GI13
i o n	(OSWSD) itropic Warict Original ter Water Stora Semitropic	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Losses OSWSD Losses OSWSD Storage SWSD Maximum Put Maximum Take SWSD Put Conveyance Maximum Take SWSD Put Cumulative Annual Put SWSD Take Cumulative Annual Take	cfs cfs cfs taf cfs taf cfs taf cfs cfs cfs cfs cfs cfs taf cfs taf taf taf taf taf taf taf taf taf taf	FX FZ GA GB GC GD GE GF GG GI GJ GJ GL GK GL	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GB12+GC13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13) =MIN(GG13,\$FY13) =MIN(\$EP13-\$FA13-\$F13-\$FG13-\$FQ13-\$GA13,GH13) =IF(\$C13=1,0,GK12+GJ13*Conversions!\$C13) =IF(\$C13=1,0,GK12+GJ13*Conversions!\$C13) =IF(\$C13=1,0,GK12+GL13*Conversions!\$C13)
i o n	itropic WSD) Original ater Storag Semitropic Strict Semitropic Semitropic	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Put OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Storage SWSD Maximum Put Maximum Put Constrained by Conveyance Maximum Take SWSD Put Cumulative Annual Take SWSD Take Cumulative Annual Take	cfs cfs cfs taf cfs taf cfs cfs cfs cfs cfs cfs cfs cfs cfs cf	FX FZ GA GA GC GC GC GC GC GC GC GC GC GC GC GC GC	=MIN(FW13,\$FO13) =MAX(0,FO13-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*GA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(\$SAK13-FA13-F113-FS13-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$SEP13-\$FA13-\$FB13-\$FB13-\$FG13-\$FQ13-\$GA13,GH13) =IF(\$C13=1,0,GK12+GL13*Conversions!\$C13) =IF(\$C13=1,0
i o n	(OSWSD) itropic Water Storage Original Semitropic	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by Conveyance Maximum Take SWSD Put Cumulative Annual Take Cumulative Annual Take SWSD Take Cumulative Annual Take SWSD Losses SWSD Storage	cfs cfs cfs taf cfs taf cfs taf cfs cfs cfs cfs cfs cfs cfs cfs cfs cf	FX FZ GA GA GC GC GC GC GC GC GC GC GC GC GC GC GC	=MIN(FW13,\$F013) =MAX(0,F013-FW13) =MIN(\$AK13-FA13-F13-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =IF(\$C13=FA13-\$FB13-\$FG13-\$FQ13,FX13) =IF(\$C13=1,0,GD12+GA13'Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GD12+GC13'Conversions!\$C13) =GE\$1^*GA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GQ\$1-GQ12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13) =MIN(\$FY13-FA13-F13-FS13-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$E13=1,0,GK12+GJ13*Conversions!\$C13) =IF(\$C13=1,0,GK12+GJ13*Conversions!\$C13) =IF(\$C13=1,0,GK12+GJ13*Conversions!\$C13) =IF(\$C13=1,0,GM12+GL13*Conversions!\$C13) =GN81*GJ13 =IF(\$C13=1,0,GM12+GL13*Conversions!\$C13) =GN81*GJ13 =GO12+(GJ13-GL13-GN13)*Conversions!\$C13
i o n	i t r o p D i s t r i c t o r i g i n a V a t e r W a t e r S t o r a g e mi t r o p i c g i n a V a t e r S e m i t r o p i c g e	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Take Cumulative Annual Take OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by Conveyance Maximum Take SWSD Put Cumulative Annual Put SWSD Take Cumulative Annual Take SWSD Losses SWSD Storage SWSD Storage	cfs cfs cfs taf cfs taf cfs cfs cfs cfs cfs cfs cfs cfs taf cfs taf cfs cfs cfs cfs cfs cfs cfs taf cfs cfs taf cfs cfs cfs cfs cfs cfs cfs cfs cfs cf	FX FY FZ GA GB GC GC GC GC GC GC GC GC GC GC GC GC GC	=MIN(FW13,\$F013) =MAX(0,F013-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =II(\$C13=1,0,GB12+GA13*Conversions!\$C13) =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =IF(\$C13=1,0,GD12+GC13*Conversions!\$C13) =GE\$1*CA13 =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((G0\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13) =MIN(\$AK13-FA13-F113-F513-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$F13-\$FC13-\$FC13-\$FC13-\$GA13,GH13) =IF(\$C13=1,0,GK12+GJ13*Conversions!\$C13) =GI13 =IF(\$C13=1,0,GM12+GL13*Conversions!\$C13) =GN2+(C13-GL13-GC13-GC13*Conversions!\$C13) =GN2+(C13-GL13-GL13-GN13)*Conversions!\$C13 =FA13 =FA13 =FA13 =FA13
i o n	ir Orrge W ic S trop D D D D D D D D D D D D D D D D D D D	Constrained by Conveyance Remaining Available CA Capacity O'Neill to Semitropic Maximum Take OSWSD Put Cumulative Annual Take OSWSD Losses OSWSD Losses OSWSD Losses OSWSD Storage SWSD Maximum Put Constrained by Conveyance Maximum Take SWSD Put Cumulative Annual Put SWSD Take Cumulative Annual Take SWSD Losses SWSD Take Cumulative Annual Take SWSD Losses SWSD Losses SWSD Losses SWSD Storage SWP Direct Delivery SWP GWB Delivery	cfs cfs cfs cfs taf cfs taf cfs cfs cfs cfs cfs cfs cfs cfs cfs cf	FX FY FZ GA GB GC GC GC GC GC GC GC GC GC GC GC GC GC	=MIN(FW13,\$F013) =MAX(0,F013-FW13) =MIN(\$AK13-FA13-F113-FS13,GF12/Conversions!\$C13,FZ\$1,(GD\$1-GD12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-F113-FS13,GF12/Conversions!\$C13,0 =IF(\$C13=1,0,GB12+GA13*Conversions!\$C13) =FZ13 =IF(\$C13=1,0,GB12+GC13*Conversions!\$C13) =GF12+(GA13-GC13-GE13)*Conversions!\$C13 =MIN((GO\$1-GO12)/Conversions!\$C13,(GK\$1-GK12)/Conversions!\$C13,GG\$1) =MIN(GG13,\$FY13) =MIN(\$AK13-FA13-F113-FS13-GC13,GO12/Conversions!\$C13,GI\$1,(GM\$1-GM12)/Conversions!\$C13) =MIN(\$EP13-\$FA13-\$FB13-\$FG13-\$FG13-\$GA13,GH13) =IF(\$C13=1,0,GK12+GJ13*Conversions!\$C13) =GN12+(GJ13-GL13*Conversions!\$C13) =GN12+(GJ13-GL13*Conversions!\$C13) =GN13 =IF(\$C13=1,0,GM12+GL13*Conversions!\$C13) =GN13 =GN12+(GJ13-GL13-GN13)*Conversions!\$C13) =FA13 =F